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Abstract
An important problem in universal algebra consists in finding presentations of algebraic theories
by generators and relations, which are as small as possible. Exhibiting lower bounds on the
number of those generators and relations for a given theory is a difficult task because it a priori
requires considering all possible sets of generators for a theory and no general method exists.
In this article, we explain how homological computations can provide such lower bounds, in a
systematic way, and show how to actually compute those in the case where a presentation of
the theory by a convergent rewriting system is known. We also introduce the notion of coherent
presentation of a theory in order to consider finer homotopical invariants. In some aspects, this
work generalizes, to term rewriting systems, Squier’s celebrated homological and homotopical
invariants for string rewriting systems.

1 Introduction

An algebraic theory is a mathematical structure specified by operations, with given arities,
and relations between those, i.e. a term rewriting system if we consider the relations as being
oriented. For instance, the theory of groups is given by three operations m of arity two (the
multiplication), e of arity zero (the neutral element) and i of arity one (the inverse), subject
to the five expected relations:

m(e, x1) = x1 m(x1, e) = x1 m(m(x1, x2), x3) = m(x1,m(x2, x3))
m(i(x1), x1) = e m(x1, i(x1)) = e

Of course there are many ways of specifying, or presenting, an algebraic theory. For instance,
the relations in the second column are derivable from the other, and we could therefore as
well remove them and still get a presentation for the theory of groups, with only three
relations. This observation is in fact the starting point of the work of Knuth and Bendix in
rewriting theory [10]: by adding derivable relations, in good cases one can obtain a set of
relations which are much better behaved from a computational point of view, such as being
confluent and terminating, without changing the presented theory. In the case of the theory
of groups, one can actually come up with an even smaller presentation by considering other
generators; it can be axiomatized with only two generators a of arity zero (standing for any
element, in order to exclude the “empty group”) and d of arity two (standing for division)
subject to only one relation [7]:

d(x1, d(d(d(d(x1, x1), x2), x3), d(d(d(x1, x1), x1), x3))) = x2 (1)

see also [23, 24] for other possible axiomatizations of the theory of groups with one relation.
This quest for small presentations was initiated by Tarski who first gave a similar pre-

sentation of abelian groups with one rule [30]: those with only one relation are of particular
interest and are sometimes called one-based theories in the literature. As illustrated in the
example above, this is not an easy task: in the case of groups, one had to think of com-
pletely changing the set of generators and relations... Let us briefly recall some achievements
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in the field, a detailed overview of the subject can be found in [17]. The theories of semi-
lattices [27] and distributive lattices [20] are not one-based. In contrast the theory of lattices
is one-based: first, a unique relation was shown to exist by general methods [20], giving rise
to a relation of length 300000 on 34 variables, and was then reduced to one of length 29
on 8 variables [18]. Similarly, for boolean algebras a single axiom was provided [26], but its
size was more than 40 million symbols [17], and shorter axioms (around a dozen of symbols)
were found afterward [19] by using intensive combinatorial computations.

In this article, we provide a novel method of showing that a theory is not one-based, using
homological invariants, when the theory is given by a convergent rewriting system. The
results mentioned above (such as semi- and distributive lattices) required lots of inventivity
and are specific to the considered cases. By contrast, our methods are completely mechanical:
by performing a series of computations, one obtains a lower bound on the number of rules
in any presentation of the theory, and if this lower bound is greater than two, we know that
we need at least two relations to present it, and therefore that the theory is not one-based.
Of course, our method does not always gives interesting results: it might answer zero as a
lower bound, from which we cannot conclude anything.
Homological invariants. The homology of a space consists in a sequence of groups which
encode the number of “holes” in each dimension, and moreover they constitute invariants
of the spaces in the sense that two homotopy equivalent spaces have the same associated
groups [15, 6]. Homology can also be computed for algebraic structures which are not
obviously spaces, such as monoids, groups, algebras, operads, etc. In the case of monoids,
Squier has shown how to compute those invariants in small dimensions [28, 12] when the
monoid is presented by a convergent string rewriting system, and this construction has since
then been generalized in every dimension [11]. Here also, the interest of this construction
lies in the fact that, even though it is constructed from a particular presentation, it does not
actually depend on the choice of the presentation, only the presented monoid. In particular,
the rank of the second homology group is, by construction, an integer which is smaller than
the number of relations of the presentation used to compute it, and thus a lower bound for
the number of relations of any presentation since it is an invariant.

In this article, we generalize this approach from monoids presented by convergent string
rewriting systems to algebraic theories presented by convergent term rewriting systems,
and use the resulting homology computations to provide lower bounds on the number of
generators or relations required to present an algebraic theory. This work is based on
Jibladze and Pirasvili’s definition of a cohomology for algebraic theories [8, 9], as well as
Malbos’ PhD thesis [16]. The first contribution of this article is to reformulate in concrete
terms the fairly abstract categorical definitions used in those works. We also introduce
a resolution when the algebraic theory admits a convergent presentation, which allows us
to compute the homology in practice, using classical constructions in rewriting theory and
linear algebra. Finally, we also explain how those invariants can be refined into ones of more
homotopical nature by introducing a notion of coherent presentation for algebraic theories.
Due to space constraints we cannot detail all the constructions performed here, and advise
the reader willing to grasp the details to first understand the simpler case of monoids [28, 12],
of which this construction is largely inspired; details shall be given somewhere else, and the
present article focuses mainly on computations and applications.

2 Presentations of Lawvere algebraic theories

2.1 Term rewriting systems

Terms. A signature (P1, σ0) consists of a set P1 of operations together with a function
σ0 : P1 → N associating to each operation its arity. Supposing fixed an infinite countable
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set X = {x1, x2, . . .} of variables, one can consider terms generated by operations with
variables in this set, which are defined as usual. We write FV(t) for the set of indices of free
variables occurring in a term, e.g. FV(f(x2, g(x2, x5)) = {2, 5}. Parallel substitution of xi
by ti in a term u is denoted u[t1/x1, . . . , tn/xn].

The terms generated by the signature form a category, denoted P∗1, whose objects
are natural numbers and morphisms in P∗1(m,n) are n-uples 〈t1, . . . , tn〉 of terms ti with
free variables in {x1, . . . , xm}. Composition of two morphisms 〈t1, . . . , tn〉 : m → n and
〈u1, . . . , up〉 : n→ p is induced by substitution as follows:

〈u1, . . . , up〉 ◦ 〈t1, . . . , tn〉 = 〈u1[t1/x1, . . . , tn/xn], . . . , up[t1/x1, . . . , tn/xn]〉

and the identity on n is 〈x1, . . . , xn〉 : n → n. We sometimes overload the notation
and denote by P∗1 =

∐
m,n∈N P∗1(m,n) the class of all morphisms of this category and by

σ∗0 , τ
∗
0 : P∗1 → N the functions respectively associating to a morphism its source and tar-

get, also called its arity and coarity. Note that terms are the morphisms of coarity 1. We
write ι1 : P1 → P∗1 for the canonical inclusion, sending an n-ary operation f to the term
f(x1, . . . , xn).

Term rewriting systems. We suppose fixed a signature as above. A term rewriting system
on the signature P1 consists of a set P2, whose elements are called rewriting rules, together
with two functions σ1, τ1 : P2 → P∗1 associating to each rule its source and target which
should be (1-uples of) terms. The source and target of a rule should have the same arity,
which is called the arity of the rule. A rewriting system together with the corresponding
signature thus consists of a diagram of sets and functions

P =

P1σ0

xx
τ0

xx

ι1

��

P2σ1

xx
τ1

xxN P∗1
σ∗0oo
τ∗0

oo

such that σ∗0 ◦ σ1 = σ∗0 ◦ τ1.

We sometimes write R : t⇒ u to denote a rule R with σ1(R) = t and τ1(R) = u. Note that
contrarily to the habit, we consider the signature as being part of the rewriting system.

I Example 1 (Monoids). The rewriting system corresponding to monoids has operations
P1 = {m, e}, with σ0(m) = 2 and σ0(e) = 0, and rewriting rules P2 = {A,L,R} with
σ1(A) = m(m(x1, x2), x3), τ1(A) = m(x1,m(x2, x3)), σ1(L) = m(e, x1), σ1(R) = m(x1, e),
τ1(L) = τ1(R) = x1. Such a rewriting system will often be written more concisely

〈m : 2, e : 0 | A : m(m(x1, x2), x3)⇒ m(x1,m(x2, x3)), L : m(e, x1)⇒ x1, R : m(x1, e)⇒ x1〉

I Example 2 (Groups). The rewriting system for groups is obtained from the rewriting
system for monoids by adding a generator i of arity one and relations I : m(i(x), x) ⇒ e
and I ′ : m(x, i(x))⇒ e.

Contexts. An n-ary context C is a term with variables in {x1, . . . , xn,�}, in which the
“variable” � occurs exactly once and is called the hole of C. Given a term t, the substitu-
tion C[t/�] is often denoted C[t]. The n-ary contexts form a category Kn with one object,
morphisms being n-ary contexts, with composition given by substitution D ◦ C = D[C]
and neutral element by the identity context �. In turn, these categories induce a functor
K : (P∗1)op → Cat, sending an object n to Kn and a morphism u = 〈u1, . . . , un〉 : m→ n to
the functor Ku : Kn → Km such that the image of an n-ary context C is the m-ary context
KuC = C[u1/x1, . . . , un/xn]. In the following, we simply write Cu instead of KuC, and
the previous categorical discussion boils down to the simple facts that (Cu)v = C(u ◦ v),
Cid = C, (D ◦ C)u = D ◦ (Cu) and �u = �. An occurrence of a variable xi in a term t is
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a context obtained from t by replacing exactly one instance of the variable xi by �, those
will be formally defined (in a linear context) in Definition 13.

We write KK for the category whose objects are integers and morphisms in KK(m,n)
are bicontexts, i.e. pairs (C, u) consisting of a context C with variables in {x1, . . . , xn},
and a morphism u ∈ P∗1(n,m). The composition of two morphisms (C, u) : m → n and
(D, v) : n → p is given by (D, v) ◦ (C, u) = (D ◦ Cv, u ◦ v) and the identity on n is
(�, idn) : n → n. Note that composition is reversed in the second component. A bicontext
(C, u) : m→ n induces a function C[−]u : P∗1(m, 1)→ P∗1(n, 1) which to a term t associates
the term C[t◦u], which we will write C[t]u in the following; for this reason, we will sometimes
abusively write C[−]u for a context in order to avoid introducing heavy notations. This
function is easily shown to be compatible with composition and substitution:

D[C[t]u]v = (D ◦ C)[t](u ◦ v) �[t]id = t (C[t]u) ◦ v = (Cv)[t](u ◦ v)

In particular, we have C[t]id = C[t] which makes the notation unambiguous on this point,
and we will always write composition symbol “◦” in order to avoid confusion in wrt the
equation on the right above.

In the following, when we need to distinguish between multiple rewriting systems, we
will add those in exponent to the constructions, i.e. we write KP instead of simply K for
the contexts of P, etc.

Rewriting. Suppose fixed a rewriting system P. We say that a term t rewrites in one
step into t′, what we write t −→ t′, when there exists a rule R : u ⇒ u′ of arity m and a
bicontext (C, v) : m → n such that t = C[u]v and t′ = C[u′]v. In this situation, we often
write C[R]v : t −→ t′ and the term t is said to be reducible by the rule R. We write ∗−→ for
the reflexive and transitive closure, and ∗←→ for the generated equivalence relation. Note
that the latter relation is a congruence, in the sense that it is compatible with composition,
identities and taking uples.

A rewriting system is terminating when there is no infinite sequence t0 −→ t1 −→ . . .
of rewriting steps and confluent (resp. locally confluent) when for every terms t, u1, u2 such
that u1

∗←− t ∗−→ u2 (resp. u1 ←− t −→ u2) there exists a term v such that u1
∗−→ v

∗←− u2.
A confluent rewriting system is always locally confluent, and Newman’s lemma [25] ensures
the converse implication when the rewriting system is terminating. A rewriting system is
convergent when it is both terminating and confluent. In this case, any maximal sequence
of rewriting steps starting from a term t will end on the same term t̂, called the normal form
of t, and two terms t and t′ are such that t ∗←→ t′ if and only if t̂ = t̂′: normal forms provide
canonical representatives of equivalence classes under the equivalence relation ∗←→.

Critical pairs. Local confluence of a rewriting system can be tested by considering minimal
obstructions to confluence. Generalizing the above notion of context, a context with two
holes E is a term using usual variables as well as � and �′, in which both � and �′ occur
exactly once; we write E[t, t′] instead of E[t/�, t′/�′]. Consider a pair of rewriting steps
C1[R1]v1 : t −→ u1 and C2[R2]v2 : t −→ u2, with Ri : t′i ⇒ u′i, rewriting the same term t.
The pair of rewriting steps is non-overlapping when there exists a context E with two holes
such that C1 = E[�, t′2 ◦ v2] and C2 = E[t′1 ◦ v1,�]. In this situation, the two reductions are
always confluent:

t = E[t′1 ◦ v1, t
′
2 ◦ v2]

C1[R1]v1

tt
C2[R2]v2

**
u1 = E[u′1 ◦ v1, t

′
2 ◦ v2]

∗ **

E[t′1 ◦ v1, u
′
2 ◦ v2]

∗tt

u2=

t̂ = E[u′1 ◦ v1, u
′
2 ◦ v2]

(2)
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Given a pair of rewriting steps as above, a context (C, v) induces another pair of rewriting
steps rewriting the same terms: (C ◦ Ci)[R](vi ◦ v) : C[t]v ⇒ C[ui]v. In this case, we say
that the former pair is smaller than the latter, and this induces a partial order on pairs of
rewriting steps rewriting the same term.

I Definition 3. A pair of rewriting steps C1[R1]v1 : t −→ u1 and C2[R2]v2 : t −→ u2 rewrit-
ing the same term t is critical when the two steps are distinct, i.e. (C1, R1, v1) 6= (C2, R2, v2),
overlapping, and minimal wrt the above partial order. It is confluent when there exists a
term v such that u1

∗←− v ∗−→ u2.

This reformulates with our formalism the classical notion of critical pair, and the usual
associated lemma holds: a rewriting system is locally confluent if and only if all its critical
pairs are confluent. In particular, a terminating rewriting system with confluent critical
pairs is convergent.

2.2 Lawvere algebraic theories
A rewriting system P induces a category, noted P∗ and called the category presented by the
rewriting system, defined as the quotient of the category of terms P∗1 under the congruence
∗←→ generated by the rules: given an uple of terms t ∈ P ∗1 , we write t (or sometimes even

simply t) for its equivalence class. This presented category is easily shown to be a a Lawvere
theory [13]:

I Definition 4. A Lawvere theory T (also sometimes called an algebraic theory) is a category
with finite products whose objects are integers, products are given on objects by addition,
and the terminal object is 0.

In particular, when the rewriting system has no rules, the associated Lawvere theory is P∗1
and called the Lawvere theory freely generated by the signature. It can in fact be shown
to correspond to a left adjoint to the suitable forgetful functor from Lawvere theories to
signatures (for space constraints, we do not detail this construction nor even morphisms of
signatures and Lawvere theories because they do not play an important rôle here).

I Lemma 5. Any Lawvere theory T admits a presentation P, called the standard presenta-
tion, with

P1 =
∐
n∈N
T (n, 1) P2 = {t⇒ u | t, u ∈ P∗1 and ε(t) = ε(u)}

where we take all morphisms of T of coarity 1 as operations in P1, with the expected arity,
and write ε : P∗1 → P1 for the morphism which to a term, seen as a formal composite of
morphisms in T , associates the result of its compositions. The rules are thus all pairs of
formal composites whose result is the same.

A model of a Lawvere theory T is a functor T → Set which preserves finite products.
In the case where T is presented by a rewriting system P, this amounts to the specification
of a set X, of a function JfK : Xn → X for each operation f of arity n, in such a way that
JtK = JuK for each rule R : t⇒ u.

I Example 6. A model for the theory of monoids (Example 1) consists of a set X together
with functions JmK : X × X → X and JeK : 1 → X such that for every x, y, z ∈ X,
JmK (JmK (x, y), z) = JmK (x, JmK (y, z)), JmK (JeK (), x) = x = JmK (x, JeK ()). The models
for this theory are thus precisely monoids in the usual sense. Similarly, the models for the
theory of groups (Example 2) are groups.
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2.3 Tietze transformations
Two rewriting systems are Tietze equivalent when they present isomorphic Lawvere theories,
which implies that they have the same models (in fact, the converse is also true). For
instance, the theory of groups can be presented by the rewriting system of Example 2. As
explained in the introduction, it also admits a presentation with two generators d of arity 2
and a of arity 0, with one rewriting rule corresponding to the equation (1). In the context of
presentations of groups, Tietze has shown that the corresponding equivalence is generated
by two transformations and their inverse [31]. This property can be adapted to the context
of presentation of Lawvere theories as follows.

I Definition 7. The Tietze transformations are the two following operations, transforming
a rewriting system P into another one P′, as well as their converse (transforming P′ into P):
1. adding a superfluous operation: given a symbol f not occurring in P1, a symbol R not

occurring in P2, and a term t ∈ P∗1 of arity n, we set

P′1 = P1 ] {f} P′2 = P2 ] {R}

where f is an operation of arity n and R : t⇒ f(x1, . . . , xn),
2. adding a derivable relation: given a symbol R not occurring in P2 and two terms t, u

such that t ∗←→P u, we set

P′1 = P1 P′2 = P2 ] {R}

with R : t⇒ u.

I Proposition 8. Two rewriting systems P and Q are Tietze equivalent if and only if Q can
be obtained from P by applying a series of Tietze transformations.

In our quest for minimizing the number of relations (and generators) of a Lawvere theory,
the Tietze transformations can be helpful, as illustrated in the following simple example.

I Example 9. Consider the string rewriting system with generators a, b and c of arity one
and two rules:

P = 〈a : 1, b : 1, c : 1 | A : a(x1)⇒ x1, B : a(b(x1))⇒ c(x1)〉

We can then apply the following sequence of Tietze transformations:

P′ = 〈a : 1, b : 1, c : 1 | A : a(x1)⇒ x1, B : a(b(x1))⇒ c(x1), C : b(x1)⇒ c(x1)〉
P′′ = 〈a : 1, b : 1, c : 1 | A : a(x1)⇒ x1, C : b(x1)⇒ c(x1)〉
P′′′ = 〈b : 1, c : 1 | C : b(x1)⇒ c(x1)〉
P′′′′ = 〈c : 1 | 〉

We have first added the derivable relation C, then removed the derivable relation B, then
removed the definable operation a, then removed the definable operation b. So, in fact, our
theory can be presented without any relation and only one operation.

It is clear that, in above example, we had to first add a new relation in order to remove
all of them: one cannot simply hope to always reduce the number of relations by Tietze
transformations in order to obtain a minimal one (and for similar reasons, one might be
forced to add new generators before reducing the presentation, as illustrated for the theory
of groups in the introduction). For this reason, it is quite difficult to minimize the number
of relations in general, or to decide whether a presentation is minimal wrt to relations or
generators.

Note in particular that, in a convergent rewriting system, a critical pair witnesses a
derivable relation, and Newman’s lemma ensures that any derivable relation can be obtained



P. Malbos and S. Mimram 7

via critical pairs: if a presentation has a removable relation, then such a relation can be
obtained by inspecting critical pairs.

3 Homology of Lawvere algebraic theories

In this section, we introduce the notion of homology of a Lawvere theory by adapting the
general methodology which is now classical for monoids, groups, algebras [15], operads [14],
etc. This construction associates to a Lawvere theory a sequence of groups which are invari-
ants of the Lawvere theory: we will see that these can be computed from any presentation
with suitable properties, however these groups only depend on the presented theory, and
not on the presentation. It thus provides interesting information about all the possible pre-
sentations of the theory: its relevance will be illustrated in Section 3.6, where we use it to
show that a particular theory admits no presentation with only one rule, whichever possible
signature we use.

The basic idea of homology is to “count” the number of times a thing is used (pos-
itively when it occurs in the target and negatively in the source). For example, a rule
R : g(f(x1), f(x1)) ⇒ h(x1) “consumes” two instances of f and one of g to “produce” one
of h. Therefore, we can think of the associated balance to be h−2f − g. Since this is a rela-
tion, it induces the equation h = 2f + g when counting operations, which indicates that the
operation h might be superfluous, i.e. we might be able to remove it using a Tietze transfor-
mation. A similar process for critical pairs will allow us to provide an “over-approximation”
of the superfluous relations, and therefore give lower bounds on necessary relations.

Note that above, we formally consider the “ring” of operations (actually a “ringoid” since
operations are typed by their arities) in order to be able to consider sums of operations.
Much care is however needed in order to ensure that this way of counting is compatible with
duplication and erasure of variables, and independent of the presentation. As customary in
homological algebra, we thus begin by introducing the notion of resolution for a Lawvere
theory, which is easily shown to be invariant (in a suitable sense) under Tietze equivalences
and derive homology from those. Roughly, the resolution amounts to perform a similar
linearization process as above, but keeping track of the contexts, i.e. the rule R would give
rise to a relation of the form h(x1)−g(f(x1), f(x1))−g(f(x1), f(x1)) +g(f(x1), f(x1)), and
to ensure that all (higher-)relations are present.

One could be tempted to use standard notions of homology for a category in order to
study Lawvere theories. However, because such a theory contains a terminal object, its
homology in this sense will always be trivial. Therefore, one has to adapt the setting of
homology in order to take in account the cartesian structure. Following the general method-
ology of Barr and Beck [3, 2], Jibladze and Pirashvili have been able to define a suitable
ringoid of coefficients for cohomology [8, 9], which was later on reworked by Malbos [16].
The section 3.1 to 3.4 are a reformulation, in operational terms, of those (to simplify the
presentation, the framework is also less general: we use bimodules instead of cartesian nat-
ural systems). We suppose fixed a rewriting system P and write T = P∗ for the theory it
presents.

3.1 Modules over ringoids

Ringoids. A monoid is the same as a category with only one object, or thinking backward,
a category is a “monoid with multiple objects”. Similarly, a ringoid can be thought of as
a “ring with multiple objects”. We briefly introduce here this algebraic structure and refer
the reader to seminal paper [22] for details. The category Ab of abelian groups is monoidal
when equipped with the usual tensor product ⊗ of abelian groups, with (Z,+, 0) as unit (in
the following, we always denote abelian groups additively).
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I Definition 10. A ringoid R is a small category enriched in the monoidal category Ab.

More explicitly, a ringoid consists of a category C in which each hom-set C(A,B) is equipped
with a structure of abelian group, in such a way that composition is bilinear, i.e. respects
addition and zero. For instance, given f, f ′ : A→ B and g, g′ : B → C, we have

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′ 0 ◦ f = 0 f ◦ 0 = 0 (3)

I Lemma 11. The category of ringoids with one object is equivalent to the category of rings.

Any category C freely generates a ringoid that we denote ZC. It always exists for general
arguments [1] and can be explicitly described as follows. It has the same objects as C
and, given objects A and B, ZC(A,B) is the free abelian group over C(A,B), which is the
same as the free Z-module, i.e. formal sums of morphisms in C(A,B) with coefficients in Z,
quotiented by the usual axioms of groups, and composition is induced by the one of C and
satisfies the axioms of ringoids such as (3).

Modules. The usual notion of module over a ring, can also easily be generalized to “multiple
objects” as follows.

IDefinition 12. A (left) moduleM over a ringoidR, orR-module, is a functorM : R → Ab
which is enriched in Ab. A morphism f : M → N of R-modules, or R-linear map, is an
enriched natural transformation: it consists of a group morphism fA : MA → NA for ev-
ery object A of R, satisfying naturality conditions. We write Mod(R) for the category of
R-modules.

A right R-module is defined as a left Rop-module, which explains why we will only need
to consider left modules in the following. More explicitly, an R-module M consists of an
abelian groupMA for every object A of R, and a morphismMf :MA→MB of groups for
every morphism f : A→ B in such a way thatM(f + f ′) =Mf +Mf ′ (we are considering
the pointwise addition on the right) andM0 = 0 (on the right, 0 is the constant map). The
category Mod(R) is enriched in Ab and can be shown to have enough structure to support
usual computations in homological algebra: it is abelian and has enough projectives [22].

Free modules. Suppose given a set XA for every object A of R. The free module generated
by this family of sets, written RX, can be described as the functor which to every object A
associates the formal finite sums

∑
i fixi, with xi ∈ XAi

and coefficients fi : Ai → A,
subject to the usual laws of left modules, e.g.

g

(∑
i

fixi

)
=
∑
i

(g ◦ fi)xi g ◦ 0 = 0
(∑

i

gi

)
(fx) =

∑
i

(gi ◦ f)x 0(fx) = 0

Above, the “underline” notation is here only to make the distinction between the elements
of R and those of X, and as customary we write g(fx) instead of ((RX)g)(fx) for the left
action.

Tensor product of modules. The usual definition of the tensor product of modules can
be generalized to modules over ringoids as follows. Given a right R-moduleM : Rop → Ab
and a left R-module M : R → Ab, their tensor product is the ringoid defined by the
(enriched) coendM⊗N =

∫ AMA⊗NA. This means that an element of (M⊗N )(B) is
a quotient of

⊕
A∈RMA⊗NA by the relation identifying elements of the form (fopx)⊗ y

and x⊗ (fy), for any suitably typed morphism f of R.

3.2 The ringoid of bicontexts
The ringoid we will be mainly interested in is a quotient of ZKK, the free ringoid over
bicontexts. We begin by first defining a similar quotient on contexts.
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I Definition 13. We define κi : ZP∗1 → ZK as the linear map which sends a term t to the
formal sum of occurrences of the variable xi in t. Formally, it is defined, for j 6= i and
t = 〈t1, . . . , tn〉, by

κi(xi) = � κi(xj) = 0 κi(u ◦ t) =
∑

j∈FV(u)

(κj(u)t)[κi(tj)]

On the right, the notations for contexts introduced in Section 2.1 are implicitly extended by
linearity, e.g. (C +D)[t] = C[t] +D[t], C[t+ u] = C[t] + C[u], etc.

I Example 14. Consider the term t = f(g(x1, x2), x1). We have

κ1(t) = f(g(�, x2), x1) + f(g(x1, x2),�) κ2(t) = f(g(x1,�), x1) κ3(t) = 0

We write ZK for the quotient of ZK by the ideal generated by all elements of the form
κi(u) − κi(t) for a rule R : t ⇒ u of arity n and 1 ≤ i ≤ n; we thus have a well-defined
quotient morphism κi : ZP∗1 → ZK. The ringoid of bicontexts ZKK is defined as the quotient
of the free ringoid ZKK by quotienting contexts as above and morphisms by the rewriting
rules: we identify element

∑
i ni(Ci, u) to 0 whenever

∑
i niCi = 0 in ZK, and

∑
i ni(C, ui)

to 0 whenever
∑
i niui = 0 in ZC.

I Example 15. Consider the rewriting system with operations and arities a : 0, b : 0, f : 1,
g : 2, and two rules A : a ⇒ b and B : f(x1) ⇒ g(x1, x1). The quotient on contexts is
generated by g(�, x1) + g(x1,�)− f(�).

In the rest of the paper, we write R = ZKK for the ringoid of bicontexts of T , which will
be where coefficients will be taken in. In a free module, of the form RX, the elements are
sums of monomials of the form (C, u)x where (C, u) is an equivalence class of bicontexts
and x ∈ Xn for some n ∈ N. In the following, we will adopt the notation Cxu instead:
this makes it clear that contexts C ∈ ZKn are acting on the left and morphisms in T are
acting on the right (since their composition is reversed in the composition of bicontexts). In
fact, the definition of R does not depend on the choice of the presentation P, but only on
the presented theory T . Since every Lawvere theory admits a presentation (Lemma 5), the
notions developed here will apply to any theory.

I Lemma 16. Given two Tietze equivalent rewriting systems P and Q, the ringoids RP

and RQ are isomorphic.

3.3 Resolutions for Lawvere algebraic theories
The trivial R-module Z : R → Ab is the quotient of the freeR-moduleRX, withXn = {?n}
for n ∈ N, quotiented by relations of the form

∑
i κi(u)t?ti = ?n for every term u◦t of arity n

(we write ? instead of ?1).

I Example 17. Given a signature with a binary operationm, sincem◦id2 = id◦〈m(x1, x2)〉,
we have the following relation in Z: m(�, x2)? 〈x1〉+m(x1,�)? 〈x2〉 = ?2 = ?m(x1, x2).

The general idea of a free resolution is to start with the trivial module Z and equip it
with a sequence of free R-modulesMi such thatM0 contains the sorts of the theory (there
is always only one in our setting), M1 the operations, M2 the relations, M3 the relations
between relations, and so on:

I Definition 18. A free resolution M• of Z consists of a sequence

· · · ∂1 //M1
∂0 //M0

ε // Z // 0

of free R-modules Mi = RXi and R-linear maps ∂i and ε such that for any two succes-
sive arrows the image of the first is equal to the kernel of the second: im ∂i+1 = ker ∂i,
im ∂0 = ker ε and im ε = Z. The resolution is partial when it is finite on the left.
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Note that the relation im ε = Z means that ε is surjective and therefore M0 is free on
at least one generator. Suppose that the theory contains an operation, for instance m as
in Example 17: the kernel of ε will contain m(�, x2)1 〈x1〉 + m(x1,�)1 〈x2〉 − 1m(x1, x2)
as non-trivial element, and therefore M1 will need to contain a generator for m in order
for the relation im ∂0 = ker ε to be satisfied. More generally, M1 should be free on a set
of operations generating T . For similar reasons, M2 should be free on a set of elements
generating all the relations of T , andM3 should be free on enough generators so that any
two relations between the same (linearized) terms should be equal modulo them.

A major interest of free resolutions is that they can be shown to be essentially unique:

I Proposition 19. Any two free resolutions of Z are homotopy equivalent.

We do not detail further here the meaning of the above classical equivalence. Its main
interest is that it will enable us to show that the definition of homology makes sense in next
section (Proposition 21).

3.4 Homology of Lawvere algebraic theories
We are now in position to introduce the notion of homology of a Lawvere theory. The chain
complex (M•, ∂•) of a resolution by R-modules is acyclic, that is im ∂i+1 = ker ∂i holds. We
are going to tensor it by Zop, which means that we “erase” the coefficients in R everywhere,
e.g. ifMi is free on the setXi (i.e.Mi = RXi) then we have Zop⊗Mi = ZXi. The resulting
chain complex (Zop ⊗M•, ∂̃•) still satisfies im ∂̃i+1 ⊆ ker ∂̃i, but the converse inclusion is
not true anymore in general. It thus makes sense to consider the following homology groups:

I Definition 20. Suppose given a Lawvere theory T and a resolution of the associated
trivial R-module Z as in Definition 18. The homology H•(T ) of T (with coefficients in the
trivial R-module Z) is the homology of the chain complex

. . .
∂̃2 // Zop ⊗M2

∂̃1 // Zop ⊗M1
∂̃0 // Zop ⊗M0

where ∂̃i = Zop ⊗ ∂i. More explicitly, the homology consists of a sequence H•(T ) of groups
defined by Hi(T ) = ker ∂̃i−1/ im ∂̃i where, by convention, ∂̃−1 is the constant null map.

Proposition 19 ensures that it is well defined, because two homotopic chain complexes will
give rise to the same homology:

I Proposition 21. The homology H•(T ) of a Lawvere theory T does not depend on the
choice of the resolution.

Any theory can be shown to admit a resolution, called the standard resolution, by easily
adapting usual constructions performed for monoids. More generally any partial resolution
can be extended into a full one. We do not detail it here however, because it involves modules
of infinite rank, and difficult to work with: in order to actually compute the homology of
a theory, one should start with a resolution which is reasonably small. The purpose of
next section is to construct such a (partial) resolution in the case where we start from a
convergent presentation of the Lawvere theory.

3.5 A partial resolution for convergent Lawvere theories
In this section, we suppose that the Lawvere theory T we are considering is presented by
a convergent reduced rewriting system P, and construct from it a partial free resolution of
the trivial R-module Z. Writing P0 = {1} for the set with one element and P3 for the set
of critical pairs of the rewriting system, the resolution we consider is of the form

RP3
∂2 // RP2

∂1 // RP1
∂0 // RP0

ε // Z // 0 (4)
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where the maps are defined as follows, and will be illustrated in next section. The map
ε : RP0 → Z is the R-linear map preserving the unit, i.e. such that ε(1) = ?. More
generally, because of relations defining Z, we have ε(C1u) = ?n. The map ∂0 : RP1 → RP0
is the R-linear map such that for each operation f ∈ P1 of arity n, we have

∂0(f) =
(

n∑
i=1

κi(f)1 〈xi〉
)
− 1 〈f〉

The map ∂1 : RP2 → RP1 is the R-linear map such that for each rule R : t ⇒ u in P2 we
have

∂1(R) = u− t

where the notation t generalizes the notation f for operations, and is defined inductively by

u ◦ t = ut+
n∑
i=1

(κi(u)t)[ti] id = 0

for t = 〈t1, . . . , tn〉. The map ∂2 : RP3 → RP2 is the R-linear map such that the image of
a critical pair (C1[R1]v1, C2[R2]v2), with Ci[R1]vi : t −→ ui, is

∂2(C1[R1]v1, C2[R2]v2) = C2R2v2 − C1R1v1 + S2 − S1 (5)

where Si : ui
∗−→ t̂ are a choice of rewriting paths from ui to t̂, the normal form of t, see (2),

which exist because the rewriting system is supposed to be convergent. Again, writing · for
the concatenation of rewriting paths and Id for the empty one, the notation T is extended
to rewriting paths by

C[R]v = CRv T ′ · T = T ′ + T Id = 0

The main result of this article is the following one:

I Theorem 22. The sequence (4) as defined above is a partial free resolution of the trivial
R-module Z.

This theorem allows us to explicitly compute low-dimensional homology of a theory with a
convergent presentation. Moreover, since the homology is independent of the choice of the
presentation (Proposition 21), and any partial resolution can be extended into a full one
(Section 3.4), it provides us with invariants for any presentation of T . In particular, since
H1(T ) is defined as a quotient of ZP1, and similarly for H2(T ), we have

I Proposition 23. The rank of H1(T ) (resp. H2(T )) is a lower bound of the number of
operations (resp. relations) in any presentation of T .

3.6 An example
Let us illustrate the previous definitions on a simple example. Consider the term rewriting
system with a generator m of arity 2 and three generators p1, p2, t of arity 1, together with
the five following rules

M1 : p1(m(x1, x2))⇒ x1 M2 : p2(m(x1, x2))⇒ x2

P1 : p1(t(x1))⇒ p2(x1) P2 : p2(t(x1))⇒ p1(x1)
T : t(t(x1))⇒ x1

Amodel of the resulting theory T consists of a setX together with operationsm : X×X → X
(with we think of as injectively coding pairs of elements of X in X), p1, p2 : X → X (the two
projections of the coding of pairs) and t : X → X (the function exchanging the two com-
ponents in the coding of pairs). The rules M1 and M2 ensure that the projections recover
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the components of a pair, the rules P1 and P2 ensure that the transposition exchanges the
components, and the rule T enforces the involutivity of the transposition operation. For
instance, writing |n|p for the exponent of a prime p in the prime factorization of an integer n,
a model could be given by X = N and

m(n1, n2) = 2n1×3n2 p1(n) = |n|2 p2(n) = |n|3 t(n) = n×2|n|3×3|n|2/(2|n|2×3|n|3)

The rewriting system is locally confluent, with three critical pairs being

p1(t(t(x1)))

p1(�)[T ]〈x1〉
��

�[P1]〈t(x1)〉 //

Π1

p2(t(x1))

�[P2]〈x1〉uu
p1(x1)

p2(t(t(x1)))

p2(�)[T ]〈x1〉
��

�[P2]〈t(x1)〉 //

Π2

p1(t(x1))

�[P1]〈x1〉uu
p2(x1)

t(t(t(x1)))

�[T ]〈t(x1)〉
��

t(�)[T ]〈x1〉
		

Θ

t(x1)

It is also terminating, because all the rules decrease the size of the terms, and thus conver-
gent. Therefore we can construct a resolution (4), as described in Section 3.5. The boundary
maps are defined by

∂0(m) = m(�, x2)1 〈x1〉+m(x1,�)1 〈x2〉 − 1 〈m(x1, x2)〉 ∂0(pi) = pi(�)1− 1 〈pi(x1)〉

and ∂0(t) is similar to ∂0(pi),

∂1(M1) = −p1 〈m(x1, x2)〉 − p1(�)m ∂1(P1) = p2 − p1 〈t(x1)〉 − p1(�)t
∂1(T ) = −t 〈t(x1)〉 − t(�)t

and cases M2 and P2 are similar,

∂2(Π1) = p1(�)T − P1 〈t(x1)〉 − P2 ∂2(Θ) = t(�)T − T 〈t(x1)〉

and case Π2 is similar. The homology is the one of the chain complex obtained by tensoring
with Zop, which amounts to “erase contexts”, i.e. all symbols which are not elements of Z
or underlined:

Z{Π1,Π2,Θ}
∂̃2 // Z{M1,M2, P1, P2, T}

∂̃1 // Z{m, p1, p2, t}
∂̃0 // Z

above, ZX denotes the free abelian group (or equivalently Z-module) on a set X and the
linear maps are defined by

∂̃0(m) = 1 ∂̃0(pi) = 0 ∂̃0(t) = 0
∂̃1(Mi) = −pi −m ∂̃1(Pi) = p1−i − pi − t ∂̃1(T ) = −2t

∂̃2(Πi) = T − P1 − P2 ∂̃2(Θ) = 0

and therefore the homology groups are

H0 = Z{1}/(1) = 0
H1 = Z{m, p1, p2, t}/(−pi −m, p1−i − pi − t,−2t) = Z

H2 = Z{M1,M2, P1, P2, T}/(T − P1 − P2) = Z4

The homology groups are of the form Zri and their rank is ri. From r1 = 1, we deduce
that any presentation of the theory will have at least one generating operation (a fact which
would have been quite obvious to establish directly), and from r2 = 4 that any presentation
has at least four relations (it is not one-based!). The fact that the relations M1 and M2 are
needed is more or less expected because they do not interact with other rules (see below).
However, the rule P1, P2 and T are forming critical pairs, and a priori those could have
been used to remove two of the relations, as explained in Section 2.3. In fact, we would
have reached a similar conclusion by considering the variant of the example without m, M1
and M2 (we would have had H2 = Z2 and thus a theory which is not one-based), but the
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models would have been less intuitive.
In passing, we can formalize the fact observed above that when a rule does not occur

in any critical pair, it will be involved in no relation in homology and thus will contribute
to one in the rank of the homology. Again, the above example shows that homology gives
interesting results even outside this “trivial case”.

I Proposition 24. Consider a theory with a convergent presentation containing n rules
which form no critical pair other rules. Any presentation of this theory has at least n rules.
In particular, any rewriting system without critical pairs is minimal wrt relations.

4 Coherent presentations

A resolution of a Lawvere theory is obtained by an “abelianization” process: in M1 we
only recall which operations in which context are used, but not the order they are used in,
similarly for the rules in M2, etc. This suggests extending the notion of presentation, so
that the moduleM3 is the abelianization of something too, as we briefly mention.

I Definition 25. An extended rewriting system consists of a rewriting system P together
with a set P3 of homotopy generators and two functions σ2, τ2 : P3 → P>2 :

P =

P0

ι0

��

P1σ0

xx
τ0

xx

ι1

��

P2σ1

xx
τ1

xx

ι2
��

P3σ2

xx
τ2

xxP∗0 P∗1
σ∗0oo
τ∗0

oo P>2
σ>1oo

τ>1

oo

such that σ>1 ◦ σ2 = σ>1 ◦ τ2
τ>1 ◦ σ2 = τ>1 ◦ τ2

where P0 = {1}, thus P∗0 = N as before, and P>2 is the set of 2-cells of the cartesian
(2,1)-category freely generated by adding the elements of P2 as invertible 2-cells to the free
cartesian category P ∗1 . It is coherent when any 2-cells with same source and target are
related by the smallest congruence generated by P3.

Intuitively, in a coherent rewriting system the set P3 is big enough to relate two possible
rewriting paths (or zig-zags) between the same terms. Newman’s lemma thus reformulate
as follows in this context:

I Lemma 26. Given a convergent rewriting system P, its extension obtained by taking the
set of confluence diagrams induced by critical pairs as P3 is coherent.

Finally, the abelianization process mentioned above can be formulated as follows:

I Proposition 27. To any coherent presentation P one can associate a partial free resolution
with RPi as modules, for 0 ≤ i ≤ 3, as in (4).

Notice that by Lemma 26, we recover the construction of Section 3.5 as a particular case.
Also, it can be noticed that all the constructions we have been performing are compatible
with the laws induced by the cartesian structure on cells (the definitions have in fact been
chosen so that this is true).

I Example 28. Consider the following term rewriting system

P = 〈d : 2, t : 0, f : 0 | T : d(t, x1)⇒ t, T ′ : d(x1, t)⇒ t, F : d(f, f)⇒ f〉

corresponding to the famous parallel implementation of the disjunction, sometimes called
por (d stands for disjunction, t for true and f for false), which was used by Melliès as a
central example for standardization [21] (incidentally, this paper notices the similarity with
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algebraic topology...). There is one confluent critical pair d(t, t)

[T ]〈t〉

$$

[T ′]〈t〉

::Θ t and thus the

presentation can be extended into a coherent one by setting P3 = {Θ} with expected source
and target. By Proposition 27, we recover the resolution of Section 3.5, and one can easily
compute the associated homology: we have H0(T ) = 0, H1(T ) = Z and H2(T ) = Z3.
Any presentation of this theory thus has at least 3 rules, providing another example of a
non-trivial theory which is not one-based.

The above definition constitutes a generalization of polygraphs to Lawvere theories,
using which one can show an analogous of Squier’s homotopical theorem [29], which implies
the homological one. Burroni’s original paper on polygraphs shows that those theories can
be described by polygraphs by considering explicitly the cartesian structure (duplications
and erasures of variables) [4]. By contrast, this structure is implicit in this work, thus
giving rise to much smaller and manipulable rewriting systems. It would be interesting
to compare the two resulting homologies though. Also, as in the case of polygraphs, the
formulation of Definition 25 should make it clear that this definition can be generalized in any
dimension. Finally, we should mention that in the case of presentations of monoids, Tietze
transformations and completion procedures can be generalized to coherent presentations [5];
we expect that similar constructions can be performed in the setting developed in this paper.

5 Extensions and future work

In conclusion, we would like to mention some other possible generalizations of this work,
which we plan to investigate and detail in future work. For instance, the generalization
to term rewriting systems with multiple sorts is easy (it roughly consists in allowing P0 to
contain multiple elements and use P∗0 instead of N for the objects of our ringoids).

One should be able to continue the resolution in higher dimension, as done for monoids [11],
by using critical n-uples for Pn+1. In particular, the next dimension of the resolution can
easily be done and allows to compute H3(T ) for a theory T , whose rank provides a lower
bound on the number of critical pairs of any convergent presentation of T . Consider the
rewriting system with generators i, h and k of arity one, generators a and f of arity two,
and three rules

h(a(x1, x2))⇒ a(f(x1, x1), x2) k(a(x1, x2))⇒ a(f(x1, x1), x2) a(f(i(x1), i(x1)), x2)⇒ a(x1, x2)

One can compute that H3(T ) is not finitely generated, showing that it cannot be presented
by a finite convergent rewriting system (since any such would have a finite number of crit-
ical pairs), even though this theory T has a decidable equality. This generalizes to terms
rewriting systems Squier’s example for monoids [28].

Computations are quite time-consuming: we plan on implementing those to be able
to study more full-fledged examples. Also, many natural examples (e.g. lattices) contain
commutative operations, for which there is no hope of obtaining a terminating rewriting
system, which suggests that we should investigate a generalization of the construction for
rewriting modulo.
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A Proof of Theorem 22

The proof given here, is similar to the “standard” one given for the construction of Squier’s
resolution [28]; the reader is advised to read the presentation of this construction given
in [12]. We first show that the sequence is a chain complex, i.e. that the composite of
two successive boundary maps is zero: ∂i ◦ ∂i+1 = 0, which implies immediately that
im ∂i+1 ⊆ ker ∂i.

Case ε ◦ ∂0. Suppose given an operation f ∈ P1 of arity n. We have

ε ◦ ∂0(f) = ε

(
n∑
i=1

κi(f)1 〈xi〉
)
− ε (1 〈f〉) =

n∑
i=1

κi(f)? 〈xi〉 − ? 〈f〉 = 0

because, by definition, ε(1) = ? and the relations defining Z (as illustrated in Exam-
ple 17).
Case ∂0 ◦ ∂1. Suppose given a relation R ∈ P2, with R : t⇒ u. We have

∂0 ◦ ∂1 (R) = ∂0(u)− ∂0(t) =
n∑
i=1

κi(u)1 〈xi〉 − 1 〈u〉 −
n∑
i=1

κi(t)1 〈xi〉+ 1 〈t〉

=
n∑
i=1

(κi(u)− κi(t)) 1 〈xi〉 − 1(u− t) = 0

The second equality follows from the lemma stating that ∂0(t) = (
∑n
i=1 κi(t)1 〈xi〉)−1 〈t〉

which is easily shown by induction on t. The last equality is due to the relations defin-
ing R (as illustrated in Example 15).
Case ∂1 ◦ ∂2. Suppose given a critical pair (C1[R1]v1, C2[R2]v2) ∈ P3 with Ri : ti → ui
and C1[t1]v1 = t = C2[t2]v2. We have

∂1 ◦ ∂2(C1[R1]v1, C2[R2]v2) = ∂1(C2R2v2)− ∂1(C1R1v1) + ∂1(S2)− ∂1(S1)
= C1u1v1 − t− C2u2v2 + t+ C2u2v2 − t̂− C1u1v1 + t̂

= 0

where S1 : C1[u1]v1
∗−→ t̂ and S2 : C1[u1]v1

∗−→ t̂ are paths witnessing the confluence of
the critical pair, as in (5), which corresponds algebraically to the fact that the following
square is a cycle:

t
C1[R1]v1

zz
C2[R2]v2

$$
C1[u1]v1

S1 ##

C2[u2]v2

S2{{
t̂

In the second equality, we have used a lemma stating that for any rewriting path
S : t ∗−→ u we have ∂1S = u− t, which is easily shown by induction on S.

In order to show that the sequence is exact, we need to prove the reverse inclusions,
i.e. ker ∂i ⊆ im ∂i+1. We do this by constructing a contracting homotopy, i.e. Z-linear
(not R-linear!) maps si,

RP3
∂2 // RP2
s2
oo

∂1 // RP1
s1
oo

∂0 // RP0
s0
oo ε // Z // 0

satisfying ∂i+1 ◦ si+1 + si ◦ ∂i = idRPi . It is well-known that the existence of such a family
of maps ensure that the chain complex is acyclic at RPi [15]. The intuition here is that s0
“chooses” a representative for each morphism in T , the term in normal form, s1 a rewriting
path from a term to is normal form, s2 a standardization of each rewriting path, etc.
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Case Z. Because of its defining relations, the module Z is easily shown to be generated
by ? and therefore ε is surjective since ? = ε(1).

Case RP0. Because of the relations defining Z, ker ε can easily be shown to be generated
by
∑
i κi(f)1 〈xi〉−1 〈f〉, from which we immediately have that im ∂0 = ker ε. We define

a Z-linear map s0 : RP0 → RP1 as follows. Given an element C1t in RP0 in arity n, t
is an equivalence class of terms by definition. Since the rewriting system is convergent,
there is a unique term t̂ in normal form in this class and we define s0(C1t) = −Ct̂. For
such an element, we have

∂0(s0(C1t)) = ∂0(Ct̂) = −
n∑
i=1

C ◦ (κi(t))1 〈xi〉+ C1t = C1t− η ◦ ε(C1t)

Case RP1. We define s1 : RP1 → RP2 as follows. Given a term t ∈ P∗1, we write
ˆ̂t : t ∗−→ t̂ for the path rewriting t into its normal form using the leftmost innermost
strategy; given a term u ◦ t with t = 〈t1, . . . , tn〉, it schematically reduces in the following
way:

u ◦ 〈t1, t2, . . . , tn〉
∗−→ u ◦

〈
t̂1, t2, . . . , tn

〉 ∗−→ u ◦
〈
t̂1, t̂2, . . . , tn

〉 ∗−→ . . .
∗−→ u ◦

〈
t̂1, t̂2, . . . , t̂n

〉 ∗−→ û ◦
〈
t̂1, t̂2, . . . , t̂n

〉 ∗−→ û ◦ t

Given Cfu in RP1, we define s1(Cfu) = −Ĉ̂
f ◦ û, where given u = 〈u1, . . . , un〉, û is a

notation for 〈û1, . . . , ûn〉. We have

s0(∂0(Cfu)) = s0

(∑
i

(C ◦ (κi(f))u) 1 〈ui〉
)
− s0 (C1 (f ◦ u))

= −
∑
i

(C ◦ (κi(f))u) ûi + Cf̂ ◦ u

and

∂1(s1(Cfu)) = −∂1(Ĉ̂
f ◦ û) = −Cf̂ ◦ u+ Cf ◦ û

= −Cf̂ ◦ u+
∑
i

(C ◦ (κi(f))u) ûi + Cfu

and therefore

s0 ◦ ∂0 + ∂1 ◦ s1 = idRP1

Case RP2. We define s2 : RP2 → RP3 as follows. Suppose given CRv ∈ RP2 for some
rewriting rule R : t⇒ u in P2. We then distinguish two cases:

1. If the term t◦ v̂ is not reducible by any other rule than R then we define s2(CRv) = 0.

2. Otherwise, we choose the left innermost rule R′ : t′ ⇒ u′ which reduces t ◦ v̂,
i.e. t ◦ v̂ = D[t′]v′. The critical pair ([R]v̂, D[R′]v′) is confluent because the rewriting
system is supposed to be:

[t]v̂ = D[t′]v′
[R]v̂

yy

D[R′]v′

&&
[u]v̂

̂̂[u]v̂ %%

D[u′]v′

̂̂
D[u′]v′xx

t̂ ◦ v
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This suggests defining

s2(CRv) = −C([R]v̂, D[R′]v′) + s2

(̂̂[u]v̂
)
− s2

(
̂̂
D[u′]v′

)
We then proceed by noetherian induction to show that

s1 ◦ ∂1 + ∂2 ◦ s2 = idRP2

In the first case, R is the only rule which can reduce t ◦ v̂ and hencê̂
t ◦ v̂ = [R]v̂ · ̂̂[u]v̂

Therefore

s1 ◦ ∂1(CRv) = s1(Cuv)− s1(Ctv) = −Ĉ̂
u ◦ v̂ + C

̂̂
t ◦ v̂ = CRv

On the other hand, we have ∂2◦s2(CRv) = 0 and therefore s1◦∂1+∂2◦s2(CRv) = (CRv).
In the second case, we have, by induction

(s1 ◦ ∂1 + ∂2 ◦ s2)(Ĉ̂[u]v̂) = C
̂̂[u]v̂ (s1 ◦ ∂1 + ∂2 ◦ s2)(C ̂̂

D[u′]v′) = C
̂̂
D[u′]v′

from which follows

∂2 ◦ s2(CRv) = −∂2

(
C([R]v̂, D[R′]v′)

)
+ ∂2 ◦ s2

(
C
̂̂[u]v̂
)
− ∂2 ◦ s2

(
C

̂̂
D[u′]v′

)
= −CDR′v′ + CRv̂ − s1 ◦ ∂1

(
C
̂̂[u]v̂
)

+ s1 ◦ ∂1

(
C

̂̂
D[u′]v′

)
On the other hand, we have

s1 ◦ ∂1(CRv) = s1(Cuv)− s1(Ctv) = −Ĉ̂
u ◦ v̂ + C

̂̂
t ◦ v̂

The rule R′ is innermost in t ◦ v̂. Thereforê̂
t ◦ v̂ = D[R′]v′ · ̂̂D[u′]v′

and we have

s1 ◦ ∂1(CRv) = −Ĉ̂
u ◦ v̂ + C

̂̂
t ◦ v̂

= −Ĉ̂
u ◦ v̂ + CD[R′]v′ + C

̂̂
D[u′]v′

= CDR′v′ + s1 ◦ ∂1

(
C
̂̂[u]v̂
)
− s1 ◦ ∂1

(
C

̂̂
D[u′]v′

)
from which follows once again that

s1 ◦ ∂1 + ∂2 ◦ s2(CRv) = (CRv)

and we conclude. J
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