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GENERALIZED CURIE-WEISS MODEL AND QUADRATIC
PRESSURE IN ERGODIC THEORY

RENAUD LEPLAIDEUR AND FRÉDÉRIQUE WATBLED

Abstract. We explain the Curie Weiss model in Statistical Mechanics within the
Ergodic viewpoint. More precisely, we simultaneously define in {−1,+1}N, on the
one hand a generalized Curie Weiss model within the Statistical Mechanics view-
point and on the other hand, quadratic free energy and quadratic pressure within
the Ergodic Theory viewpoint. We show that there are finitely many invariant
measures which maximize the quadratic free energy. They are all Dynamical Gibbs
Measures. Moreover, the Probabilistic Gibbs measures for generalized Curie Weiss
model converge to a determined combination of the (dynamical) conformal mea-
sures associated to these Dynamical Gibbs Measures. The standard Curie Weiss
model is a particular case of our generalized Curie Weiss model. An Ergodic
viewpoint over the Curie Weiss Potts model is also given.

1. Introduction

1.1. Background, main motivations and results. The notion of Gibbs measure
comes from Statistical Mechanics. It has been studied a lot from the probabilistic
viewpoint (see [12, 5, 8, 9]). This notion was introduced in Ergodic Theory in the
70’s by Sinai, Ruelle and Bowen (see [25, 26, 23, 22, 2]). Since that moment, the
thermodynamic formalism became in Dynamical Systems a purely mathematical
question and has somehow become isolated from the original physical questions.

With years, it turned out that this situation has generated sources of confusions. The
first one is that people share the same vocabulary but it is not clear that the same
names precisely define the same notions in each viewpoint (ergodic vs physicist). We
e.g. refer to phase transition, Gibbs measures, pressure. Furthermore, the confusion
is also internal to Ergodic Theory. Indeed, the thermodynamic formalism is very
differently presented for Z-actions (where the Transfer Operator plays a crucial role)
or for Zd-actions (with d > 1). For this later case, the thermodynamic formalism
is much closer to what people in Statistical Mechanics or in Probability do. Now,
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2 RENAUD LEPLAIDEUR AND FRÉDÉRIQUE WATBLED

it turns out that several questions arising for 1-dimensional actions ergodic theory
have to be exported to the higher dimensional case (see [3, 1]). Therefore, it became
important to make clear similitudes and differences in the thermodynamic formalism
between physicist and (1-d) ergodic viewpoints.

Our first result (see Theorem 1) states a kind of dictionary between thermodynamic
formalism in Statistical Mechanics and Probability on the one hand, and Ergodic
Theory on the other hand. More precisely we explain with the ergodic vocabulary
the first-order phase transition arising for the Curie-Weiss Model (mean field case)
and make precise the link between Gibbs measures within the Physicist/Probabilistic
viewpoints and the Ergodic viewpoint. We initially decided to focus on the mean
field case for the following reasons. First, there is a large literature dealing with this
topic. Second, the mean field model is naturally represented into {−1,+1}N and
exhibits “physical phase transitions” that we wanted to compare with “1-d ergodic
phase transitions” in {−1,+1}N.
From there, a natural question was to get a similar dictionary for the Curie-Weiss-
Potts model which is a generalization of the Curie-Weiss model. This is done in
Theorem 3.

These two results are then the motivation for our main result (see Theorem 2). The
key point is that the Hamiltonian for the Curie-Weiss model is almost equal to the
square of a Birkhoff sum. Now, Birkhoff sum is a key object in Dynamical Systems.
We thus introduce within the Ergodic viewpoint the notion of quadratic free energy.
It is equal to the entropy plus the square of an integral. We are naturally led to study
a variational principle, that is which invariant measures do maximize the quadratic
free energy. This maximum defines the quadratic pressure. At the same time, we
introduce a generalized Hamiltonian in the Curie Weiss model and show the link
between the associated Gibbs measures (within Physicist/Probabilistic viewpoint)
and the Gibbs measures within the Ergodic viewpoint. We show how first order
phase transitions for this generalized Curie Weiss model are related to a bifurcation
into the set of measures which maximize the quadratic free energy. Theorem 1 is
thus a particular case of Theorem 2.

We believe that this quadratic pressure generates further possible research questions
in Ergodic Theory. Some of them are discussed later (see Subsubsection 1.2.5).
Similarly, we believe that our generalized Curie Weiss model may have physical
interest.

Finally, we point out that Theorem 2 is not an extension of Theorem 3. There is
no obstruction to define and study the quadratic pressure for more general subshift
of finite type. Nevertheless, the Hamiltonian for the Curie-Weiss-Potts model does
not write itself as a square of a Birkhoff sum, because one considers a vector-valued
“potential”. This is work in progress to give an extension of Theorem 3 with the
flavour of Theorem 2.
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1.2. Precise settings and results.

1.2.1. Ergodic and Dynamical setting. We consider a finite set Λ with cardinality
bigger or equal to 2. It is called the alphabet. Then we consider the one-sided
full shift Σ = ΛN over Λ. A point x in Σ is a sequence x0, x1, . . . (also called an
infinite word) where the xi are in Λ. Most of the times we shall use the notation
x = x0x1x2 . . .. A xi ∈ Λ can either be called a letter, or a digit or a symbol.

The shift map σ is defined by

σ(x0x1x2 . . .) = x1x2 . . . .

The distance between two points x = x0x1 . . . and y = y0y1 . . . is given by

d(x, y) =
1

2min{n, xn 6=yn}
·

A finite string of symbols x0 . . . xn−1 is also called a word, of length n. For a word
w, its length is |w|. A cylinder (of length n) is denoted by [x0 . . . xn−1]. It is the set
of points y such that yi = xi for i = 0, . . . n− 1. We shall also talk about n-cylinder
instead of cylinder of length n.

If w is the word of finite length w0 . . . wn−1 and x is a word, the concatenation wx
is the new word w0w1 . . . wn−1x0x1 . . ..

For ψ : Σ→ R continuous and β > 0, the pressure function is defined by

(1) P(βψ) := sup
µ

{
hµ + β

∫
Σ

ψ dµ

}
,

where the supremum is taken among the setMσ(Σ) of σ-invariant probabilities on Σ
and hµ is the Kolmogorov-Sinäı entropy of µ. The real parameter β is assumed to be
positive because it represents the inverse of the temperature in statistical mechanics.
It is known that the supremum is actually a maximum and any measure for which
the maximum is attained in (1) is called an equilibrium state for βψ. We refer the
reader to [2, 23] for basic notions on thermodynamic formalism in ergodic theory.

If ψ is Lipschitz continuous then the Ruelle theorem (see [21]) states that for every
β, there is a unique equilibrium state for βψ, which is denoted by µ̃βψ. It is ergodic
and it shall be called the dynamical Gibbs measure (DGM for short1). It is the
unique σ-invariant probability measure which satisfies the property that for every
x = x0x1 . . . and for every n,

(2) e−Cβ ≤ µ̃βψ([x0 . . . xn−1])

eβ.Sn(ψ)(x)−nP(βψ)
≤ eCβ ,

where Cβ is a positive real number depending only on β and ψ (but not on x or n),
and Sn(ψ) stands for ψ + ψ ◦ σ + . . .+ ψ ◦ σn−1.

1We prefer the adjective “dynamical” instead of “ergodic” to avoid the discussion if an ergodic
Gibbs measure is ergodic or not.
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In this setting, the βψ-conformal measure is the unique probability measure such
that for every x and for every n,

(3) νβψ([x0 . . . xn−1]) =

∫
eβSn(ψ)(x0...xn−1y)−nP(βψ) dνβψ(y).

A precise (and more technical) definition of conformal measure is given in page
10, where the connection between conformal measures and DGM is stated. We
emphasize that in our setting, conformal measures and DGM are equivalent measures
and one can obtain one from the other.

If the choice of ψ is clear we shall drop the ψ and write µ̃β, νβ and P(β).

1.2.2. The Curie-Weiss model. We consider the case Λ = {−1,+1}; Σ will be de-
noted by Σ2.

If ω0 . . . ωn−1 is a finite word, we set

(4) Hn(ω) := − 1

2n

n−1∑
i,j=0

ωjωi.

It is called the Curie-Weiss Hamiltonian. The empirical magnetization for ω is

mn(ω) :=
1

n

n−1∑
j=0

ωj. Then we have

(5) Hn(ω) = −n
2

(mn(ω))2.

We denote by P := ρ⊗N the product measure on Σ2, where ρ is the uniform measure
on {−1, 1}, i.e. ρ({1}) = ρ({−1}) = 1

2
, and we define the probabilistic Gibbs measure

(PGM for short) µn,β on Σ2 by

(6) µn,β(dω) :=
e−βHn(ω)

Zn,β
P(dω),

where Zn,β is the normalization factor

Zn,β =
1

2n

∑
ω′, |ω′|=n

e−βHn(ω′).

Note that µn,β can also be viewed as a probability defined on Λn.

The measure P is a Bernoulli measure and is σ-invariant. In Ergodic Theory it is
usually called the Parry-measure (see [19]) and turns out to be the unique measure
with maximal entropy. With our previous notations it corresponds to the DGM µ̃0.

If Pn, P are probability measures on the Borel sets of a metric space S, we say that
Pn converges weakly to P if

∫
S
f dPn →

∫
S
f dP for each f in the class Cb(S) of

bounded, continuous real functions f on S. In this case we write Pn
w−→

n→+∞
P .
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Our first result concerns the weak convergence of the measures µn,β.

Theorem 1. Weak convergence for the CW model

Let ξβ be the unique point in [0, 1] which realizes the maximum for

ϕI(x) := log(cosh(βx))− β

2
x2.

Let µ̃b be the dynamical Gibbs measure for b(11[+1] − 11[−1]). Then

(7) µn,β
w−→

n→+∞


µ̃0 if β ≤ 1,

1

2

[
µ̃βξβ + µ̃−βξβ

]
if β > 1.

Remark 1. Actually µn,β converges towards 1
2

[
µ̃βξβ + µ̃−βξβ

]
for every β > 0 since

we shall see that for β ≤ 1 we have ξβ = 0, and it is clear that µ̃0 = ρ⊗N.

We refer to [7], sections IV.4 and V.9, for a discussion of the Curie-Weiss model
and historical references (see also [20], section 3.4). We also mention that the weak
convergence of µn,β was already proved by Orey ([18], Corollary 1.2) by a nice simple
probabilistic argument. We remind that our motivation is the dictionary aspect and
not the convergence.

We emphasize the equality

(8) mn(ω) :=
1

n
Sn(11[+1] − 11[−1])(ω)

which shows that mn can be written as a Birkhoff mean of a continuous function.

A consequence of (8) is that (5) can be rewritten under the form

Hn(ω) = −n
2

(
1

n
Sn(ψ)(ω)

)2

,

where ψ := 11[+1] − 11[−1].

1.2.3. The generalized Curie Weiss model. If ψ is a Hölder continuous function on
Σ2, we define the generalized Curie-Weiss Hamiltonian Hψ

n associated to ψ by setting

Hψ
n (ω) = −n

2

(
1

n
Sn(ψ)(ω)

)2

.

Then µψn,β is the PGM defined by

(9) dµψn,β(dω) :=
e−βH

ψ
n (ω)

Zψ
n,β

dP(ω), with Zψ
n,β =

∫
Σ2

e−βH
ψ
n dP.
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If µ is an invariant measure on Σ2, we define its quadratic free energy by

hµ +
β

2

(∫
Σ2

ψ dµ

)2

.

Then we define the quadratic pressure function (associated to Ψ) by

(10) P2(βψ) := sup
µ

{
hµ +

β

2

(∫
Σ2

ψ dµ

)2
}
.

Upper semi-continuity for the entropy immediately shows that the supremum is a
maximum. The function β 7→ P2(βψ) is obviously convex (thus continuous).

Theorem 2. Weak convergence for the generalized Curie Weiss model

Let ψ be a Hölder continuous function on Σ2, let β be a positive real number.

(1) There are finitely many invariant probabilities m1, · · · ,mJ (with J = J(β))
whose quadratic free energy (for β) is maximal and thus equal to the quadratic
pressure P2(βψ).

(2) Each mi is the unique equilibrium state µ̃βtiψ for the potential βtiψ.
(3) The numbers t1, · · · , tJ are the maxima of the auxiliary function

ϕOS(t) := P(βtψ)− β

2
t2.

(4) As n goes to +∞, µψn,β converges weakly to a convex combination of the
conformal measures νβtj ’s associated to βtjψ:

µn,β
w−→

n→+∞

J∑
j=1

cjνβtj .

The cj’s are well identified (see formulas (27) and (28)).

We emphasize that Theorem 1 is a particular case of Theorem 2 with ψ = 11[+]−11[−].
In that case the pressure is easy to compute and is equal to

P(βψ) = log 2 + log(cosh β),

and we get ϕOS(x) = log 2 + ϕI(x). Note that for this particular case, the DGM is
also the conformal measure.

1.2.4. Comparison of definitions of phase transition. Nowadays, a phase transition
in ergodic theory means the lack of analyticity for the pressure function (see e.g.
[4, 24, 17]). It is known that this notion is transversal to the number of equilibrium
states. One can have a loss of analyticity with only one equilibrium state (see the
Manneville-Pomeau example with good parameters, [28]) or analyticity with several
equilibrium states (see [16]).
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For the quadratic pressure, things may be different. We remind that z 7→ P(zψ) is
analytic (for Hölder continuous ψ). Each ti is a maximum for ϕOS and then satisfies
P ′(βti) = ti. It is thus highly probable that ti(β) is locally analytic (and surely
locally C∞). Then, the quadratic pressure satisfies

P2(β) = hµ̃βtiψ +
β

2

(∫
Σ2

ψ dµ̃βtiψ

)2

= P(βtiψ)− βti +
β

2
t2i .

It is thus reasonable to expect P2(β) to be at least piecewise C∞ and even probably
piecewise Cω. Moreover, we expect the borders of intervals of analyticity to be ex-
actly where there is a change in the number of ti’s.
It is therefore very likely that the loss of analyticity for the quadratic pressure is
equivalent to a bifurcation in the number of “quadratic” equilibrium states. Actu-
ally, this is corroborated by Theorem 1, where the quadratic pressure is piecewise
analytic (and not analytic) and the number of quadratic equilibrium states change
with respect to β exactly where analyticity fails.

1.2.5. Some consequences of Theorem 2. Several questions naturally arise from The-
orem 2. At that stage, we do not have more precise conjectures or ideas for answers.

• For more geometric dynamical systems, one usually considers or studies the special
class of physical or/and SRB-measures. These measures are usually considered as the
most natural ones with the measures of maximal entropy. It is clear that measures

of maximal entropy also maximize hµ +

(∫
Σ2

ψ dµ

)2

for ψ ≡ 0.

A natural question is thus to know if for a system admitting one SRB-measure, there
exists some potential ψ such that the SRB measure maximizes the quadratic free

energy hµ +

(∫
Σ2

ψ dµ

)2

.

• More generally, one can ask how big is the set of measures which maximize the
quadratic pressure for some potential ψ ? It is for instance known that any ergodic
measure is an equilibrium state for some continuous potential (see [23, Cor. 3.17]).
Does it still hold for quadratic pressure ?

• Ergodic Optimization studies what happens to DGM µ̃βψ as β goes to +∞. It
is known that any accumulation point maximizes the integral of ψ among invariant
measures. The goal is to study if there is convergence and how is the limit selected
among the simplex of ψ-maximizing measures. The same kind of questions may be
studied with the quadratic pressure. We point-out that non-linearity may introduce
very new and different phenomena compared to the “usual pressure”.
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1.2.6. The Curie-Weiss-Potts model. Probabilistic settings 2 and result. The Curie-
Weiss-Potts model will be for Λ = {θ1, . . . , θq} with q > 2. In that case we shall
write Σq instead of Σ.

The Curie-Weiss-Potts Hamiltonian is defined for a finite word ω = ω0 · · ·ωn−1 by

(11) Hn(ω) := − 1

2n

n−1∑
i,j=0

11ωj=ωi .

We define the vector Ln(ω) = (Ln,1(ω), · · · , Ln,q(ω)) where

Ln,k(ω) =
n−1∑
i=0

11ωi=θk

is the number of digits of ω which take the value θk, so that we can write

n−1∑
i,j=0

11ωj=ωi =

q∑
k=1

(
n−1∑
i=0

1ωi=θk

)2

= ‖Ln(ω)‖2,

where ‖ · ‖ stands for the Euclidean norm on Rq.

We denote by P := ρ⊗N the product measure on Σq, where ρ is the uniform measure
on Λ, i.e. ρ = 1

q

∑q
k=1 δθk , and we define the probabilistic Gibbs measure µn,β on Σq

by

(12) µn,β(dω) :=
e−βHn(ω)

Zn,β
P(dω) =

e
β
2n
‖Ln(ω)‖2

Zn,β
P(dω),

where Zn,β is the normalization factor

Zn,β =
1

qn

∑
ω′, |ω′|=n

e
β
2n
‖Ln(ω′)‖2 .

Now we can state the analog of Theorem 1.

Theorem 3. Weak convergence for the CWP model

For 1 ≤ k ≤ q, b ∈ R, let µ̃kb be the dynamical Gibbs measure for b11[θk]. Let

βc = 2(q−1) log(q−1)
q−2

. For 0 < β < βc set sβ = 0 and for β ≥ βc let sβ be the largest

solution of the equation

(13) s =
eβs − 1

eβs + q − 1
.
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Then,

(14) µn,β
w−→

n→+∞



ρ⊗N if 0 < β < βc,

1

q

q∑
k=1

µ̃kβsβ if β > βc,

A µ̃1
0 +B

∑q
k=1 µ̃

k
βcsβc

A+ qB
if β = βc,

with A =
(

1− βc
q(q−1)

) q−2
2

and B =
(

1− βc
q

) q−2
2

.

Remark 2. Actually µn,β converges towards 1
q

∑q
k=1 µ̃

k
βsβ

for every β 6= βc since

sβ = 0 for β < βc, and it is clear that µ̃k0 = ρ⊗N for each 1 ≤ k ≤ q.

We refer to [10] for a discussion of the Curie-Weiss-Potts model and historical ref-
erences. Orey ([18], Theorem 4.4) mentions the weak convergence of µn,β towards
an explicit atomic measure, but he makes a mistake concerning the case β = βc, as
pointed out in [10].

1.3. Plan of the paper. The paper is composed as follows.

In Section 2 we prove Theorem 2, in Section 3 we prove Theorem 3. Both proofs
are based on the convergence of µn,β(C) where C is a cylinder in Σ.

We point out that in Theorem 2 the proofs of the parts (3)-(4) and of the parts
(1)-(2) are independent.

Theorem 1 is a simple consequence of Theorem 2 as said above.

2. Proof of Theorem 2

2.1. Convergence of µψn,β. To lighten the notations we drop the ψ in Hψ
n , µψn,β,

Zψ
n,β. To prove the weak convergence of µn,β towards a measure µ, it is enough to

show that for every cylinder C,

(15) lim
n→∞

µn,β(C) = µ(C).

Let ω = ω0 . . . ωp−1 be a finite word of length p, let n > p. We use the equality

ea
2

=
1√
2π

∫ +∞

−∞
e−

x2

2
+
√

2ax dx,

sometimes called the Hubbard-Stratonovich transformation ([14],[27]), to compute
the following.
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Zn,βµn,β([ω]) =

∫
Σ2

e
β
2n

(Sn(ψ)(α))211[ω](α)dP(α)

=

∫
Σ2

1√
2π

∫ +∞

−∞
e−

x2

2 e
√

β
n
xSn(ψ)(α)11[ω](α) dx dP(α),

=

√
βn

2π

∫ +∞

−∞
e−n

β
2
z2
∫

Σ2

eβzSn(ψ)(α)11[ω](α)dP(α) dz,(16)

where we have made the change of variable βz =

√
β

n
x.

Let us define the Transfer operator Lξ, depending on a real or complex parameter
ξ, by

Lξ(T )(x) :=
∑

y, σ(y)=x

eξψ(y)T (y).

Then for every n ∈ N,

(17) Lnξ (T )(x) =
∑

y, σn(y)=x

eξSnψ(y)T (y).

We remind the following properties for Lξ (see [2], [19]):

Facts . The operator Lξ acts on continuous and Hölder continuous functions. On
Hölder continuous functions, its spectral radius λξ is a simple dominating eigenvalue.
We denote by Hξ a positive associated eigenfunction. The rest of the spectrum of
Lξ is included into the disk of radius λξe

−ε(ξ) for some positive ε(ξ). The dual oper-
ator (for continuous functions) acts on measures. There exists a unique probability
measure νξ which is the eigen-measure for the eigen-value λξ. The measure νξ is the
conformal measure. The DGM is then equal to

dµ̃ξ = Hξdνξ,

where Hξ is normalized such that µ̃ξ is a probability measure. The pressure is log λξ.

Therefore we have

(18) Lnξ (11[ω])(x) = λnξ νξ([ω])Hξ(x) + λnξ e
−nε(ξ)T (n, ξ)(x)

with ||T (n, ξ)||∞ ≤ 1.

For α ∈ Σ2 one writes α = ᾱθ with ᾱ equal to the suffix of length n of α and θ in
Σ2. Using (17) we can rewrite (16) as

Zn,βµn,β([ω]) =
1

2n

√
βn

2π

∫ +∞

−∞
e−n

β
2
z2
∫

Σ2

∑
ᾱ

eβzSn(ψ)(ᾱθ)11[ω](ᾱ)dP(θ) dz,

=
1

2n

√
βn

2π

∫ +∞

−∞
e−n

β
2
z2
∫

Σ2

Lnβz(11[ω])(θ)dP(θ) dz.(19)



GENERALIZED CURIE-WEISS MODEL AND QUADRATIC PRESSURE IN ERGODIC THEORY11

The normalization factor Zn,β can be computed by replacing [ω] by Σ2, and we get

(20) µn,β([ω]) =

∫ +∞
−∞ e−n

β
2
z2
∫

Σ2
Lnβz(11[ω])(θ)dP(θ) dz∫ +∞

−∞ e−n
β
2
z2
∫

Σ2
Lnβz(11)(θ)dP(θ) dz

=:
Nn,β

Dn,β

.

Using (18) we get

(21) Nn,β =

∫ +∞

−∞
e−n

β
2
z2+n log λβz[∫

Σ2

νβz([ω])Hβz(θ) + e−nε(βz)T (n, βz)(θ)dP(θ)

]
dz.

We want to use the Laplace method but the last term in the inner integral depends
on n. This term converges to zero as n goes to infinity but the speed of convergence
depends on z and |z| may go to infinity. Setting A := ‖ψ‖∞, we deduce from (17)
that for every n, every ξ and every T continuous

(22) ||Lnξ (T )||∞ ≤ 2nenξA||T ||∞.
Therefore the term in the integral defining the numerator Nn,β in (20) is bounded

from above by e−n
β
2
z2+n log 2+nβzA. Furthermore, there exists Z(β) such that for

|z| > Z(β)

(23) − β

2
z2 + log 2 + βzA ≤ −β

4
z2

holds, from which we deduce that there exists κ(β) > 0 such that for every n > p,

(24)

∫
|z|≥κ(β)

e−n
β
2
z2
∫

Σ2

Lnβz(11[ω])(θ)dP(θ) dz ≤ e−nκ(β).

From this we claim that the computation of the integral in (21) can be done for z in
the compact set [−Z(β), Z(β)] instead of R. As the spectral gap ξ 7→ ε(ξ) is lower
semi-continuous (see [13]), the map z 7→ ε(βz) attains its infimum on [−Z(β), Z(β)]
so that

∫
Σ2
e−nε(βz)T (n, βz)(θ)dP(θ) converges uniformly to zero on [−Z(β), Z(β)].

This yields that one can use the Laplace method for the convergence in (21), as we
now explain.

The Laplace method shows that if ϕ : I → R is a twice continuously differentiable
function, if ϕ′ vanishes on a single point ξ in the interior of the interval I, with
ϕ′′(ξ) < 0, and if f : I → R is continuous with f(ξ) 6= 0, then

(25)

∫
I

enϕ(y)f(y)dy ∼
n→∞

√
2π√
|ϕ′′(ξ)|

enϕ(ξ)f(ξ)n−1/2,

where by un ∼
n→∞

vn we mean that un = vn(1 + ε(n)) with limn→+∞ ε(n) = 0. We

refer to [11] for a report about the Laplace method, and for a generalization to the
case where the least integer k such that ϕ(k)(ξ) 6= 0 is greater than two. Of course
when ϕ has a finite number of maxima we may break up the integral into a finite
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number of integrals so that in each integral ϕ reaches its maximum at only one
interior point.

In our case we claim that the function ϕOS : z 7→ −β
2
z2 + log λβz admits only

finitely many maxima. Indeed, for z /∈ [−Z(β), Z(β)], ϕ(z) < −β
4
z2 < 0 (this is

a consequence of (22) and (23)) and ϕOS(0) = log 2 > 0. Therefore, the maxima
for ϕOS must be in the compact interval [−Z(β), Z(β)] . If there are infinitely
many, there must be some accumulation point. As ϕOS is analytic in some complex
neighborhood of [−Z(β), Z(β)], it must be equal to the constant function, which is
clearly not the case. Let t1, · · · , tJ the points where ϕOS attains its maximum. We
write the integral (21) over the segment [−Z(β), Z(β)] as a finite sum of integrals
over segments [aj, bj] where each segment [aj, bj] contains exactly one of the points
tj, 1 ≤ j ≤ J .

We state the following lemma, which is an immediate adaptation of the Laplace
method.

Lemma 2.1. Let ϕ : [a, b]→ R a function of class C2, with ϕ′ vanishing on a single
point c in ]a, b[ and ϕ′′(c) < 0. Let (fn)n≥1, f some continuous functions from [a, b]
to R such that fn converges to f uniformly on [a, b], and f(c) 6= 0. Then as n→∞∫ b

a

enϕ(x)fn(x) dx ∼
√

π

2|ϕ′′(c)|
enϕ(c)f(c)n−1/2.

We apply this lemma on every [aj, bj] to the functions fn defined by

fn(z) =

∫
Σ2

νβz([ω])Hβz(θ) + e−nε(βz)T (n, βz)(θ)dP(θ).

The functions fn converge uniformly on [aj, bj] to f defined by

f(z) =

(∫
Σ2

Hβz(θ)dP(θ)

)
νβz([ω]).

Putting together (24) and the result of Lemma 2.1 applied to every [aj, bj], assuming
for the moment that ϕ′′OS(tj) < 0 for every j = 1, · · · , J , we obtain that Nn,β is
equivalent when n goes to infinity to

√
π

2n
enϕOS(t1)

J∑
j=1

(∫
Σ2

Hβtj(θ)dP(θ)

)
νβtj([ω])√

|ϕ′′OS(tj)|

and Dn,β is equivalent to

√
π

2n
enϕOS(t1)

J∑
j=1

(∫
Σ2

Hβtj(θ)dP(θ)

)
√
|ϕ′′OS(tj)|

.
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Recalling (20) we get that µn,β([ω]) converges to

(26)
J∑
j=1

cjνβtj([ω]),

where

(27) cj :=

∫
Σ2

HβtjdP√
|ϕ′′OS(tj)|

J∑
i=1

∫
Σ2

HβtidP√
|ϕ′′OS(ti)|

.

If ϕ′′OS(ti) = 0 then the contribution of the integral over [ai, bi] is of order enϕOS(ti)n−1/ki

where ki is the least integer such that ϕ
(ki)
OS (ti) < 0. Note that all ϕOS(ti) are equal

and the ki’s are all even numbers because ϕOS reaches its maximum at each ti.

Let K := max ki and let I be the set of indexes i’s such that ki = K. Then we still
get the convergence of µn,β([ω]) to a convex combination (26) of measures νβtj ’s, but
with cj = 0 whenever j /∈ I and

(28) cj :=

∫
Σ2

HβtjdP

|ϕ(K)
OS (tj)|1/K

J∑
i∈I

∫
Σ2

HβtidP

|ϕ(K)
OS (ti)|1/K

for j ∈ I. This finishes the proof of part (4) of Theorem 2.

2.2. Measures maximizing the quadratic pressure. We want to determine the
invariant measures m which maximize

hm +
β

2

(∫
Σ2

ψ dm

)2

.

We set A (resp. A) for max
m σ−inv

∫
Σ2

ψ dm (resp. min
m σ−inv

∫
Σ2

ψ dm). For z ∈ R, we set

H(z) :=

 max
m σ−inv

{
hm,

∫
Σ2

ψ dm = z

}
if z ∈ [A,A],

−∞ if not .
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We point out the equality

P2(βψ) := max
m

{
hm +

β

2

(∫
Σ2

ψ dm

)2
}

= max
z∈[A,A]

{
H(z) +

β

2
z2

}
.

Let us set ϕ(z) := H(z) +
β

2
z2. We claim that the maxima of ϕOS and ϕ are the

same. First we observe that

P(tψ) := max
m

{
hm + t

∫
Σ2

ψ dm

}
= max

z∈R

{
H(z) + tz

}
= max

z∈R

{
tz − (−H(z))

}
.

As the function −H is convex lower semi-continuous, we deduce from the duality
property of the Fenchel-Legendre transform (see for instance [6], Lemma 4.5.8) that

(29) H(z) = inf
t∈R
{P(tψ)− tz} .

Lemma 2.2. For every z in [A,A], ϕ(z) ≤ ϕOS(z).

Proof. Let t = βz. Using (29) we get

ϕ(z) ≤ P(tψ)− tz +
β

2
z2 = P(βzψ)− β

2
z2 = ϕOS(z).

�

Lemma 2.3. ϕ(z) is maximal if and only if ϕOS(z) is maximal. In that case,
ϕ(z) = ϕOS(z).

Proof. Let z be a maximum for ϕOS. Then, it is a critical point for ϕOS. This yields

βP ′(βz) = βz.

In other words,

∫
Σ2

ψ dµ̃βz = z because P ′(tψ) =

∫
Σ2

ψ dµ̃t holds for every t. Then,

ϕ(z) ≥ hµ̃βz +
β

2
z2 = hµ̃βz + βz2 − β

2
z2

= hµ̃βz + βz

∫
Σ2

ψ dµ̃βz −
β

2
z2

= P(βzψ)− β

2
z2 = ϕOS(z) ≥ ϕ(z).

This means that ϕ(z) = ϕOS(z) holds. On the other hand for any z′,

ϕ(z′) ≤ ϕOS(z′) ≤ ϕOS(z) = ϕ(z),

which shows that z is also a maximum for ϕ.
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Conversely, if z is a maximum for ϕ, let z′ be any maximum for ϕOS. We get

ϕ(z) ≥ ϕ(z′) = ϕOS(z′) ≥ ϕOS(z) ≥ ϕ(z).

This shows that z is also a maximum for ϕOS. �

Now we are ready to finish the proof of Theorem 2. Indeed let m maximizing

hm +
β

2

(∫
Σ2

ψ dm

)2

.

Then z :=

∫
Σ2

ψ dm is a maximum for ϕ, hence according to Lemma 2.3 z is a

maximum for ϕOS with ϕOS(z) = ϕ(z). Therefore there exists i ∈ [[1, J ]] such that
z = ti, and

hm +
β

2
t2i = P(βtiψ)− β

2
t2i .

We deduce that

hm + βt2i = P(βtiψ) = hm + βti

∫
Σ2

ψ dm,

which implies that m = µ̃βtiψ. It remains to prove that each µ̃βtiψ does maximize

hm +
β

2

(∫
Σ2

ψ dm

)2

.

But this is immediate since

P ′(βti) =

∫
Σ2

ψ dµ̃βtiψ = ti

and ti is a maximum for ϕ.

3. Proof of Theorem 3

In a first step we use an auxiliary function ϕP . Note that this function was already
studied by Ellis and Wang in [10]. Then we deduce that µn,β(C) converge for any
cylinder C. In a second step we identify the limit as the relevant convex combination
of dynamical measures.

3.1. Auxiliary function ϕP and convergence for µn,β. We shall need the func-
tion ϕP defined on Rq by

(30) ϕP (z) = −β
2
‖z‖2 + log

q∑
k=1

eβzk .

This function attains its maximum on Rq since ϕP (z) ≤ −c‖z‖2 as ‖z‖ tends to ∞.
We recall Theorem 2.1 of [10], which describes precisely the global maximum points
of ϕP .
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Theorem 4. (Ellis Wang [10])

Let βc = 2(q−1) log(q−1)
q−2

. For 0 < β < βc set sβ = 0 and for β ≥ βc let sβ be the largest

solution of the equation

(31) s =
eβs − 1

eβs + q − 1
.

The function β 7→ sβ is strictly increasing on the interval [βc,+∞[, s(βc) = q−2
q−1

,

and limβ→∞ sβ = 1.

Denote by φ the function from [0, 1] into Rq defined by

φ(s) =

(
1 + (q − 1)s

q
,
1− s
q

, · · · , 1− s
q

)
,

the last (q − 1) components all equal 1−s
q

. Let Kβ denote the set of global maximum

points of the symmetric function ϕP . Define ν0 = φ(0) =
(

1
q
, · · · , 1

q

)
. For β ≥ βc,

define ν1(β) = φ(sβ) and let νi(β), i = 2, · · · , q denote the points in Rq obtained by
interchanging the first and ith coordinates of ν1(β). Then

Kβ =


{ν0} for 0 < β < βc,

{ν1(β), ν2(β), · · · , νq(β)} for β > βc,

{ν0, ν1(βc), ν
2(βc), · · · , νq(βc)} for β = βc.

For β ≥ βc the points in Kβ are all distinct.

We fix a finite word ω = ω0 · · ·ωp−1 of length p and we compute the limit of µn,β([ω]).

Lemma 3.1.

lim
n→∞

µn,β([ω]) =



1

qp
if β < βc,

1

q

1

(eβsβ + q − 1)p

q∑
k=1

eβsβLp,k(ω) if β > βc,

A
qp

+ B

(e
βsβ+q−1)p

∑q
k=1 e

βcsβcLp,k(ω)

A+ qB
if β = βc.

Proof. We want to evaluate the limit of

µn,β([ω]) =
∑

α, |α|=n−p

µn,β([ωα]) =

∑
α, |α|=n−p

e
β
2n
‖Ln(ωα)‖2

∑
α, |α|=n

e
β
2n
‖Ln(α)‖2

.
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With the help of the identity

(32) e‖u‖
2

=
1

(2π)q/2

∫
Rq

exp

(
−1

2
‖y‖2 +

√
2〈y, u〉

)
dy,

and noticing that Ln(ωα) = Lp(ω) + Ln−p(α), we write∑
α, |α|=n−p

e
β
2n
‖Ln(ωα)‖2 =

1

(2π)q/2

∫
Rq
e−

1
2
‖y‖2

∑
α

e
√

β
n
〈y,Ln(ωα)〉 dy

=
1

(2π)q/2

∫
Rq
e−

1
2
‖y‖2+
√

β
n
〈y,Lp(ω)〉

∑
α

e
√

β
n
〈y,Ln−p(α)〉 dy.

It is easily seen that ∑
α,|α|=n−p

e
√

β
n
〈y,Ln−p(α)〉 =

(
q∑

k=1

e
√

β
n
yk

)n−p

,

therefore we get∑
α, |α|=n−p

e
β
2n
‖Ln(ωα)‖2 =

1

(2π)q/2

∫
Rq

exp

(
−1

2
‖y‖2 +

√
β

n
〈y, Lp(ω)〉+ (n− p) log

(
q∑

k=1

e
√

β
n
yk

))
dy.

Now we make the change of variable βz =
√

β
n
y, and we obtain

(33)
∑

α, |α|=n−p

e
β
2n
‖Ln(ωα)‖2 =

(
nβ

2π

)q/2 ∫
Rq
enϕP (z)f(z) dz,

where ϕP was defined in (30) and f is defined on Rq by

(34) f(z) = exp

(
β〈z, Lp(ω)〉 − p log

(
q∑

k=1

eβzk

))
.

Similarly, p = 0 yields∑
α, |α|=n

e
β
2n
‖Ln(α)‖2 =

(
nβ

2π

)q/2 ∫
Rq
enϕP (z) dz,

hence

µn,β([ω]) =

∑
α, |α|=n−p e

β
2n
‖Ln(ωα)‖2∑

α, |α|=n e
β
2n
‖Ln(α)‖2

=

∫
Rq e

nϕP (z)f(z) dz∫
Rq e

nϕP (z) dz
.

We denote by DϕP (z), respectively H(z), the gradient, respectively the Hessian
matrix, of ϕP at z. It is proved in Proposition 2.2 of [10] that the Hessian matrix of
ϕP is negative definite at each global maximum point of ϕP . Now if DϕP vanishes at
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a single point z0 in an open set O of Rq, if H(z0) is negative definite and if f(z0) 6= 0,
then we know by Laplace’s method that∫

0

enϕP (z)f(z) dz ∼n→∞
(2π)q/2f(z0)enϕP (z0)

nq/2
√
|detH(z0)|

.

If 0 < β < βc : according to Theorem 4, ϕP attains its maximum at the unique
point ν0 so applying Laplace’s method yields

µn,β([ω]) ∼n→∞
f(ν0)

1
=

1

qp
.

If β > βc : Theorem 4 states that ϕP attains its maximum at exactly q points
νi(β), i = 1, · · · , q, where νi(β), i = 2, · · · , q is obtained by interchanging the first
and ith coordinates of ν1(β). Due to the symmetry of the function ϕP it is clear
that detH(νi) = detH(ν1), i = 2, · · · , q. Considering a family of disjoint open sets
(Oi)1≤i≤q such that Oi contains νi and Rq = ∪qi=1Oi∪N , where N is a set of measure
zero, Laplace’s method yields

µn,β([ω]) ∼n→∞
1

q

q∑
i=1

f(νi).

Recall that

f(νi) =
eβ〈ν

i,Lp(ω)〉(∑q
k=1 e

βνik
)p

with

νik =


1− sβ
q

if k 6= i,

1 + (q − 1)sβ
q

if k = i.

As
∑q

k=1 Lp,k(ω) = p it is easily seen that

(35) eβ〈ν
i,Lp(ω)〉 = exp

(
βp(1− sβ)

q
+ βsβLp,i(ω)

)
.

As νi is a critical point of ϕP and ∂ϕP
∂zi

(z) = βeβzi∑q
k=1 e

βzk
− βzi, we know that

(36)

q∑
k=1

eβν
i
k =

eβν
i
j

νij
=

q

1− sβ
e
β(1−sβ)

q .

Putting together (35) and (36) we obtain

f(νi) =

(
1− sβ
q

)p
eβsβLp,i(ω),

which can also be written

(37) f(νi) =
1

(eβsβ + q − 1)p
eβsβLp,i(ω)
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since sβ is solution of the equation (13). Therefore

µn,β([ω]) ∼n→∞
1

q

1

(eβsβ + q − 1)p

q∑
i=1

eβsβLp,i(ω).

If β = βc : the function ϕP admits exactly q+1 maximun points νi(β), i = 0, · · · , q
but detH(ν0) 6= detH(ν1), therefore Laplace’s method yields

(38) µn,β([ω]) ∼n→∞
|detH(ν0)|−1/2f(ν0) + |detH(ν1)|−1/2

∑q
i=1 f(νi)

|detH(ν0)|−1/2 + q |detH(ν1)|−1/2
.

In the proof of Proposition 2.2 of [10] it is proved that H(ν0) has a simple eigenvalue
at β and an eigenvalue of multiplicity (q−1) at βq−1(q−β) whereasH(ν1) has simple
eigenvalues at β and β − β2qab and an eigenvalue of multiplicity (q− 2) at β − β2b,
where a = q−1(1 + (q − 1)sβ) and b = q−1(1 − sβ). Recalling that s(βc) = q−2

q−1
we

deduce that

|detH(ν0)| = βqc (1− q−1βc)
q−1,

|detH(ν1)| = βqc (1− q−1βc)

(
1− βc

q(q − 1)

)q−2

.

Reporting in (38) and recalling (37) we get the result. �

3.2. Identification of the limit. We can already deduce from Lemma 3.1 that
µn,β

w−→
n→+∞

µ̃0 if β < βc.

Lemma 3.2. Computation for µ̃kb

For k = 1, . . . , q,

(39) µ̃kb ([ω]) =
ebLp,k(ω)

(eb + q − 1)p
.

Proof. The function b11[θk] depends only on the zero coordinate, therefore the supre-

mum in (1) is attained for the product measure (mk)⊗N, where the probability vector
(mk

j )1≤j≤q on Λ maximizes the quantity

−
q∑
j=1

pj log pj + bpk

over all the probability vectors (pj)1≤j≤q on Λ, and is given by mk
k = eb

eb+q−1
, mk

j =
1

eb+q−1
if j 6= k (see for instance Example 4.2.2 of [15]). The result is then clear. �

The limit in (14) is now a direct consequence of the lemmas 3.1 and 3.2.
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LMBA, UMR 6205, Université de Bretagne Sud, Campus de Tohannic, BP 573, 56017
Vannes, France.

E-mail address: frederique.watbled@univ-ubs.fr

http://pagesperso.univ-brest.fr/~leplaide/

	1. Introduction
	1.1. Background, main motivations and results
	1.2. Precise settings and results
	1.3. Plan of the paper

	2. Proof of Theorem 2
	2.1. Convergence of 
	2.2. Measures maximizing the quadratic pressure

	3. Proof of Theorem 3
	3.1. Auxiliary function  and convergence for 
	3.2. Identification of the limit

	References

