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Abstract

In signal processing, spectral analysis is widely used but, whereas computing the power spectral

density (PSD) by Fourier approaches is relatively easy, its analysis and reading are much more

demanding especially for spectrally rich signals. This paper presents an original method which

automatically picks out and estimates the relevant spectral structures of an unknown random sta-

tionary process, embedded in an unknown non-white Gaussian noise. First, a statistical hypothesis

test is applied to each local maximum value of the estimated PSD to detect the potential spectral

peaks of interest. Second, an original feature space is proposed for classifying and characterizing

the detected structures. Then, one key idea of the proposed strategy is to use not only one spectral

estimator but to combine the results of different ones, taking benefits of their good properties.

Therefore the detection and classification steps are applied to different spectral estimations. A last

fusion step outputs a complete attribute vector, including a confidence index, for each detected

structure. Another key idea of this data-driven approach is that all parameters are automatically

set up without a priori knowledge. This approach is fully adapted to the preventive maintenance

of complex systems, as illustrated in the paper.

Keywords: Spectral analysis, Hypothesis test, Peak detection, Data-driven

1. Introduction

Literature on spectral analysis is abundant and lots of different estimators have been proposed

(e.g., see [1], [2] and references therein). Depending on the application and on several parameters
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such as signal to noise ratio, sample size or a priori spectral shape, a signal processing expert

should be able to choose which estimator gives the best results in terms of spectral resolution,

frequency estimation or modal detection. However, when no a priori information is available about

the signal, or when a non-signal processing expert is willing to analyze some specific data, it is

interesting to design an automatic spectral analysis tool, providing a complete description of the

analyzed signal. Up to now, few methods have been published in this context. A fully automated

spectral analysis was investigated in [3]. However, it was restricted to periodic signals focusing on

the estimation of the signal period. In a more recent paper, Barbé and Van Moer [4] proposed an

automatic detection and estimation procedure for harmonic components. A statistical analysis was

considered to discriminate peaks for which amplitudes are higher or lower than a given threshold for

any fixed frequency. The threshold was determined according to a minimum inter-group variance

and a maximum group distance, taking the whole estimated spectrum into account. Thus, this

method can be applied when the noise is white but not for a non-white one where the threshold

should be determined individually for each tested peak. When the signal of interest is a sum of

sinusoids embedded in white noise, the authors of [5] studied a local least square approach in the

frequency domain. Tackling a wider signal class, the authors in [6] set up an automatic selection

of the significant spectral components by using two different bandwidth resolutions. However, this

method requires two signal measurements, which are not always available.

The objective of this paper is different. We propose a way of automatically analyzing stationary

processes without a priori information. A new spectral analysis strategy is investigated, allowing

specific spectral structures of a signal to be detected and characterized. The proposed strategy

is not linked to any artificial intelligence consideration but is only related to the use of signal

processing properties. In this context, a spectral structure has to be understood as the frequency

signature of a sine wave, a narrow band signal, or a noise peak. The signals of interest are assumed

to be composed of a sum of an unknown number of these structures, embedded in an unknown

non-white noise. Several applications are demanding spectral analysis of such signals, including

vibration, electrical, acoustic, seismic or radar signals. Indeed, these applications lead to process

signals with a high number of samples, and having a high number of spectral structures embedded

in non-white noise. It is important to highlight that this last assumption is essential in the context

of this paper. Indeed, when signals are acquired by rotating machines such as machines in the
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nacelle of wind turbines or manufacturing machines, methods restricted to the presence of white

noise cannot be applied.

The main idea of the present paper is to combine and take advantage of the different properties of a

set of spectral estimators based on the discrete Fourier transform. Combining estimation, detection

and classification, the output of the proposed method is a set of spectral structures characterized by

a set of appropriate attributes. These attributes include the standard ones as frequency, amplitude,

local signal to noise ratio and spectral bandwidth. They are complemented by new ones providing

a complete characterization of the spectral structures contained in a given signal. The resulting

attribute vectors are referred to as identity cards and allow an easy classification of all the peaks of

a power spectral density estimate. These identity cards can be of great interest in many domains

and especially for the analysis of acoustic and vibration signals that are generally composed of a

high number of spectral structures. Using an automated method combining the results of different

spectral analyses of these signals is fruitful and laborsaving, e.g., for the condition monitoring of

rotating machines.

A first method has been published in [7, 8]. In this paper we propose a more efficient one in

which each step, the detection, the feature space mapping, the classification and the final fusion,

has been improved. Furthermore, the method has been implemented on real-time and on-board

devices within the frame of two European projects, one devoted to renewable energy in wind turbine

farms (http://www.gipsa-lab.fr/projet/KASTRION/) and a second one devoted to manufacturing

equipment in a coated paper mill (http://www.supreme-fof.eu). The paper is organized as follows.

Section 2 formulates the problem addressed in this work and provides details about the spectral

structures that are considered in this study. Section 3 studies a new spectral peak detection

method that is applied on each estimated power spectral density (PSD), through a local hypothesis

testing. This hypothesis test is defined in the frequency domain, taking the probability distribution

of the estimated noise PSD into account. Section 4 defines the feature space that is used for

the classification of the different spectral structures. Section 5 presents a way to choose spectral

estimators with a specific example for a sine wave search. The fusion rule adopted to combine the

different spectral analysis results is presented in Section 6. This rule leads to the identification

and classification of different spectral structures, namely sine waves, narrow band signals and noise

peaks. The proposed method is evaluated using simulated and real-world signals in Section 7. In

3



particular, we show how a real-world signal corresponding to the acoustic noise of a heat pump can

be analyzed. Conclusions and perspectives are finally reported in Section 8.

2. Problem statement

2.1. Assumptions

Let us consider a discrete stationary random signal x [k] , k = 0, ...,K − 1 defined as the sum of

a signal of interest s [k] and a noise n [k],

x [k] = s [k] + n [k] , k = 0, ...,K − 1, (1)

where K is the sample size. The signal of interest s [k] is a stationary random process, whose

PSD is denoted by γs (ν), ν being the frequency variable. We assume that the PSD of the signal

s [k] can be decomposed as the sum of elementary PSDs referred to as spectral structures. When

the observed signal is composed of sine waves or very narrow band signals embedded in noise, a

spectral structure typically corresponds to a more or less wide peak in the PSD of this signal.

The number of spectral structures in s [k] can be very large. For instance, a vibration signal is

frequently composed of more than hundreds of peaks. The additive noise n [k] is assumed to be a

zero mean stationary Gaussian noise, independent of the signal of interest, with a PSD denoted by

γn (ν). The additive noise may be white or not and the number of spectral structures contained in

the signal of interest x [k] is unknown.

2.2. Context

The problem addressed in this work consists of analyzing the signal x [k] in order to detect,

characterize and classify any spectral structure present in s [k]. Motivated by the assumption of a

large sample size K, e.g. K ≥ 1000, Fourier-based estimators will be considered as an appropriate

tool for spectral analysis. Fourier estimators are well-known to be robust approaches that are daily

used in many domains such as vibration analysis. However, understanding the rich spectral content

of vibration signals is not so obvious and needs the help of human interaction, which is precisely

the problem addressed in this paper.

In the particular case of a single sine wave embedded in white Gaussian noise, the maximum

likelihood estimator of the sine wave frequency is known to be the frequency where the periodogram
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reaches its maximum [9]. For multiple sine waves in white Gaussian noise, the maxima of the

periodogram provide the maximum likelihood estimators of its sine frequencies as long as the sine

waves are well resolved in frequency. However, in the general case of a non-white noise n [k], there

is no simple solution for estimating the frequencies contained in s [k] using the maximum likelihood

principle.

Therefore, in order to detect and characterize an unknown number of spectral structures embed-

ded in a non-white additive noise, we propose a specific peak detection in the frequency domain.

Moreover, to be robust against spectral estimation problems, the continuous PSD is estimated

through a set of estimators coping with several compromises. Considering a non-white additive

noise is challenging in such an automatic spectral analysis if we want to ensure that the proposed

strategy has the same performance for any noise spectral shape.

3. Spectral structure detection

Given γ̂x (ν) an estimation of the continuous PSD γx (ν) of the observed signal x [k], the set

of the frequencies at which γ̂x (ν) is locally maximum is denoted as M =
{

max
ν

γ̂x (ν)
}

. The

detection problem addressed in this Section consists of designing a binary test for detecting the

relevant spectral structures in γ̂x (ν). More precisely, for a given frequency ν belonging to M, we

consider the two following hypotheses

H0 : γx (ν) = γn (ν) , H1 : γx (ν) = γs (ν) + γn (ν) , (2)

and a test statistic T (ν) as a function of γ̂x (ν), such as

T (ν)
H0

≶
H1

µPFA, (3)

where the threshold µPFA can be adjusted from the probability of false alarm (PFA) of the test

PFA = Pr [T (ν) ≥ µPFA | H0] , (4)

and where Pr (A |H0) denotes the probability of the event A under hypothesis H0. This test will

not be applied to all frequencies ν but only to frequencies ν at the local maxima of γ̂x (ν). The

application of test (3) will allow us to keep only maxima in M under hypothesis H1 which then

correspond to the so-called spectral structures of the analyzed signal.
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3.1. Distribution of Fourier-based estimators under H0

In order to derive the distribution of the test statistic T (ν) which should be a function of

γ̂x (ν), we propose to study the distribution of the spectral estimators under hypothesis H0. In our

context, the PSD estimators are Fourier-based with different temporal windows and overlapping.

The additive noise is white or not.

Johnson and Long [10] derived the probability density function of the Welch periodogram for

overlapping temporal windows of a Gaussian time series. However, this result is difficult to be

generalized to other PSD estimators and the distribution of a test statistic resulting from this

distribution is computationally expensive. In order to obtain a more general solution, one possibility

is to approximate the distribution of the estimated PSD. Different approximations based on the

chi-square distribution have been investigated in [1, 10, 11, 12] and more recently in [13]. In this

paper, we consider a more general approximation that has to be valid for any Fourier-based PSD

estimator. Let us introduce

U = a
γ̂x (ν)

γn (ν)
, (5)

where a is a real scalar which will be fixed in what follows. According to the previous results in

the literature, the distribution of U is approximated by a chi-square one with a number of degrees

of freedom denoted by r. Therefore,

E [U ] = r and var [U ] = 2r. (6)

Being under hypothesis H0 and assuming that the noise estimation is unbiased, E [U ] = r in (6)

gives a = r. Using this in the variance expression of (6) leads to

r =
2

varn [γ̂x (ν)]
with varn [γ̂x (ν)] =

var [γ̂x (ν)](
E
[
γ̂x (ν)2

]) , (7)

where varn [γ̂x (ν)] is the normalized variance of the spectral estimator. This normalized variance

depends only on the chosen PSD estimator and not on the signal x [k] itself [1]. This property is

interesting and allows the a priori computation of the degree of freedom r only from the variance of

the spectrum estimator. Appendix A recalls the equations for the well-known Welch and Blackman-

Tuckey estimators, whatever the type and size of the windows and whatever the overlapping.

Note that, in the case of a Welch estimator, r = 2Nseg for Nseg segments of signal without any

overlapping and whatever the window, which gives a lowest value r = 2 obtained with one segment.
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The proposed approximation of the distribution of U = r γ̂x(ν)γn(ν)
is illustrated Fig. 1 by comparing

the probability density function (PDF) of a chi-square variable to the estimated PDF of U for a

Blackman-Tukey estimator, a Blackman window and a non-white ARMA Gaussian noise whose

parameters are {1,−1.3552, 1.228,−0.662, 0.25} for the AR parameters and {1,−0.9, 0.81} for the

MA ones. This example is a kind of worst-case example since the Blackman-Tukey estimator

may lead to an estimated PSD with negative values, which is very penalizing when fitting with a

chi-square distribution.

3.2. Noise PSD estimation

In order to determine the distribution of γ̂x (ν) using (5), we need to know the noise PSD γn (ν).

We propose to estimate it thanks to a median filtering F of γ̂x (ν) denoted γ̃n (ν),

γ̃n (ν) = F [γ̂x (ν)] . (8)

The median filter is applied to the estimated PSD, i.e., in the frequency domain. The median filter

length has to be linked to the equivalent spectral window W (ν), induced by any Fourier-based

spectral estimator and such that

E [γ̂x (ν)] = γx (ν) ∗W (ν) , (9)

where ∗ denotes convolution. We propose to adjust the median filter length proportionally to the

length of the spectral bandwidth of W (ν), denoted as BW and defined as the main lobe width

between its first two zeros. On the one hand, the median filter length has to be high enough

around frequencies close to sine waves, in order to mitigate the effect of the signal peaks. On the

other hand, a too large value of the median filter length fails to track the spectrum variations of the

non-white noise. A compromise has to be found between 2BW and 8BW ; a value of 4BW has been

chosen in the examples of Section 7. In practice, the median filter length corresponds to a number

of frequency samples which is denoted by Mn in what follows. Note finally that more details about

how estimating the noise PSD from the noisy signal PSD can be found in [14], including methods

based on median filters or other non-linear filters such as morphological or percentile filters.

3.3. A p-value approach for H0 rejection

Considering the previous results, we propose to define the test statistic T (ν) in (3) as

T (ν) =
γ̂x (ν)

γ̃n (ν)
= r

γ̂x (ν)

γn (ν)

[
r
γ̃n (ν)

γn (ν)

]−1
. (10)

7



Under hypothesis H0, U = r γ̂x(ν)γn(ν)
is considered to be distributed as chi-square with r degrees of

freedom as shown in Section 3.1. Given that γ̃n (ν) is the median filter of γ̂x (ν), the distribution

of r γ̃n(ν)γn(ν)
can be derived as an order statistics [15, p. 372], however the expression does not lend

itself to simple analytic processing. Since noise PSD is estimated thanks to a median filter, we

will rather consider rMn
γ̃n(ν)
γn(ν)

as the output of a filter with a finite impulse response of length Mn,

excited by a chi-square distributed input, U . As a consequence, T (ν) is viewed as the ratio of two

normalized correlated chi-squared distributed variables

T (ν) =
U/r

rMn
γ̃n(ν)
γn(ν)

/rMn

. (11)

The numerator and denominator of this ratio are necessarily correlated. But if we consider that

the noise PSD is estimated by a nonlinear filter as described in Section 3.2 and that the test

statistic T (ν) is applied at the peak maxima only, we do the assumption that this correlation can

be neglected. Then the distribution of T (ν) can be approximated by a Fisher-Snedecor one with

parameters r and rMn, denoted by Fr,rMn [15]. This approximation has been validated via several

Monte Carlo simulations in the case of white and non-white noise, with different PSD estimators and

different windows, with or without time segment overlapping. As an example, Fig. 2 compares the

estimated probability density function of the test statistic T (ν) with its approximated F distribution

in the case of a non-white ARMA Gaussian noise, a Blackman-Tukey estimator with a Blackman

window and a median filter for the noise PSD estimation.

Under hypothesis H1, the distribution of T (ν) cannot be considered since there is no information

about the signal of interest. We propose then to use the p-value of the test (3) [16]. The p-value is

defined as the probability of having a value of T (ν) equal or more extreme than the one observed

considering that H0 is true. It gives a measure of the strength of evidence against H0. The lower

the p-value, the more unlikely H0 is, and at some point of low probability, H0 should be preferably

rejected.

Therefore, the p-value denoted as p0 is computed at each frequency νmax belonging to M

p0 = Pr [T (ν) ≥ T (νmax) | H0] =

∫ +∞

T (νmax)
Fr,rMn(t)dt, (12)

where Fr,rMn(t) denotes the PDF of the Fisher-Snedecor distribution with parameters r and rMn.

If this p-value is higher than a given threshold corresponding to a PFA (4), we consider that there

is no presumption against hypothesis H0 and that the spectral structure around the frequency
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νmax is a noise peak. All other spectral structures corresponding to p-values lower than the chosen

threshold are detected as potential spectral structures of interest in the observed signal γ̂x (ν).

This way, the test output is a set of P peaks of amplitude γmaxi for which the corresponding p-

values denoted as p0i give an idea of how the peaks contradict the hypothesis H0 suspecting the

presence of a signal of interest at frequency νmaxi . This set of peaks is written as

{(γmaxi , νmaxi , p0i) , i = 1, ..., P}. (13)

3.4. Spectral structure identification

Each triplet (γmaxi , νmaxi , p0i) corresponds to a part of the estimated PSD γ̂x (ν) that we will

refer to as a “spectral structure”, denoted by γi and defined accurately in this Section. This

quantity corresponds to one part of interest of the spectrum of the signal.

For each triplet, a local noise variance σ2i is computed as

σ2i =
1

νmini+1 − νmini

∫ νmini+1

νmini

γ̃n (ν) dν, (14)

with γ̃n (ν) given by (8) and νmini (resp. νmini+1) the argument of the preceding (resp. succeeding)

minimum of γmaxi(see Fig. 3). Therefore, a spectral structure γi associated to (γmaxi , νmaxi , p0i) is

defined by

γi =
{
γ̂x (ν) ; ν ∈

[
ν−i , ν

+
i

]}
, (15)

with

γ̂x
(
ν−i
)

= γ̂x
(
ν+i
)

= σ2i with
[
ν−i , ν

+
i

]
⊂
[
νmini , νmini+1

]
. (16)

In order to accurately identify each spectral structure, γi is compared with the equivalent

spectral window W (ν) defined in (9). The main lobe of W (ν) defined between the two first

zeros and of amplitude one, denoted as Q (ν), is sampled at a higher rate than the rate of the

spectrum γ̂x (ν). A maximum likelihood approach could have been considered in order to estimate

the best position in frequency of Q (ν) for each γi. However, it has been shown to induce a

higher computation time without any performance improvement compared to a simple least square

minimization between γi and shifted versions QS (ν) of Q (ν). Therefore, this last solution has been

preferred. The algorithm is initialized by a first version Q0 (ν) centered at the maximum frequency
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νmaxi of γi and adjusted to its amplitude γmaxi such that

Q0 (ν) = γmaxiQ (ν − νmaxi) . (17)

Then this adjusted spectral window will be shifted along the frequency axis, on the increasing or

decreasing side, depending on the value of

ε = sign(γ̂x (νmaxi + ∆ν)− γ̂x (νmaxi −∆ν)), (18)

with ∆ν the sampling period of the spectrum γ̂x (ν). If ε = 0, it is a particular and nice case where

the peak fits well with the spectral window Q0 (ν) and will be assigned later on to a sine wave.

Otherwise, new versions QS (ν) are computed with a shift step equal to ε∆ν/c, ∆ν/c being the

sampling period of Q (ν). Due to the over-sampling rate of QS (ν), c being at least equal to 10, the

shift is small compared to the samples of γi and the total amplitude of the shift will be limited to

one frequency interval ∆ν. In addition, at each step, the amplitude of QS (ν) is adjusted such that

the constraint QS (νmaxi) = γmaxi is always satisfied.

At each step is computed a normalized quadratic error between γi and QS (ν) and only for their

common sampling points,

e (i) =
1

γ2maxi

j2∑
j=j1

(γ̂x (νj)−QS (νj))
2 , (19)

with [νj1 , νj2 ] ⊂ [ν−i , ν
+
i ]. The choice of j1 and j2 values determines a specific part of the peak

and then a specific error. The total error denoted by etot (i) takes the whole peak γi into account

and is used in the least square minimization between γi and shifted versions QS (ν) of Q (ν). This

spectral adjustment defined as a matching of the whole peak with the spectral window allows the

determination of an adjusted central frequency ν̃maxi and of an adjusted maximum γ̃maxi that will

be used in Section 6.

In addition to considering the whole peak which may be distorted by secondary lobes of neighboring

peaks, j1 and j2 can also chosen such that (19) computes the −3 dB error denoted e-3dB (i). This

last error will be used in Section 4.2 for defining a structure feature.

4. Spectral structure classification

4.1. Spectral structure class definition

The detection step provides a set of P spectral structures (15) related to the signal of interest.

Each of these structures is characterized by a p-value providing a quantitative strength of evidence
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against hypothesis H0. These detected spectral structures can correspond to sine waves but also to

other signal structure with a spectral width broader than the equivalent spectral window. Therefore,

in a first approach, three different classes are defined:

- Sine Wave class (SW). This SW class is composed of all spectral structures corresponding

to sine waves which are characterized by their frequency νs and amplitude A, such that the

signal of interest (1) is of the form

s [k] = A cos (2πνsk) . (20)

- Narrow Band signal class (NB). This NB class corresponds to signals having a spectral

structure whose bandwidth is between the equivalent spectral window bandwidth BW of the

estimated PSD and the median filter length of the noise PSD estimation. Any wider band

signal will be involved in the noise PSD estimation and is out of concern of this paper. This

NB class includes slowly non-stationary signals of the form

s [k] = A [k] cos (φ[k]) , (21)

where φ[k] is a slow-varying phase function around a steering frequency and A [k] is a band-

limited signal whose maximal frequency is much smaller than this steering frequency [17].

Other stationary signals can be found in this class, such as a random frequency fluctuation

over a small frequency band (e.g. a laser noise).

- Noise peak class (NP). This NP class acts as a reject class for peaks departing too much

from the equivalent spectral window of the corresponding PSD estimator.

4.2. Spectral structure features

After having defined the three classes to which a spectral structure can belong, we need to

define discriminant features to handle the classification of all the detected structures. We propose

a list of two features: one dealing with the height of the peak featured by a signal to noise ratio

value, the other one with its shape got after a spectral adjustment. The height can be a relevant

criterion for noise peak classification while the shape can help to distinguish SW peaks from the

others.
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Thus the first feature, the height of each spectral structure, is characterized by a local signal to

noise ratio denoted as SNR` and associated to a SW peak,

SNR` = 10 log

(
A2
i

4σ2i

)
. (22)

The parameter σ2i is defined in (16) and Ai is the sinusoidal amplitude corresponding to the maxi-

mum value of the spectral peak γmaxi . We have chosen this feature SNR` since it is closely linked

to the test statistic (10), as shown in appendix B, by the following relation

SNR` = 10 log [BeTsT (ν)] , (23)

with Ts = 1/Fs the sampling period and Be the noise equivalent bandwidth of the spectral window:

Be =

∫ +Fs/2

−Fs/2
W (ν) dν

W (0)
. (24)

Through (23), the first feature SNR` is related to the p-value of each detected peak: the higher

the SNR` value, the lower the p-value, the more likely the peak is a signal of interest, either in the

SW or NB class. Therefore, by definition SNR` will be able to separate SW or NB peaks from the

other NP peaks.

The second feature, the shape of a spectral structure is deduced from the quadratic spectral error

(19) computed at −3dB. If it is low, the spectral structure will belong to SW class, otherwise, it

will be assigned to NB or NP class.

Monte Carlo simulations have been performed in order to evaluate the interest of these two features

(SNR`, e-3dB) for classifying the spectral structures into the three classes SW, NB and NP. Two

simulated stationary signals of K = 10, 000 samples have been generated over 50 runs.

• The first signal is a deterministic SW with a unitary amplitude and frequency νs.

• The second one is a random NB signal simulated as a sine function with a unitary amplitude

and a varying frequency equal to νs plus some Gaussian noise with a low variance σ2n.

For simulations, we choose σ2n = 25.10−6 and νs = 0.11 in normalized frequencies.

Both signals are embedded in an additive white Gaussian noise as in (1). Different signal to noise

ratios have been considered from 30 dB to −20 dB. PSD estimation is done using a Welch estimator
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[2] on the whole signal (one segment) with a Blackman window. According to Section 3, the noise

spectrum is estimated and peaks are detected following the p-value approach detailed in Section

3.3 with PFA = 10−3.

Fig. 4 presents the results of these Monte Carlo simulations for signal to noise ratios equal to 20 dB,

0 dB, −5 dB and −15 dB. It is clear that the three clusters of SW peaks (in red), NB peaks (in

green) and NP peaks (in black) are well-separated in the proposed feature space (SNR`, e-3 dB), as

long as the signal to noise ratio is equal or above −5 dB. This property is exploited for estimating

the class boundaries in the feature space (SNR`, e-3dB).

4.3. Feature space mapping

To perform peak classification in the proposed feature space (SNR`, e-3dB), and thanks to the

properties of these features highlighted in the previous Section, the class boundaries will be defined

from histograms computed from the previous Monte Carlo simulations. Following figures show the

results using a Welch PSD estimation with Hanning window. The same reasoning is available for

other estimators. Fig. 5 is the histogram of SNR` cumulating Monte Carlo simulations of SW peaks

from 30 dB to -10 dB and Monte Carlo simulations of NB peaks from 30 dB to 5 dB. The threshold

T+ delimits the NP peaks from the others SW or NB without doubt. For lower signal to noise

ratio, the boundaries could not be so obvious so we decided to define doubt classes illustrated by

the histograms of Fig. 6. The interval between the threshold T− and the previous one T+ delimits

doubt classes SW/NP or NB/NP between the different classes SW, NB or NP. The threshold T− is

computed such that Pr [SNR` ≤ T− | H1] = Pmin. In our simulations, we have chosen Pmin = 0.01.

Fig. 7 presents the histograms of the second feature e-3dB showing without doubt that the −3 dB

error feature is meaningful to separate the SW peaks from the NB ones when the signal to noise

ratio is greater than 0 dB. Both histograms are well-separated by a threshold denoted by Te. The

resulting feature space mapping is shown on Fig. 8.

5. Multi-estimator method

5.1. Combining different spectral estimators

Once spectral peak detection and classification have been set up, the question is: among all

existing spectral estimators, which one are we going to choose? The key idea of the proposed
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method is not to apply one estimator but to combine the results of several different estimators,

taking advantage of their specific properties. Within the frame of spectral analysis, it exists several

kinds of Fourier-based estimators [1], [2], [14]. In order to select M different and complementary

ones, this Section outlines first a possible list of quality properties to help with the choice tand then

an example choice among many for a specific view to sine wave search. The number M of selected

estimators is not that important, the method works whatever this number. The main claim of this

paper is the multi-estimator strategy leading to select and merge different spectral estimations.

5.2. Possible estimator quality properties

In order to select Fourier-based spectral estimators, six estimator quality criteria are pushed

forward:

1. The degree of freedom r of a spectral estimator. Defined in (7), r is also referred to as

a quality ratio of a spectral estimator [11] since it is inversely proportional to the normalized

variance (see (7)) and directly linked to the statistical stability of the spectral estimation.

The minimum value of r is 2 and the higher the value, the smoother the spectral estimation.

2. The spectral leakage percentage p. It measures the power which is transferred from the

main lobe of the spectral window W (ν) to its side lobes. An accurate definition is only given

in [18], although this notion is widely discussed in the spectral analysis literature [19], [1],

p = 1−

∫ +BW /2

−BW /2
|W (ν) |dν∫ +Fs/2

−Fs/2
|W (ν) |dν

, (25)

with Fs the signal sampling frequency.

3. The peak emergence ∆SNR in the spectral estimation. Related to the emergence of

a given peak throughout the noise, ∆SNR is defined from an estimated point of view as the

difference between two ratios,

∆SNR = SNR` − SNR+. (26)

SNR` is the local signal to noise ratio defined in (22) and SNR+ is the emerging signal to

noise ratio, taking the local level of noise and spectral window effects into account, Be being

defined in (24),

SNR+ = 10 log

(
A2
i

4σ2iBe

)
. (27)
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Thus the peak emergence is defined by

∆SNR = 10 log (Be) , (28)

and can also be interpreted as the equivalent noise bandwidth of the spectral window [2] given

in dB.

4. The effective statistical bandwidth Bs of the spectral window [1], [20], [21],

Bs =

∣∣∣∣∣
∫ +Fs/2

−Fs/2
W (ν) dν

∣∣∣∣∣
2

∫ +Fs/2

−Fs/2
|W (ν)|2 dν

. (29)

Related to the equivalent spectral window W (ν), the statistical bandwidth Bs represents

the bandwidth of an equivalent rectangular window with the same normalized variance for

a white noise as the chosen window. Bs characterizes the quality of the spectral estimation

as well as the degree of freedom does but in an opposite way: it is not possible to have a

fine spectral resolution (small values of Bs) together with a highly stable spectral estimation

(large values of r).

5. The frequency resolution directly related to the resolution bandwidth B-3dB of the spec-

tral estimator [2]. It is defined by

B-3dB = ν2 − ν1, (30)

with

W (ν1) = W (ν2) =
W (0)

2
.

Details (e.g., two SW peaks) in a spectrum which are separated by less than this value cannot

be resolved. This property has to be associated to the leakage since a compromise has to be

found: high frequency resolution (small values of B-3dB) is unfortunately associated to high

leakage (high values of p).

6. The side-lobe fall-off SL of the equivalent spectral window defined as the slope of

the envelope [19], [22]. In case of a high signal to noise ratio, it is preferable to consider

estimators with high side-lobe fall-off in order that side-lobes do not intervene in the peak

detection results.
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5.3. One estimator choice example for a sine wave search

Within the case of a sine wave search and based on the previous properties (p,B-3dB, Bs, r,SL,∆SNR),

it would be optimal to have an estimator which simultaneously satisfies a high degree of freedom

r, a minimum spectral leakage percentage p, a maximum peak emergence ∆SNR, a small effective

statistical bandwidth Bs , a small resolution bandwidth B-3dB and a high sidelobe fall-off SL. Since

there exists no estimator satisfying the six above criteria, we propose a compromise, a right balance

among all them by considering five methods (M = 5) as following with m = 1, ...,M , [2]

• m = 1, a Blackman-Tuckey estimator using a biased estimate of the autocorrelation and a

Blackman temporal window (BTb + Blackman),

• m = 2, a Welch estimator using a Blackman temporal window (Welch + Blackman),

• m = 3, a Welch estimator with a Hanning temporal window (Welch + Hanning),

• m = 4, a Blackman-Tuckey estimator using an unbiased estimate of the autocorrelation with

a Blackman temporal window (BTu + Blackman),

• m = 5, a Blackman-Tuckey estimator using an unbiased estimate of the autocorrelation with

a Hanning temporal window (BTu + Hanning).

In order to illustrate the pros and cons of these five methods, for each of them, Fig. 9 plots a

star chart where each radius represents one of the six previous criteria. As defined in the first chart,

each radius scale has been determined such that the radius extremity corresponds to an optimal

value of the corresponding criterion.

None of the chosen methods has the best scores for all criteria but each criterion has almost one

estimator where the achieved score is the best. One can highlight that,

• for the quality criterion related to the degree of freedom r, the first method outperforms the

others,

• for criteria linked to effective statistical bandwidth Bs and to frequency resolution B-3dB, the

Blackman-Tuckey estimators are the best,

• regarding leakage p, all methods are quite equivalent except the Blackman-Tuckey estimator

with a Hanning window,
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• for peak emergence ∆SNR, the three first estimators are of interest.

Lastly, considering the side-lobe fall-off, two different strategies have been developed. When the

signal to noise ratio is low, the five chosen methods should be applied regarding their complementary

properties (M = 5). However, in the case of a high signal to noise ratio (over 10 dB for example),

the side-lobe fall-off values of the Blackman-Tuckey methods (methods 1, 4 and 5) could lead to

high false-alarm rate within the detection step. Therefore, in this case, only Welch methods are

considered (M = 2). For this specific search, it is then useful to have the knowledge of the signal

to noise ratio. Other choices will not need this knowledge. In this respect, we have implemented

a data validation to estimate some prior parameters such as the signal to noise ratio and also a

stationary index to qualify the stationarity of the signal. This index is particularly worthwhile for

selecting correct vibration data in a wind turbine for example [23], [24]. Moreover for such signals

which can be measured under small speed fluctuations, an angular resampling should be applied if

a speed signal is available [25]. All this upstream phase is not part of this paper.

As mentioned at the beginning of this Section, the most important point of this paper is the multi-

estimator approach which can be used whatever the number and the type of spectral estimators.

This Section has proposed one possible choice that has been argued using estimatorquality criteria.

6. Fusion

Sections 3 and 4 have led to peak detection and classification on M spectral estimates. The

present Section is devoted to the fusion of all these estimations in order to get one final spectral

characterization of each detected spectral structure.

After detection and classification, the output of the mth spectral estimator (m = 1, ...,M) is a

list of Pm detected peaks or structures denoted as γi,m, i = 1, ..., Pm. At each γi,m is associated an

attribute vector composed of the ten following elements, for which the index m has been added

relatively to previous Sections:

1. the adjusted central frequency ν̃maxi,m obtained after the spectral adjustment of the detected

peak with the equivalent spectral window in the classification step, as explained in Section

3.4,

2. the adjusted maximum of the peak γ̃maxi,m , corresponding to the adjusted central frequency,

as also explained in Section 3.4,
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3. the amplitude Ai,m =
√

4γ̃maxi,mBsT , corresponding to the temporal amplitude, Bs being

defined in (29) and T being the signal duration,

4. the local noise variance σ2i,m defined in (16),

5. the confidence interval Ii,m corresponding to the frequency resolution of the spectral esti-

mator, centered around ν̃maxi,m with a bandwidth B-3dB, defined in (30), Ii,m = [ν̃maxi,m −

B-3dB/2, ν̃maxi,m +B-3dB/2],

6. the error couple (e−3dBi,m
, etoti,m) related to the spectral estimator and to its equivalent

spectral window, defined in (19),

7. the local signal to noise ratio, SNR`i,m defined in (22),

8. the emerging signal to noise ratio, SNR+i,m defined in (27),

9. the p-value, p0i,m introduced in (12),

10. the class label Ci,m selected among the set

C = {SW, NB, SW/NP, NB/NP, NP}, (31)

resulting from the feature space mapping described in Section 4.3.

Computed for each mth method, these attribute vectors are called intermediate “identity cards”.

Consequently, the first step of the fusion is to group or associate the intermediate identity cards

corresponding to the same spectral structure among the M spectral estimators. For this, we will

use attributes of the cards. The first one, the adjusted central frequency has not been estimated

with the same resolution and then has not the same value throughout the different analyses. The

association rule will be based on the fifth attribute of the cards, the confidence intervals Ii,m. A

non-empty interSection will lead to the association of the peaks numbered i and i′ if and only if

Ii,m ∩ Ii′,m′ 6= ∅ for i 6= i′. (32)

Applying this rule leads to the association of maximum M cards which constitutes a sequence

describing the same spectral structure viewed through the different spectral estimators. Scanning

all the cards through the entire frequency band of the signal provides J sequences,  = 1, ...,J one

for each spectral structure of the signal.

At this step, at one sequence  is associated M intermediate identity cards or less if the spectral

structure has not been detected by all spectral methods. So the second step of the fusion is to
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merge these cards in a final one. This step will be driven by the class label assigned in the feature

space (SNR`, e−3dB) of Fig. 8. The fusion computes the centroid position of all the (SNR`, e−3dB)

couples of the sequence to provide the final class label C.

This centroid position is used to select the nearest couple (SNR`i,m , e−3dBi,m
),m = 1, ...,M and

then the corresponding intermediate identity card which is denoted as the best one for keeping the

following attributes in the final card of the sequence , namely the frequency ν̃max , the correspond-

ing temporal amplitude A, the local noise variance σ2 , the SNR` , the SNR+ and the p-value p0 .

Rather than keeping the confidence interval, the fusion step computes a relative bandwidth

B̃ =
B

B-3dB
, (33)

where B is the −3 dB spectral bandwidth in the best intermediate card and B-3dB is the −3 dB

spectral bandwidth of the equivalent spectral window for the corresponding spectral estimator of

this best card (30).

In the final card of the sequence is added a specific attribute computed as the detection number

percentage of each spectral structure throughout the M spectral analyses and acting as a confidence

index denoted CI for the sequence . In the end of the fusion step, the final identity card of each

of the J detected structures is of the form

(ν̃max , A, σ
2
 , SNR` , SNR+ , B̃, p0 , C,CI). (34)

7. Applications

Figure 10 illustrates the main steps of the method proposed in this paper. The method is fully

automatic and no a priori knowledge about the signal is needed. Some hyper parameters have to

be set a priori : the spectral estimators, with their own parameters and thresholds in the feature

space as illustrated in Figs. 5, 6 and 7, and the PFA in the detection step. As an illustration,

Section 5.2 has proposed a selection of 5 estimators based on complementary quality criteria for a

sine wave search. Obviously the method is valuable for any choice and any number of estimators.

The PFA acts as a maximum p-value and should be chosen relatively high to be able to detect

enough peaks. We use to choose a PFA value equal to 10−3. This Section illustrates some results

of the proposed method first for a simulated signal and then for real-world signals. It concludes

about a strong interest of this method in the surveillance and maintenance of complex systems.
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7.1. A simulated signal

The proposed automatic data-driven multi-estimator approach is applied to the sine-wave signal

embedded in an additive non-white noise described in Table 1.

Fig. 11 presents the results of the spectral structure detection detailed in Section 3 for one

specific spectral estimator. All local maxima of the PSD associated to a p-value higher than the

chosen threshold PFA = 10−3 are considered as in favour of hypothesis H0 and are plotted in black.

The remaining maxima corresponds to the P detected peaks and for sake of clarity, their colour

corresponds to one p-value interval, rather than giving their associated p-values. The 7-sine wave

structures have been well detected with a very low p-value (≤ 10−6) and 7 other structures have

been also detected but with a higher p-value, from 10−6 to 10−3. To characterize further these P

structures, the classification step detailed in Section 4 is illustrated in Fig. 12. The 7 sine waves

are classified either as SW, or as NB. Among the 7 supplementary spectral structures detected, 5

are classified as NB/NP, 1 as NB and 1 as SW/NP.

The result of this analysis will be enhanced by the multi-estimator approach. Fig. 13 presents

the results of detection and classification of each of the M estimators that have detected between

8 and 15 spectral structures. High amplitude structures have been logically detected with a low

p-value whereas small amplitude structures close to the noise level have been detected with a higher

p-value.

In the end, the fusion step provides 19 sequences that are summarized in Table 2, where it is ordered

by decreasing confidence indices and increasing p-values. One can be surprised that the proposed

method detects 19 structures whereas the signal has been simulated with 7 ones only. However,

this automatic method is able to analyze a signal with no a priori knowledge providing a list of

detected spectral structures with several attributes, among which the three more discriminant ones

are the confidence, the p-value and the SNR`.

The 19 structures of Table 2 are plotted in this 3D-space in Fig. 14. In this space, the red “+”

correspond to the sequences with a maximum confidence index of 100% and a very low p-value lower

than 10−6. Looking at Table 2, these sequences are classified as SW or NB, and their frequencies

correspond to the seven peaks of the analysed simulated signal (see Table 1). Even the critical peak

at 0.07 Hz is detected but as a NB due to its low signal to noise ratio. Twelve additional sequences

have been detected. The green “o” in Fig. 14 correspond to two sequences with high confidence of
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80% but with high p-value in the range of 10−6 to 10−4 and a low local signal to noise ratio SNR`.

Their class labels highlight a doubt between NB and NP. The “x” black in Fig. 14 represent the

last ten sequences with a confidence index lower than 50% and then of a lower interest. Note that

the chosen simulated signal gathers most of signal peculiarities as a non-white noise, close peaks,

and low amplitude ones in different frequency bands. The proposed method succeeds in detecting

the 7 signal components with a high confidence (100 %) and a very low p-value.

This example shows the interest of the proposed multi-estimator method which is able to spot-

light the true signal spectral structures and to play down the importance of other detected peaks

thanks to a confidence attribute got from the results of several spectral estimators. For example,

when using a Welch estimator with Hanning or Blackman windows, estimators 2 and 3 of Fig. 13,

the peak at frequency 0.42 would be classified as a NB. The fusion strategy helps to adjust this

conclusion by classifying it as a SW with a high confidence index (see Table 2). It is important to

mention that the proposed methoddoes not need to set a priori thresholds and is able to detect

all peaks whatever their energy and whatever the color of the noise. The detection performance is

that of the set of the chosen methods, and not of one of them. Another example of strategy results

on a different simulated signal can be found in [8].

7.2. The acoustic noise of a domestic heat pump

In this Section the proposed method is applied on a real-world signal in order to help for the

acoustic study of a domestic heat pump polluting the neighborhood. Fig. 15 presents a zoom

on the results obtained by the five selected spectral estimators on one recorded acoustic signal

at the middle of the day. For sake of simplicity, the color legend which was given in Fig. 13 is

directly detailed for each detected peak. This particular zoom reinforces the idea that choosing a

specific spectral analysis would induce conclusions that are for sure to be smoothed by considering

several different spectral estimators. For example, the peak at 1,041 Hz is detected by all the five

estimators with a very low p-value but three times as a SW and twice as a NB. Moreover, a peak

is detected around 1,015 Hz by the three first analysis but not by the two last ones, while another

peak is detected around 1,078 Hz by the two last Blackman-Tukey estimators while the three other

ones do not detect it. These results have been positively validated by experts in acoustics.

This strategy has been applied to several real-world signals. Fusion results on a hydraulic noise of

an oil station can be used to identify vibrations induced by this noise [7]. Once again, as for the
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previous simulated signal, this example highlights the interest of the approach.

7.3. Towards a surveillance tool

To go further, this spectral analysis and fusion strategy can be helpful in maintenance for the

surveillance of complex machines. Only to illustrate this purpose, the noise of the heat pump, that

was accused by neighborhood to produce harmful noise, has been recording twice, one in the middle

of the day, the signal analysed in the previous Section, and a second one in the middle of the night.

Analytical fusion results can be computed for each signal, which can be directly used for a tracking

of the frequencies. For a graphic view of the results, Fig. 16 displays the frequency attributes of

the detected sequences in each fusion. For sake of clarity, all detected sequences are represented,

whatever their class and p-value, the color scale being linked to their amplitude attribute. This

allows to compare immediately the spectral structure of both signals and to highlight the increase

in the number of peaks of the signal recorded during the night. Moreover, these adding peaks have

also much higher power, within an harmonic structure, at frequencies sensitive to human hearing,

all this being the signature of the harmful noise the neighborhood was complaining about. For

further insight of a surveillance tool, see [26] where an automatic time-frequency tracking method

is proposed.

8. Conclusion

In a context of longtime stationary processes, at least several hundred of samples and more often

several thousand, embedded in non-white Gaussian noises of unknown variance and composed of

several hundred of spectral structures, this paper presents a new data-driven approach in order to

automatically detect and characterize the spectral structures from spectra estimated by Fourier-

based estimators. The core idea is to apply a statistical hypothesis testing in the frequency domain.

To that end, based on a simple generic model, an approximation of the probability density function

of the estimated PSD is derived whatever the window and the overlap and taking into account

an estimation of the noise spectrum. Indeed, noise being non-white, noise spectrum estimation is

carried through nonlinear filters. Without a priori hypothesis on the signal except the Gaussianity

of the additive noise, a p-value is used to give a measure of a strength of evidence of a spectral

structure against the noise-only hypothesis. Applying this test for all local maxima of the estimated

PSD allows the detection of the number of relevant spectral structures with a level of confidence
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determined by this p-value. A specific least square approach refines the frequency and amplitude

estimates of the so detected structures and provides a characterization of their spectral shape

relatively to the oversampled spectral window of the used PSD estimator. These attributes are

helpful for mapping the detected structures in an original feature space, defined by a local signal

to noise ratio and the quadratic error with the spectral window. A classification step enables then

the labelling of each structure according to its signal source (sine wave, narrow band or noise). In

order to avoid the choice of a spectral estimator and of an ineluctable compromise, this detection

and classification approach is applied on a set of estimators taking advantages of all of their specific

properties and allowing the definition of a confidence index. A last fusion step outputs a complete

attribute vector referred to as identity card for each detected spectral structure and ready to use

in a decision-making process.

A key idea of this data-driven approach is that all parameters are automatically set up according to

the input data and the chosen spectral estimators without any other a priori knowledge. The output

as identity cards can be directly used for physical interpretation or as digital input of a diagnostic

system. This approach is free from spectrum display and does not need a priori knowledge upon

frequency bands as the usual methods in vibration analysis for example. This paper shows the

analysis of acoustic measures of a domestic heat pump and the output directly yields a complete

digital spectral description of spectra. Users have only to conclude about the links of the detected

structures to the physical phenomena helped with a comprehensive list of attributes.

Based on this strategy, additional works have been developed in order to group harmonic families

and sidebands [27], to associate detected structures to system kinematic when available [28] and

to develop a surveillance tool [26], that has been succesfully applied for an early detection and an

exact localisation of a mechanical failure in an onshore wind turbine [25] .

Appendices

A. Normalized variance for Welch and Blackman estimators

Given that spectral windows and variance for Fourier-based estimators are often mentioned in

this paper, this appendix recalls the equations in the general case for the two main estimators,

Welch and Blackman-Tuckey. The spectral window denoted W (ν) is defined as in (9). The time
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effective window, denoted w[m], is such that DFT(w[m]) = W (ν), where DFT denotes discrete

Fourier transform.

For a Welch estimator [29], the signal x[k] is split up into Nseg segments of sample size KWelch ≤ K,

overlapping by D samples with D < K, and weighted by any window. In this case, the normalized

variance of γ̂x (ν), denoted varnWelch, as a function of the time effective window, denoted gWelch[m],

is

varnWelch =
1

Nseg

Nseg−1∑
n=1−Nseg

(
1− |n|

Nseg

)
g2Welch[nD]

g2Welch[0]
.

Special cases:

• if Nseg = 1, then varnWelch = 1,

• for Nseg without overlapping, D = 0 and varnWelch = 1/Nseg.

For a Blackman-Tukey estimator [30], the autocorrelation function of x[k] is weighted by any

window over 2KBT−1 samples, with 2KBT−1 ≤ K. In this case, the normalized variance of γ̂x (ν),

denoted varnBT, as a function of the time effective window, denoted gBT[m], is

varnBT =
1

K

KBT−1∑
n=−KBT+1

K

K − |n|
g2BT[n].

B. Local signal to noise ratio as a function of the statistical test

It is of interest to express the statistical test T (ν) defined in (10) according to the local signal to

noise ratio SNR` defined in (22). Considering that the statistical test is applied only to frequencies

at the local maxima of γ̂x (ν),

for ν ∈M =
{

max
ν

γ̂x (ν)
}
, γ̂x (ν) = γmaxi =

A2
i

4

1

BeTs
,

with Ts the sampling period and Be the noise equivalent bandwidth defined in (24). The noise

estimation is assumed to be unbiased (see Section 3.1), therefore

for ν ∈M =
{

max
ν

γ̂x (ν)
}
, γ̃n (ν) = σ2i .

Hence,

T (ν) =
γ̂x (ν)

γ̃n (ν)
=

A2
i

4σ2i

1

BeTs
.
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Using (22) and writing the last equality in dB scale lead to

SNR` = 10 log [BeTsT (ν)] ,

where the product BeTs is a well-known quantity to characterize a Fourier method.
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Figure 1: Estimated probability density function (PDF) of a Blackman-Tukey spectral estimator (blue solid line)
compared to its corresponding χ2

r approximation (red dashed line) with r = 2.55

.
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Figure 2: Estimated probability density function (PDF) of the test statistics in the case of a Blackman-Tukey spectral
estimator (blue solid line) compared to its corresponding Fr,rMn distribution (red dashed line), with r = 2.55 and
Mn = 29

.
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Figure 3: Definition of a spectral structure γi (in red) with a maximum γmaxi at frequency νmaxi as a portion of
the estimated PSD between frequencies ν−i and ν+i , such that PSD values at these frequencies equal the local noise
variance σ2

i (in blue) corresponding to the mean noise PSD between two successive local minima at frequencies νmini

and νmini+1 around this spectral structure.
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Figure 4: Monte Carlo simulations (50 runs) for a SW signal and a NB signal embedded in an additive Gaussian noise
(signal to noise ratio at the upper right of each plot): each symbol corresponds to a detected peak, using a Welch
estimator on the whole signal (one segment of K = 10000 samples) with a Blackman window, r = 2 and Mn = 81,
the red squares are the SW ones, the green triangles, the NB ones, the rest the NP ones.
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Figure 5: SNR` histograms on NP (left black) and signal peaks (SW and NB, right red) of simulated signals embedded
in an additive Gaussian noise using Welch PSD estimation with Hanning window, SNR from 30 dB to -10 dB for SW
and from 30 dB to 5 dB for NB, 50 signal realizations of 10000 samples per SNR value.
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Figure 6: SNR` histograms on NP (left black) and signal peaks (SW and NB, right red) of simulated signals embedded
in an additive Gaussian noise using Welch PSD estimation with Hanning window, at very low SNR, -20 dB for SW
and -10 dB for NB, 50 signal realizations of 10000 samples per SNR value.
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Figure 7: −3dB error histograms on SW (left red) and NB (right green) simulated signals embedded in an additive
Gaussian noise using Welch PSD estimation with Hanning window, SNR from 30 dB to 0 dB, 50 signal realizations
of 10000 samples per SNR value.
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Figure 8: Feature space mapping of the (SNR`, e−3dB) plane into 5 classes.
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Figure 9: estimatorquality properties (p,B-3dB, Bs, r,SL,∆SNR) of different estimators: a Blackman-Tuckey estima-
tor using a biased estimate of the autocorrelation and a Blackman temporal window (BTb + Blackman), a Welch
estimator using a Blackman temporal window (Welch + Blackman), a Welch estimator with a Hanning temporal
window (Welch + Hanning), a Blackman-Tuckey estimator using an unbiased estimate of the autocorrelation with
a Blackman temporal window (BTu + Blackman), a Blackman-Tuckey estimator using an unbiased estimate of the
autocorrelation with a Hanning temporal window (BTu + Hanning). The first grey diagram defines the different axis
scales.
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Figure 10: Global scheme of the proposed multi-estimator approach.
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Figure 11: Detection result on the simulated signal described in Table 1 for Welch PSD estimation with Hanning
window (r = 2 and Mn = 37): detected peaks are colored in red, yellow, green or cyan depending on their associated
p-value, while the continuous black line along the PSD represents the noise PSD estimation.
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Figure 12: Classification result on the noisy signal described in Table 1 for Welch PSD estimation with Hanning
window (r = 2 and Mn = 37): classified peaks have a colored bar corresponding to different classes, as indicated.
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Figure 13: Results of detection and classification on signal described in Table 1 for the five selected spectral estimators:
the true frequency values of the seven sine waves are spotted with black arrows.
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Figure 14: Graphic view of the fusion results on simulated signal described in Table 1: the 19 sequences are plotted
as a function of confidence index, p-value and SNR`: red “+” for high confidence and low p-value, green “o” for high
confidence but higher p-value, black “x” for low confidence.
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Figure 15: Results of detection and classification on a domestic heat pump acoustic signal.
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Figure 16: Proposed method in a comparative objective for the monitoring of a domestic heat pump acoustic signal
recorded in the middle of the day (below) and in the middle of the night (above). Plot of the frequency attribute of
the detected sequences, color scale being the amplitude attribute.
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Table 1: Parameters of the sine signal with additive non-white ARMA noise.

Normalized frequencies Amplitudes Local signal to noise ratios (dB)

0.07 1.2 -20.9
0.10 5 -7.2
0.11 5 -6.1
0.19 2 -6.6
0.32 10 4.
0.41 0.8 -14.5
0.42 0.9 -13.2

ARMA noise parameters
AR parameters: {1,−1.3552, 1.228,−0.662, 0.25}
MA parameters: {1,−0.9, 0.81}
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Table 2: Fusion results on simulated signal described in Table 1: display of 8 attributes of the final identity cards.

Frequency Amplitude SNR` SNR+ Rel. Bandwidth p-value Class Confidence

ν̃max A (dB) (dB) B̃ p0 C CI
(22) (27) (33) (12) (31)

0.32 9.78 4.93 32.66 1.29 4.28E-103 SW

100%

0.11 5.17 -4.43 24.9 1.04 3.51E-44 SW
0.19 1.92 -6.34 22.78 0.89 2.48E-36 SW
0.42 0.86 -9.04 19.29 1.29 4.42E-28 SW
0.1 5.11 -8.35 20.99 1.04 7.50E-28 SW
0.41 0.84 -13.95 14.09 0.86 1.13E-19 SW
0.07 1.63 -21.42 7.92 0.86 3.98E-08 NB

0.0587 1.00 -23.29 4.75 0.86 7.91E-05 NB/NP
80%

0.1557 0.19 -23.64 5.70 0.86 3.48E-04 NB/NP

0.1829 0.21 -24.81 4.53 1.5 8.56E-20 NB

40%

0.1257 0.56 -20.22 7.50 1.19 5.01E-06 SW/NP
0.3863 0.45 -22.33 5.39 2.38 2.88E-05 NB/NP
0.3343 0.56 -24.06 5.27 1.19 3.32E-05 NB/NP
0.3063 0.44 -23.68 5.65 0.86 6.36E-05 NB/NP
0.3666 0.49 -21.98 6.35 1.19 1.09E-04 NB/NP
0.448 0.27 -22.69 5.64 1.19 9.99E-04 NB/NP

0.094 0.53 -21.47 6.25 0.86 1.92E-05 NB/NP
20%

0.4159 0.23 -24.66 4.67 0.86 9.44E-05 NB/NP
0.3556 0.31 -23.64 5.70 0.86 2.13E-04 NB/NP
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