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Uniform decomposition of probability measures:

quantization, classification, rate of convergence.
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Abstract

The study of finite approximations of probability measures has a long history. In (Xu
and Berger, 2017), the authors focus on constrained finite approximations and, in particular,
uniform ones in dimension d = 1. The present paper gives an elementary construction of a
uniform decomposition of probability measures in dimension d ≥ 1. This decomposition is then
used to give upper-bounds on the rate of convergence of the optimal uniform approximation
error. These bounds appear to be the generalization of the ones obtained in (Xu and Berger,
2017) and to be sharp for generic probability measures.
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I Introduction

Finding a good finite decomposition of a given probability measure ρ on R
d is an extensively

studied problem. Quantization is concerned with the best finitely supported approximation of a
probability measure (empirical measures being especially studied for classification). The origins
come from signal processing (optimal signal transmission through discretization) [1] but the range
of application widened since then (pattern recognition [5], numerical analysis [9], economics [10]).
The goodness of the approximation is usually measured in terms of an Lp-Wasserstein distance
Wp and numerous results are concerned with the rate of convergence of ep,n(ρ) := infWp(ρ

(n), ρ)
to 0 where the infimum is taken with respect to the set of measures ρ(n) supported by at most n
atoms [7].

Random empirical quantization has recently attracted much attention [2, 3, 6] in particular for
its application to mean-field interacting particle systems. In that case, the approximating measure
is R(n) = n−1

∑n
k=1 δXk

where the Xk’s are i.i.d. random variables distributed according to ρ
and the main results are concerned with rate of convergence of E

[

Wp(R
(n), ρ)

]

or concentration

inequalities of the random variable Wp(R
(n), ρ).

In that context, when the approximating measure is µ(n) = n−1
∑n

k=1 δxk
with deterministic

xk’s, we use the term deterministic empirical quantization. This kind of approximation is used for
instance when considering mean-field limits with spatial covariates used to weight the interactions
between particles [4]. The case of dimension d = 1 is extensively adressed in [11] (the study
highly relies on the connection between Wasserstein distances and the quantile function which is
specific to d = 1). The aim of the present paper is to generalize some of the results stated in
[11] to the general case d ≥ 1. The main result gives sharp bounds on the rate of convergence of
ẽp,n(ρ) := infWp(µ

(n), ρ) to 0 where the infimum is taken with respect to the set of deterministic
empirical measures µ(n) supported by n atoms. The rate of convergence depends on the dimension
d and the order p and shows a transition: it is either the same as for standard quantization (when
Lebesgue measure is harder to approximate) or strictly worse (when disconnected measures are
harder to approximate).

The paper is organized as follows. Definitions and notation are given in Section II with a
list of previous results found in the literature. Then, Section III contains an elementary uniform
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decomposition of probability measures (Theorem III.2) which is used to obtain upper-bounds on
deterministic empirical quantization rates (Theorem III.3) and uniform classification rates (Corol-
lary III.6).

II Notation and previous results

The space R
d is equipped with the maximum norm ||.|| and the balls centered at 0 are denoted

by Br := B(0, r) = [−r, r]d for all r ≥ 0. The diameter of a subset A of R
d is denoted by

Diam(A) := supx,y∈A ||x− y||. The space of every Borel measures (resp. probability measures) on

R
d is denoted by M(Rd) (resp. P(Rd)). For ν in M(Rd), Supp(ν) and |ν| := ν(Rd) respectively

denote the support and the mass of the measure ν. For a collection of n positions x1, . . . , xn in
R

d, we denote its associated empirical measure by µ(n) := n−1
∑n

k=1 δxk
.

For every p ≥ 1, the set of probability measures ρ such that
∫

||x||pρ(dx) < +∞ is denoted by
Pp. Then the Wasserstein distance of order p is denoted by Wp and defined by, for all ρ and µ in
Pp,

Wp(ρ, µ) :=

(

inf
π

∫

(Rd)2
||x− y||pπ(dx, dy)

)1/p

,

where the infimum is taken with respect to every couplings π of the two measures ρ and µ.

II.1 State of the art

Given ρ in Pp the optimal quantization error of order p is defined as

ep,n(ρ) := infρ(n)Wp(ρ
(n), ρ),

where the infimum is taken with respect to the set of measures ρ(n) supported by at most n atoms.
The literature dealing with the rate of convergence of ep,n(ρ) to 0 is extensive [7, 8, 12, 13]. One
of the most celebrated result is due to Zador [7, Theorem 6.2]. A consequence says that if ρ is in
Pq for some q > p and admits a non trivial absolutely continuous part then ep,n(ρ) goes to 0 as
n−1/d.

Given ρ in Pp the random empirical quantization error of order p is given by

Ep,n(ρ) := Wp(R
(n), ρ),

where R(n) = n−1
∑n

k=1 δXk
is the empirical measure associated with the i.i.d. random variables

Xk which are distributed according to ρ. Let us mention here a result stated in [6, Theorem 1]:

if ρ is in Pq for some q large enough then E [Ep,n(ρ)
p]

1/p
goes to 0 as n−1/2p or n−1/d depending

on the values of p and d (to be precise, an additional logarithmic term appears at the transition
p = d/2). The rate n−1/2p comes from the fluctuations in the law of large numbers and the rate
n−1/d comes from standard quantization as stated above.

Given ρ in Pp the optimal deterministic empirical quantization error of order p is given by

ẽp,n(ρ) := infµ(n)Wp(µ
(n), ρ),

where the infimum is taken with respect to the set of deterministic empirical measures µ(n) sup-
ported by n atoms. Up to our knowledge, the rate of convergence of ẽp,n(ρ) is known in dimension
d = 1 only and reads as follows.

Theorem II.1 ([11, Theorem 5.20 and Remark 5.21]). Let p ≥ 1 and d = 1.

(i) If ρ ∈ Pq with q > p then ẽp,n(ρ) = o(n1/q−1/p).

(ii) If Supp(ρ) is bounded then the rate of convergence of ẽp,n(ρ) is upper-bounded by n−1/p.
Furthermore, if the support of ρ is disconnected then the rate n−1/p is sharp.

Combining the results of the standard quantization and deterministic empirical quantization
we expect that for some generic ρ with bounded support in dimension d ≥ 1, the rate of ẽp,n(ρ)
is given by max(n−1/d, n−1/p) (which is sharp when Supp(ρ) is disconnected). This is what is
shown in Theorem III.3 below (up to a logarithmic term at the transition p = d). Moreover, the
generalization of Theorem II.1.(i) to d ≥ 1 is obtained in Corollary III.5.
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III Main results

This section begins with a technical lemma which is used to control diameters in our construction
of a uniform decomposition of probability measures (which is then given in Theorem III.2).

Lemma III.1. Let r ≥ 0, n ≥ 1 and ν be in M(Rd) with support included in Br and total mass
|ν| ≥ 1/n. There exists a subset A of Br such that ν(A) ≥ 1/n and Diam(A) ≤ 4r(n|ν|)−1/d.

Proof. Consider for any r′ ≥ 0 the maximal mass over balls of radius r′, namely

m(r′) = sup
{

ν(B(x, r′)) : x ∈ R
d
}

.

We prove by contradiction that

m(r⌊(n|ν|)
1/d

⌋−1) ≥ 1/n. (1)

Assume that the ν-mass of any ball of radius equal to r⌊(n|ν|)
1/d

⌋−1 is less than 1/n. Yet there

exists a covering of the ball [−r, r]d into ⌊(n|ν|)
1/d

⌋d disjoint smaller balls, each one of radius equal

to r⌊(n|ν|)
1/d

⌋−1 (the balls are cubes). This implies

|ν| < ⌊(n|ν|)1/d⌋dN−1 ≤ ((n|ν|)1/d)dn−1 = |ν|

yielding a contradiction.
Hence we have proved that we can find a subset A such that ν(A) ≥ 1/n and Diam(A) ≤

2r⌊(n|ν|)
1/d

⌋−1. The stated result then follows from

r⌊(n|ν|)
1/d

⌋−1 ≤ 2r(n|ν|)−1/d

(treat separately the two cases (n|ν|)
1/d

≥ 2 and (n|ν|)
1/d

< 2).

Theorem III.2. Let r ≥ 0 and ρ be in P(Rd) with support included in Br. For all n ≥ 1, there
exist ρ1, . . . , ρn in M(Rd) and A1, . . . , An subsets of Br such that ρ =

∑n
k=1 ρk and

∀k = 1, . . . , n, |ρk| =
1

n
, Supp(ρk) ⊂ Ak and Diam(Ak) ≤ 4rk−1/d.

The proof is based on an iterative construction: each iteration relies on Lemma III.1.

Proof. Applying Lemma III.1 to ρ gives the existence of a subset An such that ρ(An) ≥ 1/n and
Diam(An) ≤ 4rn−1/d. Then, we define the measure

ρn :=
n−1

ρ(An)
ρ1An

.

In particular, |ρn| = 1/n and Supp(ρn) ⊂ An. Applying Lemma III.1 to ρ̃ = ρ− ρn (its total mass
is (n − 1)/n) gives a subset An−1 such that ρ(An−1) ≥ 1/n and Diam(An−1) ≤ 4r(n − 1)−1/d.

Similarly we define ρn−1 := n−1

ρ̃(An−1)
ρ̃1An−1. Finally, applying n times the iterative step ends the

proof.

The decomposition stated above is then used to control the rate of convergence of the optimal
deterministic empirical quantization error ẽp,n(ρ) by exhibiting a particular empirical measure with
controlled approximation error. The bounded case is treated in Theorem III.3, the unbounded
case in Corollary III.5 and finally an application to the classification issue (when ρ is an empirical
measure) is given in Corollary III.6.

Theorem III.3. Let r ≥ 0 and ρ be in P(Rd) with support included in Br. For all n ≥ 1, there
exist x1, . . . , xn in R

d, with associated empirical measure µ(n) = n−1
∑n

k=1 δxk
, such that for all

p ≥ 1,
Wp(µ

(n), ρ) ≤ 4rfp,d(n),

where

(i) if p < d, then fp,d(n) := ( d
d−p )

1/pn−1/d;

(ii) if p = d, then fp,d(n) := (1+lnn
n )1/d;
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(iii) if p > d, then fp,d(n) := ζ(p/d)n−1/p, where ζ is the Zeta Riemann function.

Remark III.4. The rates show a transition between the rate for the approximation of a density
n−1/d (standard quantization) and the rate for approximation of measures with disconnected support
n−1/p (the simplest example being the sum of two Dirac masses, the interested reader is referred
to [11, Remark 5.21.(ii)]). At the transition, our construction gives a rate with an additional
logarithmic term. This may be an artefact of our too simple construction : this logarithmic term
does not appear in dimension 1 for measures with bounded support - see [11, Theorem 5.20.(ii)].
However let us mention that such additional logarithmic term may appear for unbounded measures
as highlighted in [11, Example 5.8].

Proof. Let ρ1, . . . , ρn and A1, . . . , An be respectively the measures and the subsets of Br given by
the decomposition of Theorem III.2. For each k, let xk denote the center of Ak and let µ(n) denote
the associated empirical measure. We use the canonical coupling associated with the decomposition
of ρ into the ρk’s to control the Wasserstein distance. Namely,

Wp(µ
(n), ρ)p ≤

n
∑

k=1

Wp(n
−1δxk

, ρk)
p ≤ n−1

n
∑

k=1

Diam(Ak)
p ≤

(4r)p

n

n
∑

k=1

k−p/d.

If p > d then the sum is bounded by ζ(p/d) < +∞ and we obtain (iii). If p < d, then the sum is
bounded by

∫ n

0 t−p/ddt = n1−p/d/(1 − p/d) which gives (i). If p = d, then the sum is bounded by
1 + lnn yielding (ii).

Corollary III.5. Let q ≥ 1 and ρ ∈ Pq. For all n ≥ 1, there exist x1, . . . , xn in R
d, with associated

empirical measure µ(n), such that for all p < q,

Wp(µ
(n), ρ) = o(fp,d(n)

1−p/q)

where fp,d(n) is defined in Theorem III.3.

Proof. We use a truncation argument to reduce to the case where ρ is compactly supported. Let
r > 0 be a truncation level to be chosen later and define the measure ρ(r) by

ρ(r)(dx) := ρ(dx)1Br
(x) + (1− ρ(Br)) δ0(dx).

By the canonical coupling, we have

Wp(ρ, ρ
(r))p ≤

∫

||x||>r

||x||pρ(dx).

Yet,
∫

||x||>r ||x||
pρ(dx) ≤ Cq(r)r

p−q with Cq(r) :=
∫

||x||>r ||x||
qρ(dx) which goes to 0 at r → +∞ by

assumption. Without loss of generality one can replace Cq(r) by some C(r), satisfying C(r) ≥ 1/r
and limr→+∞ C(r) = 0, and write the upper-bound

Wp(ρ, ρ
(r)) ≤ C(r)1/pr1−q/p. (2)

By Theorem III.3, for all r ≥ 0, there exist empirical measures µ(n,r) such that

Wp(µ
(n,r), ρ(r)) ≤ 4rfp,d(n).

By the triangular inequality,

Wp(µ
(n,r), ρ) ≤ g(r) := C(r)r1−q/p + 4rfp,d(n).

To optimize g(r), let us choose r̃ = r̃(n) := fp,d(n)
−p/q since it satisfies r̃1−q/p = r̃fp,d(n) and then

consider r(n) := C(r̃)r̃ to compute

g(r(n)) ≤ C(C(r̃)r̃)C(r̃)1−q/pfp,d(n)
1−p/q + 4C(r̃)fp,d(n)

1−p/q.

Finally, since limn→+∞ r̃(n) = +∞ and limr→+∞ C(r) = 0, we easily end the proof.

Corollary III.6. Assume that N = cn with c, n in N. For any x1, . . . , xN in R
d, there exist

C1, . . . , Cn disjoint subsets of indices of {1, . . . , N} such that

4



• they form a uniform classification of x1, . . . , xN , namely the cardinal Card(Ck) = c for all
k = 1, . . . , n;

• each class is controlled, namely for all k = 1, . . . , n,

Diam(x(Ck)) ≤ 4rk−1/d,

where x(Ck) := {xi, i ∈ Ck} and r = maxi=1,...,N |xi|.

In particular, there exist x1, . . . , xn in R
d such that

1

N

N
∑

i=1

|xi − xk(i)| ≤ 4rf1,d(n), (3)

where k(i) ∈ {1, . . . , n} is such that xi ∈ Ck(i) and f1,d is given by Theorem III.3.

Proof. The proof of the existence of the uniform classification C1, . . . , Cn is based on an iterative
application of Lemma III.1 similar to the one developed in the proof of Theorem III.2 and is
therefore omitted.

The proof of (3) is similar to the end of the proof of Theorem III.3.
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