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We explain the Curie Weiss model in Statistical Mechanics within the Ergodic viewpoint. More precisely, we simultaneously define in {-1, +1} N , on the one hand a generalized Curie Weiss model within the Statistical Mechanics viewpoint and on the other hand, quadratic free energy and quadratic pressure within the Ergodic Theory viewpoint. We show that there are finitely many invariant measures which maximize the quadratic free energy. They are all Dynamical Gibbs Measures. Moreover, the Probabilistic Gibbs measures for generalized Curie Weiss model converge to a determined combination of the (dynamical) conformal measures associated to these Dynamical Gibbs Measures. The standard Curie Weiss model is a particular case of our generalized Curie Weiss model. An Ergodic viewpoint over the Curie Weiss Potts model is also given.

1. Introduction 1.1. Background, main motivations and results. The notion of Gibbs measure comes from Statistical Mechanics. It has been studied a lot from the probabilistic viewpoint (see [START_REF] Georgii | Gibbs measures and phase transitions[END_REF][START_REF] Costeniuc | Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model[END_REF][START_REF] Ellis | Limit theorems for sums of dependent random variables occurring in statistical mechanics[END_REF][START_REF] Ellis | The statistics of Curie-Weiss models[END_REF]). This notion was introduced in Ergodic Theory in the 70's by Sinai, Ruelle and Bowen (see [START_REF] Sinai | Gibbs measures in ergodic theory[END_REF][START_REF] Sinaȋ | Theory of phase transitions: rigorous results[END_REF][START_REF] Ruelle | Thermodynamic formalism[END_REF][START_REF] Ruelle | Statistical mechanics[END_REF][START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF]). Since that moment, the thermodynamic formalism became in Dynamical Systems a purely mathematical question and has somehow become isolated from the original physical questions.

With years, it turned out that this situation has generated sources of confusions. The first one is that people share the same vocabulary but it is not clear that the same names precisely define the same notions in each viewpoint (ergodic vs physicist). We e.g. refer to phase transition, Gibbs measures, pressure. Furthermore, the confusion is also internal to Ergodic Theory. Indeed, the thermodynamic formalism is very differently presented for Z-actions (where the Transfer Operator plays a crucial role) or for Z d -actions (with d > 1). For this later case, the thermodynamic formalism is much closer to what people in Statistical Mechanics or in Probability do. Now, it turns out that several questions arising for 1-dimensional actions ergodic theory have to be exported to the higher dimensional case (see [START_REF] Bruin | Renormalization, freezing phase transitions and Fibonacci quasicrystals[END_REF][START_REF] Bedaride | Thermodynamic formalism and Substitutions[END_REF]). Therefore, it became important to make clear similitudes and differences in the thermodynamic formalism between physicist and (1-d) ergodic viewpoints.

Our first result (see Theorem 1) states a kind of dictionary between thermodynamic formalism in Statistical Mechanics and Probability on the one hand, and Ergodic Theory on the other hand. More precisely we explain with the ergodic vocabulary the first-order phase transition arising for the Curie-Weiss Model (mean field case) and make precise the link between Gibbs measures within the Physicist/Probabilistic viewpoints and the Ergodic viewpoint. We initially decided to focus on the mean field case for the following reasons. First, there is a large literature dealing with this topic. Second, the mean field model is naturally represented into {-1, +1} N and exhibits "physical phase transitions" that we wanted to compare with "1-d ergodic phase transitions" in {-1, +1} N . From there, a natural question was to get a similar dictionary for the Curie-Weiss-Potts model which is a generalization of the Curie-Weiss model. This is done in Theorem 3.

These two results are then the motivation for our main result (see Theorem 2). The key point is that the Hamiltonian for the Curie-Weiss model is almost equal to the square of a Birkhoff sum. Now, Birkhoff sum is a key object in Dynamical Systems. We thus introduce within the Ergodic viewpoint the notion of quadratic free energy. It is equal to the entropy plus the square of an integral. We are naturally led to study a variational principle, that is which invariant measures do maximize the quadratic free energy. This maximum defines the quadratic pressure. At the same time, we introduce a generalized Hamiltonian in the Curie Weiss model and show the link between the associated Gibbs measures (within Physicist/Probabilistic viewpoint) and the Gibbs measures within the Ergodic viewpoint. We show how first order phase transitions for this generalized Curie Weiss model are related to a bifurcation into the set of measures which maximize the quadratic free energy. Theorem 1 is thus a particular case of Theorem 2.

We believe that this quadratic pressure generates further possible research questions in Ergodic Theory. Some of them are discussed later (see Subsubsection 1.2.5). Similarly, we believe that our generalized Curie Weiss model may have physical interest.

Finally, we point out that Theorem 2 is not an extension of Theorem 3. There is no obstruction to define and study the quadratic pressure for more general subshift of finite type. Nevertheless, the Hamiltonian for the Curie-Weiss-Potts model does not write itself as a square of a Birkhoff sum, because one considers a vector-valued "potential". This is work in progress to give an extension of Theorem 3 with the flavour of Theorem 2.

Precise settings and results.

1.2.1. Ergodic and Dynamical setting. We consider a finite set Λ with cardinality bigger or equal to 2. It is called the alphabet. Then we consider the one-sided full shift Σ = Λ N over Λ. A point x in Σ is a sequence x 0 , x 1 , . . . (also called an infinite word) where the x i are in Λ. Most of the times we shall use the notation x = x 0 x 1 x 2 . . .. A x i ∈ Λ can either be called a letter, or a digit or a symbol.

The shift map σ is defined by

σ(x 0 x 1 x 2 . . .) = x 1 x 2 . . . .
The distance between two points x = x 0 x 1 . . . and y = y 0 y 1 . . . is given by d(x, y) = 1 2 min{n, xn =yn} • A finite string of symbols x 0 . . . x n-1 is also called a word, of length n. For a word w, its length is |w|. A cylinder (of length n) is denoted by [x 0 . . . x n-1 ]. It is the set of points y such that y i = x i for i = 0, . . . n -1. We shall also talk about n-cylinder instead of cylinder of length n.

If w is the word of finite length w 0 . . . w n-1 and x is a word, the concatenation wx is the new word w 0 w 1 . . . w n-1 x 0 x 1 . . .. For ψ : Σ → R continuous and β > 0, the pressure function is defined by [START_REF] Bedaride | Thermodynamic formalism and Substitutions[END_REF] P(βψ) := sup

µ h µ + β Σ ψ dµ ,
where the supremum is taken among the set M σ (Σ) of σ-invariant probabilities on Σ and h µ is the Kolmogorov-Sinaï entropy of µ. The real parameter β is assumed to be positive because it represents the inverse of the temperature in statistical mechanics. It is known that the supremum is actually a maximum and any measure for which the maximum is attained in (1) is called an equilibrium state for βψ. We refer the reader to [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF][START_REF] Ruelle | Thermodynamic formalism[END_REF] for basic notions on thermodynamic formalism in ergodic theory.

If ψ is Lipschitz continuous then the Ruelle theorem (see [START_REF] Ruelle | Statistical mechanics of a one-dimensional lattice gas[END_REF]) states that for every β, there is a unique equilibrium state for βψ, which is denoted by µ βψ . It is ergodic and it shall be called the dynamical Gibbs measure (DGM for short1 ). It is the unique σ-invariant probability measure which satisfies the property that for every x = x 0 x 1 . . . and for every n,

(2) e -C β ≤ µ βψ ([x 0 . . . x n-1 ]) e β.Sn(ψ)(x)-nP(βψ) ≤ e C β , where C β is a positive real number depending only on β and ψ (but not on x or n), and S n (ψ) stands for ψ

+ ψ • σ + . . . + ψ • σ n-1 .
In this setting, the βψ-conformal measure is the unique probability measure such that for every x and for every n, [START_REF] Bruin | Renormalization, freezing phase transitions and Fibonacci quasicrystals[END_REF] ν βψ ([x 0 . . . x n-1 ]) = e βSn(ψ)(x 0 ...x n-1 y)-nP(βψ) dν βψ (y).

A precise (and more technical) definition of conformal measure is given in page 10, where the connection between conformal measures and DGM is stated. We emphasize that in our setting, conformal measures and DGM are equivalent measures and one can obtain one from the other.

If the choice of ψ is clear we shall drop the ψ and write µ β , ν β and P(β).

1.2.2.

The Curie-Weiss model. We consider the case Λ = {-1, +1}; Σ will be denoted by Σ 2 .

If ω 0 . . . ω n-1 is a finite word, we set

(4) H n (ω) := - 1 2n n-1 i,j=0 ω j ω i .
It is called the Curie-Weiss Hamiltonian. The empirical magnetization for ω is

m n (ω) := 1 n n-1 j=0 ω j . Then we have (5) H n (ω) = - n 2 (m n (ω)) 2 .
We denote by P := ρ ⊗N the product measure on Σ 2 , where ρ is the uniform measure on {-1, 1}, i.e. ρ({1}) = ρ({-1}) = 1 2 , and we define the probabilistic Gibbs measure (PGM for short) µ n,β on Σ 2 by [START_REF] Dembo | Large deviations techniques and applications[END_REF] µ n,β (dω) := e -βHn(ω) Z n,β P(dω),

where Z n,β is the normalization factor

Z n,β = 1 2 n ω , |ω |=n e -βHn(ω ) .
Note that µ n,β can also be viewed as a probability defined on Λ n .

The measure P is a Bernoulli measure and is σ-invariant. In Ergodic Theory it is usually called the Parry-measure (see [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]) and turns out to be the unique measure with maximal entropy. With our previous notations it corresponds to the DGM µ 0 .

If P n , P are probability measures on the Borel sets of a metric space S, we say that P n converges weakly to P if S f dP n → S f dP for each f in the class C b (S) of bounded, continuous real functions f on S. In this case we write P n w -→ n→+∞ P .

Our first result concerns the weak convergence of the measures µ n,β .

Theorem 1. Weak convergence for the CW model Let ξ β be the unique point in [0, 1] which realizes the maximum for

ϕ I (x) := log(cosh(βx)) - β 2 x 2 .
Let µ b be the dynamical Gibbs measure for b(1

1 [+1] -1 1 [-1] ). Then (7) µ n,β w -→ n→+∞    µ 0 if β ≤ 1, 1 2 µ βξ β + µ -βξ β if β > 1.
Remark 1. Actually µ n,β converges towards 1 2 µ βξ β + µ -βξ β for every β > 0 since we shall see that for β ≤ 1 we have ξ β = 0, and it is clear that µ 0 = ρ ⊗N .

We refer to [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF], sections IV.4 and V.9, for a discussion of the Curie-Weiss model and historical references (see also [START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF], section 3.4). We also mention that the weak convergence of µ n,β was already proved by Orey ([18], Corollary 1.2) by a nice simple probabilistic argument. We remind that our motivation is the dictionary aspect and not the convergence.

We emphasize the equality [START_REF] Ellis | Limit theorems for sums of dependent random variables occurring in statistical mechanics[END_REF] m n (ω

) := 1 n S n (1 1 [+1] -1 1 [-1] )(ω)
which shows that m n can be written as a Birkhoff mean of a continuous function.

A consequence of ( 8) is that (5) can be rewritten under the form

H n (ω) = - n 2 1 n S n (ψ)(ω) 2 ,
where

ψ := 1 1 [+1] -1 1 [-1] . 1.2.3.
The generalized Curie Weiss model. If ψ is a Hölder continuous function on Σ 2 , we define the generalized Curie-Weiss Hamiltonian H ψ n associated to ψ by setting

H ψ n (ω) = - n 2 1 n S n (ψ)(ω) 2 .
Then µ ψ n,β is the PGM defined by ( 9)

dµ ψ n,β (dω) := e -βH ψ n (ω) Z ψ n,β dP(ω), with Z ψ n,β = Σ 2 e -βH ψ n dP.
If µ is an invariant measure on Σ 2 , we define its quadratic free energy by

h µ + β 2 Σ 2 ψ dµ 2 .
Then we define the quadratic pressure function (associated to Ψ) by ( 10)

P 2 (βψ) := sup µ h µ + β 2 Σ 2 ψ dµ 2 .
Upper semi-continuity for the entropy immediately shows that the supremum is a maximum. The function β → P 2 (βψ) is obviously convex (thus continuous).

Theorem 2. Weak convergence for the generalized Curie Weiss model

Let ψ be a Hölder continuous function on Σ 2 , let β be a positive real number.

(1) There are finitely many invariant probabilities

m 1 , • • • , m J (with J = J(β))
whose quadratic free energy (for β) is maximal and thus equal to the quadratic pressure P 2 (βψ). ( 2) Each m i is the unique equilibrium state µ βt i ψ for the potential βt i ψ.

(3) The numbers t 1 , • • • , t J are the maxima of the auxiliary function

ϕ OS (t) := P(βtψ) - β 2 t 2 .
(4) As n goes to +∞, µ ψ n,β converges weakly to a convex combination of the conformal measures ν βt j 's associated to βt j ψ:

µ n,β w -→ n→+∞ J j=1 c j ν βt j .
The c j 's are well identified (see formulas [START_REF] Stratonovič | A method for the computation of quantum distribution functions[END_REF] and (28)).

We emphasize that Theorem 1 is a particular case of Theorem 2 with ψ = 1 1

[+] -1 1 [-] .
In that case the pressure is easy to compute and is equal to

P(βψ) = log 2 + log(cosh β),
and we get ϕ OS (x) = log 2 + ϕ I (x). Note that for this particular case, the DGM is also the conformal measure. 1.2.4. Comparison of definitions of phase transition. Nowadays, a phase transition in ergodic theory means the lack of analyticity for the pressure function (see e.g. [START_REF] Coronel | Low-temperature phase transitions in the quadratic family[END_REF][START_REF] Sarig | Continuous phase transitions for dynamical systems[END_REF][START_REF] Makarov | On thermodynamics of rational maps. II. Non-recurrent maps[END_REF]). It is known that this notion is transversal to the number of equilibrium states. One can have a loss of analyticity with only one equilibrium state (see the Manneville-Pomeau example with good parameters, [START_REF] Thaler | Estimates of the invariant densities of endomorphisms with indifferent fixed points[END_REF]) or analyticity with several equilibrium states (see [START_REF] Leplaideur | Chaos: butterflies also generate phase transitions[END_REF]).

For the quadratic pressure, things may be different. We remind that z → P(zψ) is analytic (for Hölder continuous ψ). Each t i is a maximum for ϕ OS and then satisfies P (βt i ) = t i . It is thus highly probable that t i (β) is locally analytic (and surely locally C ∞ ). Then, the quadratic pressure satisfies

P 2 (β) = h µ βt i ψ + β 2 Σ 2 ψ d µ βt i ψ 2 = P(βt i ψ) -βt i + β 2 t 2 i .
It is thus reasonable to expect P 2 (β) to be at least piecewise C ∞ and even probably piecewise C ω . Moreover, we expect the borders of intervals of analyticity to be exactly where there is a change in the number of t i 's.

It is therefore very likely that the loss of analyticity for the quadratic pressure is equivalent to a bifurcation in the number of "quadratic" equilibrium states. Actually, this is corroborated by Theorem 1, where the quadratic pressure is piecewise analytic (and not analytic) and the number of quadratic equilibrium states change with respect to β exactly where analyticity fails.

1.2.5. Some consequences of Theorem 2. Several questions naturally arise from Theorem 2. At that stage, we do not have more precise conjectures or ideas for answers.

• For more geometric dynamical systems, one usually considers or studies the special class of physical or/and SRB-measures. These measures are usually considered as the most natural ones with the measures of maximal entropy. It is clear that measures of maximal entropy also maximize

h µ + Σ 2 ψ dµ 2 for ψ ≡ 0.
A natural question is thus to know if for a system admitting one SRB-measure, there exists some potential ψ such that the SRB measure maximizes the quadratic free

energy h µ + Σ 2 ψ dµ 2 .
• More generally, one can ask how big is the set of measures which maximize the quadratic pressure for some potential ψ ? It is for instance known that any ergodic measure is an equilibrium state for some continuous potential (see [START_REF] Ruelle | Thermodynamic formalism[END_REF]Cor. 3.17]). Does it still hold for quadratic pressure ?

• Ergodic Optimization studies what happens to DGM µ βψ as β goes to +∞. It is known that any accumulation point maximizes the integral of ψ among invariant measures. The goal is to study if there is convergence and how is the limit selected among the simplex of ψ-maximizing measures. The same kind of questions may be studied with the quadratic pressure. We point-out that non-linearity may introduce very new and different phenomena compared to the "usual pressure".

1.2.6. The Curie-Weiss-Potts model. Probabilistic settings 2 and result. The Curie-Weiss-Potts model will be for Λ = {θ 1 , . . . , θ q } with q > 2. In that case we shall write Σ q instead of Σ.

The Curie-Weiss-Potts Hamiltonian is defined for a finite word

ω = ω 0 • • • ω n-1 by (11) H n (ω) := - 1 2n n-1 i,j=0 1 1 ω j =ω i .
We define the vector

L n (ω) = (L n,1 (ω), • • • , L n,q (ω))
where

L n,k (ω) = n-1 i=0 1 1 ω i =θ k
is the number of digits of ω which take the value θ k , so that we can write

n-1 i,j=0 1 1 ω j =ω i = q k=1 n-1 i=0 1 ω i =θ k 2 = L n (ω) 2 ,
where • stands for the Euclidean norm on R q .

We denote by P := ρ ⊗N the product measure on Σ q , where ρ is the uniform measure on Λ, i.e. ρ = 1 q q k=1 δ θ k , and we define the probabilistic Gibbs measure µ n,β on Σ q by [START_REF] Georgii | Gibbs measures and phase transitions[END_REF] µ n,β (dω

) := e -βHn(ω) Z n,β P(dω) = e β 2n Ln(ω) 2 Z n,β P(dω),
where Z n,β is the normalization factor

Z n,β = 1 q n ω , |ω |=n e β 2n Ln(ω ) 2 .
Now we can state the analog of Theorem 1.

Theorem 3. Weak convergence for the CWP model

For 1 ≤ k ≤ q, b ∈ R, let µ k b be the dynamical Gibbs measure for b1 1 [θ k ] . Let β c = 2(q-1) log(q-1) q-2
. For 0 < β < β c set s β = 0 and for β ≥ β c let s β be the largest solution of the equation [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] s = e βs -1 e βs + q -1 .

Then,

(14) µ n,β w -→ n→+∞                ρ ⊗N if 0 < β < β c , 1 q q k=1 µ k βs β if β > β c , A µ 1 0 + B q k=1 µ k βcs βc A + qB if β = β c , with A = 1 -βc q(q-1) q-2 2 and B = 1 -βc q q-2 2 .
Remark 2. Actually µ n,β converges towards 1 q q k=1 µ k βs β for every β = β c since s β = 0 for β < β c , and it is clear that µ k 0 = ρ ⊗N for each 1 ≤ k ≤ q.

We refer to [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF] for a discussion of the Curie-Weiss-Potts model and historical references. Orey ([18], Theorem 4.4) mentions the weak convergence of µ n,β towards an explicit atomic measure, but he makes a mistake concerning the case β = β c , as pointed out in [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF].

1.3. Plan of the paper. The paper is composed as follows.

In Section 2 we prove Theorem 2, in Section 3 we prove Theorem 3. Both proofs are based on the convergence of µ n,β (C) where C is a cylinder in Σ.

We point out that in Theorem 2 the proofs of the parts (3)-( 4) and of the parts (1)-(2) are independent.

Theorem 1 is a simple consequence of Theorem 2 as said above.

Proof of Theorem 2

2.1. Convergence of µ ψ n,β . To lighten the notations we drop the ψ in H ψ n , µ ψ n,β , Z ψ n,β . To prove the weak convergence of µ n,β towards a measure µ, it is enough to show that for every cylinder C, [START_REF] Keller | Equilibrium states in ergodic theory[END_REF] lim

n→∞ µ n,β (C) = µ(C).
Let ω = ω 0 . . . ω p-1 be a finite word of length p, let n > p. We use the equality

e a 2 = 1 √ 2π +∞ -∞ e -x 2 2 + √ 2ax dx,
sometimes called the Hubbard-Stratonovich transformation ( [START_REF] Hubbard | Calculation of partition functions[END_REF], [START_REF] Stratonovič | A method for the computation of quantum distribution functions[END_REF]), to compute the following.

Z n,β µ n,β ([ω]) = Σ 2 e β 2n (Sn(ψ)(α)) 2 1 1 [ω] (α)dP(α) = Σ 2 1 √ 2π +∞ -∞ e -x 2 2 e √ β n xSn(ψ)(α) 1 1 [ω] (α) dx dP(α), = βn 2π +∞ -∞ e -n β 2 z 2 Σ 2 e βzSn(ψ)(α) 1 1 [ω] (α)dP(α) dz, (16) 
where we have made the change of variable βz = β n x.

Let us define the Transfer operator L ξ , depending on a real or complex parameter ξ, by L ξ (T )(x) := y, σ(y)=x e ξψ(y) T (y).

Then for every n ∈ N,

L n ξ (T )(x) = y, σ n (y)=x (17) 
e ξSnψ(y) T (y).

We remind the following properties for L ξ (see [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF], [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]):

Facts . The operator L ξ acts on continuous and Hölder continuous functions. On Hölder continuous functions, its spectral radius λ ξ is a simple dominating eigenvalue. We denote by H ξ a positive associated eigenfunction. The rest of the spectrum of L ξ is included into the disk of radius λ ξ e -ε(ξ) for some positive ε(ξ). The dual operator (for continuous functions) acts on measures. There exists a unique probability measure ν ξ which is the eigen-measure for the eigen-value λ ξ . The measure ν ξ is the conformal measure. The DGM is then equal to

d µ ξ = H ξ dν ξ ,
where H ξ is normalized such that µ ξ is a probability measure. The pressure is log λ ξ .

Therefore we have ( 18)

L n ξ (1 1 [ω] )(x) = λ n ξ ν ξ ([ω])H ξ (x) + λ n ξ e -nε(ξ) T (n, ξ)(x) with ||T (n, ξ)|| ∞ ≤ 1.
For α ∈ Σ 2 one writes α = ᾱθ with ᾱ equal to the suffix of length n of α and θ in Σ 2 . Using [START_REF] Makarov | On thermodynamics of rational maps. II. Non-recurrent maps[END_REF] we can rewrite [START_REF] Leplaideur | Chaos: butterflies also generate phase transitions[END_REF] as

Z n,β µ n,β ([ω]) = 1 2 n βn 2π +∞ -∞ e -n β 2 z 2 Σ 2 ᾱ e βzSn(ψ)( ᾱθ) 1 1 [ω] (ᾱ)dP(θ) dz, = 1 2 n βn 2π +∞ -∞ e -n β 2 z 2 Σ 2 L n βz (1 1 [ω] )(θ)dP(θ) dz. ( 19 
)
The normalization factor Z n,β can be computed by replacing [ω] by Σ 2 , and we get [START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF] µ

n,β ([ω]) = +∞ -∞ e -n β 2 z 2 Σ 2 L n βz (1 1 [ω] )(θ)dP(θ) dz +∞ -∞ e -n β 2 z 2 Σ 2 L n βz (1 1)(θ)dP(θ) dz =: N n,β D n,β . 
Using [START_REF] Orey | Large deviations for the empirical field of Curie-Weiss models[END_REF] we get

(21) N n,β = +∞ -∞ e -n β 2 z 2 +n log λ βz Σ 2 ν βz ([ω])H βz (θ) + e -nε(βz) T (n, βz)(θ)dP(θ) dz.
We want to use the Laplace method but the last term in the inner integral depends on n. This term converges to zero as n goes to infinity but the speed of convergence depends on z and |z| may go to infinity. Setting A := ψ ∞ , we deduce from ( 17) that for every n, every ξ and every T continuous

(22) ||L n ξ (T )|| ∞ ≤ 2 n e nξA ||T || ∞ .
Therefore the term in the integral defining the numerator N n,β in ( 20) is bounded from above by e -n β 2 z 2 +n log 2+nβzA . Furthermore, there exists Z(β) such that for |z| > Z(β)

(23) - β 2 z 2 + log 2 + βzA ≤ - β 4 z 2
holds, from which we deduce that there exists κ(β) > 0 such that for every n > p, [START_REF] Sarig | Continuous phase transitions for dynamical systems[END_REF] |z|≥κ(β) β) .

e -n β 2 z 2 Σ 2 L n βz (1 1 [ω] )(θ)dP(θ) dz ≤ e -nκ(
From this we claim that the computation of the integral in ( 21) can be done for z in the compact set [-Z(β), Z(β)] instead of R. As the spectral gap ξ → ε(ξ) is lower semi-continuous (see [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]), the map z → ε(βz) attains its infimum on [-Z(β), Z(β)] so that Σ 2 e -nε(βz) T (n, βz)(θ)dP(θ) converges uniformly to zero on [-Z(β), Z(β)]. This yields that one can use the Laplace method for the convergence in ( 21), as we now explain.

The Laplace method shows that if ϕ : I → R is a twice continuously differentiable function, if ϕ vanishes on a single point ξ in the interior of the interval I, with ϕ (ξ) < 0, and if f :

I → R is continuous with f (ξ) = 0, then (25) 
I e nϕ(y) f (y)dy ∼ n→∞ √ 2π |ϕ (ξ)| e nϕ(ξ) f (ξ)n -1/2 ,
where by u n ∼ n→∞ v n we mean that u n = v n (1 + (n)) with lim n→+∞ (n) = 0. We refer to [START_REF] Erdélyi | Asymptotic expansions[END_REF] for a report about the Laplace method, and for a generalization to the case where the least integer k such that ϕ (k) (ξ) = 0 is greater than two. Of course when ϕ has a finite number of maxima we may break up the integral into a finite number of integrals so that in each integral ϕ reaches its maximum at only one interior point.

In our case we claim that the function ϕ OS : z → -β 2 z 2 + log λ βz admits only finitely many maxima. Indeed, for z / ∈ [-Z(β), Z(β)], ϕ(z) < -β 4 z 2 < 0 (this is a consequence of ( 22) and ( 23)) and ϕ OS (0) = log 2 > 0. Therefore, the maxima for ϕ OS must be in the compact interval [-Z(β), Z(β)] . If there are infinitely many, there must be some accumulation point. As ϕ OS is analytic in some complex neighborhood of [-Z(β), Z(β)], it must be equal to the constant function, which is clearly not the case. Let t 1 , • • • , t J the points where ϕ OS attains its maximum. We write the integral (21) over the segment [-Z(β), Z(β)] as a finite sum of integrals over segments [a j , b j ] where each segment [a j , b j ] contains exactly one of the points t j , 1 ≤ j ≤ J.

We state the following lemma, which is an immediate adaptation of the Laplace method.

Lemma 2.1. Let ϕ : [a, b] → R a function of class C 2 , with ϕ vanishing on a single point c in ]a, b[ and ϕ (c) < 0. Let (f n ) n≥1 , f some continuous functions from [a, b] to R such that f n converges to f uniformly on [a, b], and f (c) = 0. Then as n → ∞ b a e nϕ(x) f n (x) dx ∼ π 2|ϕ (c)| e nϕ(c) f (c)n -1/2 .
We apply this lemma on every [a j , b j ] to the functions f n defined by

f n (z) = Σ 2 ν βz ([ω])H βz (θ) + e -nε(βz) T (n, βz)(θ)dP(θ).
The functions f n converge uniformly on [a j , b j ] to f defined by

f (z) = Σ 2 H βz (θ)dP(θ) ν βz ([ω]).
Putting together [START_REF] Sarig | Continuous phase transitions for dynamical systems[END_REF] and the result of Lemma 2.1 applied to every [a j , b j ], assuming for the moment that ϕ OS (t j ) < 0 for every j = 1, • • • , J, we obtain that N n,β is equivalent when n goes to infinity to

π 2n e nϕ OS (t 1 ) J j=1 Σ 2 H βt j (θ)dP(θ) ν βt j ([ω]) |ϕ OS (t j )| and D n,β is equivalent to π 2n e nϕ OS (t 1 ) J j=1 Σ 2 H βt j (θ)dP(θ) |ϕ OS (t j )| .
Recalling [START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF] we get that µ n,β ([ω]) converges to (26)

J j=1 c j ν βt j ([ω]), where (27) 
c j := Σ 2 H βt j dP |ϕ OS (t j )| J i=1 Σ 2 H βt i dP |ϕ OS (t i )| . If ϕ OS (t i ) = 0 then the contribution of the integral over [a i , b i ] is of order e nϕ OS (t i ) n -1/k i
where k i is the least integer such that ϕ

(k i ) OS (t i ) < 0.
Note that all ϕ OS (t i ) are equal and the k i 's are all even numbers because ϕ OS reaches its maximum at each t i .

Let K := max k i and let I be the set of indexes i's such that k i = K. Then we still get the convergence of µ n,β ([ω]) to a convex combination [START_REF] Sinaȋ | Theory of phase transitions: rigorous results[END_REF] of measures ν βt j 's, but with c j = 0 whenever j / ∈ I and (28)

c j := Σ 2 H βt j dP |ϕ (K) OS (t j )| 1/K J i∈I Σ 2 H βt i dP |ϕ (K)
OS (t i )| 1/K for j ∈ I. This finishes the proof of part (4) of Theorem 2.

2.2.

Measures maximizing the quadratic pressure. We want to determine the invariant measures m which maximize

h m + β 2 Σ 2 ψ dm 2 .
We set A (resp. A) for max

m σ-inv Σ 2 ψ dm (resp. min m σ-inv Σ 2 ψ dm). For z ∈ R, we set H(z) :=    max m σ-inv h m , Σ 2 ψ dm = z if z ∈ [A, A], -∞ if not .
We point out the equality

P 2 (βψ) := max m h m + β 2 Σ 2 ψ dm 2 = max z∈[A,A] H(z) + β 2 z 2 .
Let us set ϕ(z) := H(z) + β 2 z 2 . We claim that the maxima of ϕ OS and ϕ are the same. First we observe that

P(tψ) := max m h m + t Σ 2 ψ dm = max z∈R H(z) + tz = max z∈R tz -(-H(z)) .
As the function -H is convex lower semi-continuous, we deduce from the duality property of the Fenchel-Legendre transform (see for instance [START_REF] Dembo | Large deviations techniques and applications[END_REF] Proof. Let z be a maximum for ϕ OS . Then, it is a critical point for ϕ OS . This yields βP (βz) = βz.

In other words,

Σ 2 ψ d µ βz = z because P (tψ) = Σ 2
ψ d µ t holds for every t. Then,

ϕ(z) ≥ h µ βz + β 2 z 2 = h µ βz + βz 2 - β 2 z 2 = h µ βz + βz Σ 2 ψ d µ βz - β 2 z 2 = P(βzψ) - β 2 z 2 = ϕ OS (z) ≥ ϕ(z).
This means that ϕ(z) = ϕ OS (z) holds. On the other hand for any z ,

ϕ(z ) ≤ ϕ OS (z ) ≤ ϕ OS (z) = ϕ(z),
which shows that z is also a maximum for ϕ.

Conversely, if z is a maximum for ϕ, let z be any maximum for ϕ OS . We get

ϕ(z) ≥ ϕ(z ) = ϕ OS (z ) ≥ ϕ OS (z) ≥ ϕ(z).
This shows that z is also a maximum for ϕ OS . Now we are ready to finish the proof of Theorem 2. Indeed let m maximizing

h m + β 2 Σ 2 ψ dm 2 .
Then z :=

Σ 2
ψ dm is a maximum for ϕ, hence according to Lemma 2.3 z is a maximum for ϕ OS with ϕ OS (z) = ϕ(z). Therefore there exists i ∈ [ [1, J]] such that z = t i , and

h m + β 2 t 2 i = P(βt i ψ) - β 2 t 2 i . We deduce that h m + βt 2 i = P(βt i ψ) = h m + βt i Σ 2 ψ dm,
which implies that m = µ βt i ψ . It remains to prove that each µ βt i ψ does maximize

h m + β 2 Σ 2 ψ dm 2 .
But this is immediate since

P (βt i ) = Σ 2 ψ d µ βt i ψ = t i
and t i is a maximum for ϕ.

Proof of Theorem 3

In a first step we use an auxiliary function ϕ P . Note that this function was already studied by Ellis and Wang in [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF]. Then we deduce that µ n,β (C) converge for any cylinder C. In a second step we identify the limit as the relevant convex combination of dynamical measures.

3.1. Auxiliary function ϕ P and convergence for µ n,β . We shall need the function ϕ P defined on R q by (30)

ϕ P (z) = - β 2 z 2 + log q k=1 e βz k .
This function attains its maximum on R q since ϕ P (z) ≤ -c z 2 as z tends to ∞. We recall Theorem 2.1 of [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF], which describes precisely the global maximum points of ϕ P .

With the help of the identity (32) R q e nϕ P (z) f (z) dz, where ϕ P was defined in (30) and f is defined on R q by (34)

e u 2 = 1 (2π) q/2 R q exp - 1 2 y 2 + √ 2 
f (z) = exp β z, L p (ω) -p log q k=1 e βz k .
Similarly, p = 0 yields = R q e nϕ P (z) f (z) dz R q e nϕ P (z) dz .

We denote by Dϕ P (z), respectively H(z), the gradient, respectively the Hessian matrix, of ϕ P at z. It is proved in Proposition 2.2 of [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF] that the Hessian matrix of ϕ P is negative definite at each global maximum point of ϕ P . Now if Dϕ P vanishes at a single point z 0 in an open set O of R q , if H(z 0 ) is negative definite and if f (z 0 ) = 0, then we know by Laplace's method that 0 e nϕ P (z) f (z) dz ∼ n→∞ (2π) q/2 f (z 0 )e nϕ P (z 0 ) n q/2 |det H(z 0 )| .

If 0 < β < β c : according to Theorem 4, ϕ P attains its maximum at the unique point ν 0 so applying Laplace's method yields

µ n,β ([ω]) ∼ n→∞ f (ν 0 ) 1 = 1 q p .
If β > β c : Theorem 4 states that ϕ P attains its maximum at exactly q points ν i (β), i = 1, • • • , q, where ν i (β), i = 2, • • • , q is obtained by interchanging the first and ith coordinates of ν 1 (β). Due to the symmetry of the function ϕ P it is clear that det H(ν i ) = det H(ν 1 ), i = 2, • • • , q. Considering a family of disjoint open sets (O i ) 1≤i≤q such that O i contains ν i and R q = ∪ q i=1 O i ∪N , where N is a set of measure zero, Laplace's method yields

µ n,β ([ω]) ∼ n→∞ 1 q q i=1 f (ν i ).
Recall that f (ν i ) = e β ν i ,Lp(ω) q k=1 e βν i k p with

ν i k =        1 -s β q if k = i, 1 + (q -1)s β q if k = i.
As q k=1 L p,k (ω) = p it is easily seen that (35) e β ν i ,Lp(ω) = exp βp(1 -s β ) q + βs β L p,i (ω) .

As ν i is a critical point of ϕ P and ∂ϕ P ∂z i (z) = βe βz i q k=1 e βz k -βz i , we know that (36) q k=1 e βν i k = e βν i j ν i j = q 1 -s β e

β(1-s β ) q

.

Putting together (35) and (36) we obtain f (ν i ) = 1 -s β q p e βs β L p,i (ω) , which can also be written (37) f (ν i ) = 1 (e βs β + q -1) p e βs β L p,i (ω) since s β is solution of the equation [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]. Therefore µ n,β ([ω]) ∼ n→∞ 1 q 1 (e βs β + q -1) p q i=1 e βs β L p,i (ω) .

If β = β c : the function ϕ P admits exactly q + 1 maximun points ν i (β), i = 0, • • • , q but det H(ν 0 ) = det H(ν 1 ), therefore Laplace's method yields (38)

µ n,β ([ω]) ∼ n→∞ |det H(ν 0 )| -1/2 f (ν 0 ) + |det H(ν 1 )| -1/2 q i=1 f (ν i ) |det H(ν 0 )| -1/2 + q |det H(ν 1 )| -1/2 .
In the proof of Proposition 2.2 of [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF] it is proved that H(ν 0 ) has a simple eigenvalue at β and an eigenvalue of multiplicity (q-1) at βq -1 (q-β) whereas H(ν 1 ) has simple eigenvalues at β and β -β 2 qab and an eigenvalue of multiplicity (q -2) at β -β 2 b, where a = q -1 (1 + (q -1)s β ) and b = q -1 (1 -s β ). Recalling that s(β c ) = q-2 q-1 we deduce that |det H(ν 0 )| = β q c (1 -q -1 β c ) q-1 , |det H(ν 1 )| = β q c (1 -q -1 β c ) 1 -

β c q(q -1) q-2 .
Reporting in (38) and recalling (37) we get the result. ). The result is then clear.

The limit in ( 14) is now a direct consequence of the lemmas 3.1 and 3.2.

  y, u dy, and noticing that L n (ωα) = L p (ω) + L n-p (α), we write α, L n-p (α) dy. It is easily seen that α,|α|=n-p e √ β n y,L n-p (α) = Now we make the change of variable βz = β n y, and we obtain

e

  nϕ P (z) dz, hence µ n,β ([ω]) = α, |α|=n-p e β 2n Ln(ωα) 2 α, |α|=n e β 2n Ln(α) 2

3. 2 . 1 e

 21 Identification of the limit. We can already deduce from Lemma 3.1 thatµ n,β w -→ n→+∞ µ 0 if β < β c . Lemma 3.2. Computation for µ k b For k = 1, . . . , q, (39) µ k b ([ω]) = e bL p,k (ω) (e b + q -1) p .Proof. The function b1 1 [θ k ] depends only on the zero coordinate, therefore the supremum in (1) is attained for the product measure (m k ) ⊗N , where the probability vector (m k j ) 1≤j≤q on Λ maximizes the quantity q j=1 p j log p j + bp k over all the probability vectors (p j ) 1≤j≤q on Λ, and is given by m k k = e b e b +q-1 , m k j = b +q-1 if j = k (see for instance Example 4.2.2 of[START_REF] Keller | Equilibrium states in ergodic theory[END_REF]

  Lemma 2.2. For every z in [A, A], ϕ(z) ≤ ϕ OS (z).

						, Lemma 4.5.8) that
	(29)	H(z) = inf t∈R	{P(tψ) -tz} .
	Proof. Let t = βz. Using (29) we get		
	ϕ(z) ≤ P(tψ) -tz +	β 2	z 2 = P(βzψ) -	β 2	z 2 = ϕ OS (z).
	Lemma 2.3. ϕ(z) is maximal if and only if ϕ OS (z) is maximal. In that case,
	ϕ(z) = ϕ OS (z).				

We prefer the adjective "dynamical" instead of "ergodic" to avoid the discussion if an ergodic Gibbs measure is ergodic or not.

Theorem 4. (Ellis Wang [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF])

Let β c = 2(q-1) log(q-1) q-2 . For 0 < β < β c set s β = 0 and for β ≥ β c let s β be the largest solution of the equation

s = e βs -1 e βs + q -1 .

The function β → s β is strictly increasing on the interval [β c , +∞[, s(β c ) = q-2 q-1 , and lim β→∞ s β = 1.

Denote by φ the function from [0, 1] into R q defined by

the last (q -1) components all equal 1-s q . Let K β denote the set of global maximum points of the symmetric function ϕ P . Define

points in R q obtained by interchanging the first and ith coordinates of ν 1 (β). Then

For β ≥ β c the points in K β are all distinct.

We fix a finite word ω = ω 0 • • • ω p-1 of length p and we compute the limit of µ n,β ([ω]).

Lemma 3.1.

Proof. We want to evaluate the limit of