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Motion Estimation in Echocardiography Using
Sparse Representation and Dictionary Learning
Nora Ouzir , Student Member, IEEE, Adrian Basarab, Member, IEEE, Hervé Liebgott, Member, IEEE,

Brahim Harbaoui, and Jean-Yves Tourneret , Senior Member, IEEE

Abstract—This paper introduces a new method for cardiac
motion estimation in 2-D ultrasound images. The motion esti-
mation problem is formulated as an energy minimization, whose
data fidelity term is built using the assumption that the images
are corrupted by multiplicative Rayleigh noise. In addition to
a classical spatial smoothness constraint, the proposed method
exploits the sparse properties of the cardiac motion to regularize
the solution via an appropriate dictionary learning step. The
proposed method is evaluated on one data set with available
ground-truth, including four sequences of highly realistic sim-
ulations. The approach is also validated on both healthy and
pathological sequences of in vivo data. We evaluate the method
in terms of motion estimation accuracy and strain errors and
compare the performance with state-of-the-art algorithms. The
results show that the proposed method gives competitive results
for the considered data. Furthermore, the in vivo strain analysis
demonstrates that meaningful clinical interpretation can be
obtained from the estimated motion vectors.

Index Terms—Cardiac ultrasound, dictionary learning, motion
estimation, sparse representations.

I. INTRODUCTION

CARDIOVASCULAR diseases have become the top cause
of death in industrialized countries. They are responsible

for up to 48% of the total number of deaths, and are expected
to reach about 25 millions a year by 2030 [1]. It is therefore of
critical importance to improve techniques of cardiac function
assessment, thus facilitating diagnosis and treatment of these
diseases. There are a variety of methods used to evaluate
the health of the heart. Among the noninvasive techniques,
medical imaging is used to assess its mechanical action by
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means of various modalities such as magnetic resonance imag-
ing (MRI) and ultrasound imaging (UI). However, because of
its relatively high temporal resolution, UI is more adapted to
the rapid motion of the heart. In addition, it presents advan-
tages such as low budget requirements and reduced discomfort
for the patient. This makes UI, particularly echocardiography,
the most widely used modality in cardiology. Furthermore,
the acquired ultrasound (US) images provide information that
is essential for cardiac function evaluation. US images can
be exploited either through direct visualization or using post-
processing methods that extract valuable qualitative and mea-
surable features. In this context, 2D automatic cardiac motion
estimation as well as the associated strain measurements
have been proved to be efficient tools for the diagnosis of
cardiovascular diseases [2]–[6].

Due to the well established clinical feasibility and advan-
tages of 2D echocardiography, and despite the arrival of new
technologies such as 3D imagery [7]–[9] (still regarded as
an experimental method [10], [11]), the development of new
2D cardiac motion estimation methods is still an active area
of research [12]–[15]. Also, note that 2D echocardiography is
still more routinely used than 3D in clinical practice. In this
context, many challenges have to be resolved in order to
achieve the objective of reliable cardiac function assessment.
For example, there is still a need for deriving accurate and
reproducible quantitative measures of motion to overcome the
current state of inter-vendor variability of left ventricular (LV)
longitudinal strain measurements. Furthermore, the assessment
of the cardiac function is still limited to global measure-
ments [11] and undergoes great amounts of smoothing, causing
loss of clinically valuable local information [10]. An accurate
local analysis of the cardiac deformation has a major impact
on the diagnosis, treatment choice and timing of surgical
interventions in many clinical cases, e.g., ischemia, valvular
heart disease and early detection of adverse cardiac effect
of chemotherapy in oncology. Therefore, new motion esti-
mation strategies that limit the loss of structural and local
information are needed in the process of endorsing regional
strains [10].

Most of the techniques used for cardiac motion estimation
fall into three main categories: optical flow, speckle tracking
and elastic image registration. Optical flow algorithms are
based on differential methods and use the over time pixel
intensity constancy assumption [16]–[18]. They provide a
dense estimation of the motion field by means of the entire
image [18] or by a local window analysis of spatial and



temporal gradients [19]. However, because of the intensity
preservation assumption and their local nature, these methods
are sensitive to noise and fail at estimating large displacements.
Consequently, the use of a multi-resolution scheme or a block-
matching initialization is necessary for the methods relying
on optical flow [19]–[21]. The second category of cardiac
motion estimation methods consists in matching blocks of
two consecutive images using a similarity measure. These
so-called speckle tracking algorithms use the image noise
as a spatial marker for motion and rely on its statistical
distribution to build a similarity measure [22]. The most
common similarity measures include cross-correlation (CC)
[23], [24], sum of absolute differences (SAD) [25] and sum
of squared differences (SSD) [26]. Finally, in elastic regis-
tration, the images are related through a non-rigid geometric
transformation, which can be parametric, e.g., represented on a
B-spline basis [27], [28], or discrete [29]. In contrast with
classical optical flow algorithms, elastic image registration
directly leads to a similarity measure adapted to the image
characteristics.

Motion estimation is a difficult task because of its ill-posed
nature, i.e., it generally does not have a unique solution.
In order to tackle this issue, additional constraints are often
added to regularize this problem. These constraints represent
a priori knowledge about the behaviour of motion and force
the estimation to narrow down to the type of displacements
expressed by this information. In multiple motion estimation
schemes, the ill-posedness is overcome by introducing a prior
in the form of spatial or temporal smoothness [30], [31].
Regularization can also be achieved by using a parametric
motion model. Depending on the problem at hand, these mod-
els limit the motion to be, e.g., rigid, or affine [32]. In cardiac
motion estimation, a common regularization is the B-spline
parametrization [27], [28]. In this approach, the transformation
is limited by the presence of control points and smoothness
is added due to the B-spline basis function. Regularizations
based on radial basis functions have also been used in [33]
and [34]. In many other works [19], [21], motion patterns of
the cardiac muscle are described by an affine transformation
accounting for translation, rotation, expansion, compression,
and shear.

Other types of regularizations, which have gained an
increasing interest over the last years, are based on sparse
representations. In recent works [35]–[39], sparsity has been
used successfully to regularize a wide variety of problems by
exploiting the sparse nature of signals or images. In partic-
ular, one way of exploiting sparsity consists in expressing
the unknown signal/image as a linear combination of a few
elements of a dictionary. Numerous predefined dictionaries,
which use off-the-shelf bases, exist in the literature, e.g.,
based on wavelets, discrete cosine transforms (DCT), and
Fourier decompositions. However, recent works have shown
that dictionaries learned from the data itself can outperform
the predefined ones [40]. The methods used to learn such
data-driven dictionaries are called dictionary learning (DL)
methods. Aside from various signal processing applications,
a few recent attempts to use sparse representations and DL
for motion estimation have been investigated in the literature.

Shen and Wu [41] added a sparsity prior to an optical flow
estimation problem and used the wavelet basis for the sparse
coding step. This approach was also considered in [42], where
the wavelet basis was replaced by a learned motion dictionary
and a multi-resolution scheme was adopted. In cardiac UI,
appearance dictionaries can also be learned from two distinct
cardiac regions for contour tracking [43]. A similar strategy
was considered in [44] for brain segmentation in CT images.
Finally, a dictionary of features was learned in [45] and an
SSD measure was used for the registration of cardiac MRI.

In this work, we present a new method for cardiac motion
estimation in 2D ultrasound images. The proposed method
combines a specific similarity measure with spatial smoothness
and sparse regularizations, exploiting jointly the statistical
nature of B-mode images, the smoothness and the sparse
properties of cardiac motion. The data fidelity term considered
in this work is based on a multiplicative Rayleigh noise
model [46].1 The spatial smoothness is ensured by a regular-
ization based on the gradient of the motion vector. Moreover,
we promote the use of a regularization exploiting a sparse
representation of motion based on DL using patterns of cardiac
motion. In the sparse coding step associated with motion
estimation, the dictionaries are learned using the ground-truth
displacements of realistic simulations.

The paper is organized as follows. Section 2 briefly sum-
marizes the theory related to sparse representations and DL.
Section 3 formulates the cardiac motion estimation prob-
lem and introduces the proposed estimation strategy based
on a sparse regularization. Some additional implementation
details are provided in Section 4. Simulation results are
presented and discussed in Section 5. We compare the
performance of the proposed method to results obtained
with three state-of-the-art algorithms: (i) the conventional
block-matching method [47] using the normalized cross-
correlation (NCC), (ii) an approach based on a monogenic
phase similarity measure and an affine motion model [21]
and (iii) an elastic registration method with a similarity mea-
sure based on a Rayleigh noise assumption and a B-spline
parameterization [28]. Strain curves resulting from highly
realistic simulations are also computed and strains of healthy
and pathological subjects are compared using in vivo images.
Concluding remarks are finally reported in Section 6.

II. SPARSE REPRESENTATIONS - DICTIONARY LEARNING

Sparse representations have been shown to be very well
suited to natural images and have thus been used as an
effective tool for several image processing tasks [35]–[39].
Motivated by this success, it is argued in [41] that the sparsity
assumption also holds for motion fields. In fact, motion fields
can be seen as images with generally well structured and
overall simpler patches than those associated with natural
images. In the case of cardiac motion, sparsity still holds
since the cyclic motion of the heart usually alternates between
two major phases called diastole and systole (often modeled
locally by simple parametric models such as affine models

1Note that other similarity measures based on optical flow or on different
noise models could be considered as well.



[21], [32]). Motion estimation can be further improved by
using learned sparse models as explained in [42]. These results
tend to favor the use of motion models learned from a training
set tuned to the application at hand contrary to the strategy
studied in [41], which is based on a predefined wavelet
basis.

A. Sparse Representations

The goal of a sparse representation is to express a signal
as a linear combination of a few elements chosen from a
collection of training signals. The underlying assumption is
the redundancy and self-similarity properties of the signal of
interest. Due to the usual dimension of motion fields, this paper
proposes to use a sparse representation for motion patches,
as done for natural images [35], [48], [49]. More precisely,
given an appropriate dictionary D ∈ R

n×q , i.e., a set of
training elements called atoms, which encode patterns of real
motion, a displacement patch u p ∈ R

n is represented by
a weighted linear combination of few training atoms Dα p,
where α p ∈ R

q is a sparse coefficient vector with few
non-zero entries. After considering the noise affecting real
data, the motion vector for a given patch can be written

u p = Dα p + e p (1)

where e p ∈ R
n is the additive noise. A classical way of

exploiting the sparsity of the unknown vector α p is to look
for a solution of (1) with the minimum number of non-zero
coefficients2 [50], i.e., the solution of the problem

min
α p

‖α p‖0 subject to u p = Dα p + e p and ‖e p‖
2
2 < ǫ (2)

where ‖.‖0 is the l0 pseudo-norm, which counts the number of
non-zero elements of a vector, and the constraint ‖e p‖

2
2 < ǫ

is motivated by the fact that the noise has bounded energy.
The solution of (2) is NP-hard. However, this problem can

be solved using algorithms that provide good approximate
solutions in polynomial time. The two main classes of algo-
rithms that have been investigated in the literature are the
greedy algorithms (such as the matching pursuit (MP) [51]
and orthogonal matching pursuit (OMP) [52] algorithms) and
convex relaxation methods, which relax the l0-minimization
problem to an l1-minimization (such as the least absolute
shrinkage and selection operator (LASSO) [53]). The quality
of the approximations provided by these algorithms does not
only depend on the signal itself but also on the chosen set
of atoms, i.e., the dictionary [50]. This means that the choice
of the dictionary is crucial when using sparse representations.
In other words, the dictionary should be adapted to the signal
of interest, i.e., to cardiac motion in this paper.

B. Dictionary Learning

Learning a motion dictionary D ∈ R
n×q consists of a

joint optimization problem with respect to the dictionary D

and the sparse coefficient vectors α p. In practice, the dic-
tionary is learned patch-wise, and thus, constructed as a
sum over all patches of a global motion field u ∈ R

N .

2When n < q, the dictionary is overcomplete. In this case, the solution
of the motion estimation problem is not unique, requiring the definition of
additional constraints.

Assuming that the noise e p ∈ R
n is Gaussian zero-mean

(see [38], [48], [50] for motivations), the DL problem can
be fomulated as follows

min
D,α p

∑

p
‖P pu − Dα p‖

2
2 subject to ∀p, ‖α p‖0 ≤ K (3)

where P p ∈ R
n×N is a binary operator that extracts the

pth patch of size n from u and α p is the corresponding sparse
code, with K its maximum number of non-zero coefficients.
The optimization problem (3) is usually solved by iterating
between two steps. The first one is a sparse coding step,
where the dictionary D is fixed and the optimization is
performed with respect to the coefficients α p . The second
step is the dictionary update step (or learning step), where the
sparse coefficient vectors α p are fixed and the minimization
is conducted with respect to the dictionary D.

Numerous algorithms designed for solving the DL prob-
lem (3) have been investigated in the literature. These algo-
rithms include the K-SVD [48] and the online DL (ODL) [40].
K-SVD solves the sparse coding step with OMP and the
dictionary update is performed column-wise using a singular
value decomposition (SVD). Note that K-SVD is one of the
most popular algorithms, as it has been widely used for image
denoising [35]. Unlike K-SVD, the ODL algorithm has been
proposed to cope with large or dynamically changing training
sets. It uses LASSO for the sparse coding step and an alternate
optimization scheme on gradually augmented subsets of the
training data.

Learning Strategies: The dictionary can be either fixed in
advance, i.e., learned offline from a set of ground-truth motion
data, or learned in an adaptive way from the current estimation,
i.e., using an online scheme. More details about these two
strategies are provided below.

1) Offline dictionary learning: Given a set of ground-truth
data, the motion dictionary is learned and fixed before
the estimation process. This strategy was used for image
denoising in [35], face recognition in [37] and texture
segmentation in [38]. The offline learning supposes that
the training set is adapted to the problem and spans the
different types of motions that might occur during the
estimation. Since the learning process is done only once,
the offline strategy has the advantage of being less time
consuming.

2) Adaptive dictionary learning: This strategy, also known
as online learning, is commonly used in the area of
natural image denoising [35], [36], [39]. Online learning
consists in extracting training patches from the noisy
image itself. Note that the initial dictionary can either
be an offline learned dictionary, a predefined dictio-
nary, or simply a set of random patches extracted from
an initial motion estimate u0, i.e., the result of a first
rough motion estimation. Since the dictionary is jointly
estimated with the motion field, the adaptive learning
strategy is more time consuming. However, it remains
the most appropriate approach in the absence of a
suitable or sufficient training set.

This paper formulates the motion estimation problem in a
general form based on an offline dictionary. However, it would



be also possible to update the dictionary jointly with the
motion field in situations where the set of training data is
not sufficiently rich.

III. MOTION REGULARIZATION BASED ON

A SPARSE REPRESENTATION

A. Motion Estimation Using the ML Method

We consider the estimation of a 2D displacement field
Uk = (ux,k, uy,k)

T ∈ R
N × R

N , along the x and y axes,
between a pair of consecutive frames (rk, rk+1) ∈ R

N × R
N .

In this paper, the problem is written independently for the
horizontal and vertical components of Uk and the subscript k

is omitted for simplicity, so that the considered displacement
vector is equal to u = ux,k or u = uy,k . The maxi-
mum likelihood (ML) approach is a common framework for
the motion estimation problem [28], [54]. It allows us to
incorporate knowledge about the image formation model or
the acquisition process into the formulation of a similarity
measure. According to the ML approach, the estimation of
the motion u between two images rk and rk+1 is achieved
by maximizing the conditional probability of the observation
rk+1 given rk and u denoted as p(rk+1|rk, u). However,
for convenience, the problem is usually reformulated in the
negative log-domain, where the maximization of the likelihood
term is equivalent to the minimization problem

min
u

− ln[p(rk+1|rk, u)]. (4)

The term in (4) is commonly referred to as the data
fidelity term, which expresses the similarity between the
displaced image rk+1 and the reference image rk . In the
following, details about the observation model used to con-
struct the likelihood, and thus the data fidelity term, are
provided.

Observation Model: We consider the problem of cardiac
motion estimation from US B-mode images. These images
are obtained by performing a series of transformations on
the original beamformed radio frequency (RF) data. First,
envelop detection is achieved by the demodulation of RF sig-
nals. In a second step, log-compression is used to give the
final B-mode version of the images. In this paper, we first
express the observation model based on known properties
of US envelop images, then derive the model for B-mode
data. Starting from envelop images, we use the Rayleigh
multiplicative noise model that is widely accepted in US image
processing [46], [55]. For a given sequence of images, motion
is introduced for any pair of consecutive frames using the
following observation model

{

rk(n) = ak(n)s(n)

rk+1(n) = ak+1(n)s(n − u(n))
(5)

for k = 1, . . . , M − 1 and n = 1, . . . , N , where M is the
number of frames, N is the image size and

• rk(n) and rk+1(n) are the envelop image amplitudes at
pixel n for the frames k and (k + 1)

• sk(n) is the unknown noise-free signal corresponding to
the nth pixel of the kth frame

• ak(n) and ak+1(n) are the Rayleigh multiplicative noises
corrupting the nth pixel of the kth and (k + 1)th frames

• u(n) is the unknown (horizontal or vertical) displacement
value of pixel n between the kth and (k + 1)th frames.

In the case of B-mode images, the pixel intensities of a
given image rb are expressed as the log-compressed values
of the envelope image, rb = b log(r) + g, where b and g

are the dynamic range and linear gain constants [28]. The
corresponding observation model is

{

rb,k(n) = b[ab,k(n) + sb(n)] + g

rb,k+1(n) = b[ab,k+1(n) + sb(n − u(n))] + g
(6)

where ab,k(n) = log[ak(n)] and sb(n) = log[s(n)].
Data Fidelity Term: Using (6) we obtain a likelihood term

based on the Rayleigh noise model leading to the following
data fidelity term (see [28], [56] for more details)

Edata(u) = −2d(u) + 2 log[e2d(u) + 1] + cst (7)

where d(u) = 1
b

N
∑

n=1
[rb,k+1(n + u(n)) − rb,k(n)] and

cst = − log
(

2σ 4/b
)

is a constant.
In this work, we consider the simple case of mutually

uncorrelated Rayleigh noises with equal variances, which
corresponds to the CD2 similarity measure proposed in [54].
However, the use of more sophisticated metrics that consider
the temporal correlation between image speckles would be
also possible. Note that this case has been addressed in [28],
where a similarity measure MS2 has been proposed as a more
realistic extension of CD2.

B. Sparse and Spatial Regularizations

As seen in Section I, motion estimation is an ill-posed
inverse problem that requires prior knowledge about the
motion field. In this work, this a priori information is
incorporated into the motion estimation problem through a
regularization term Ereg. Therefore, the problem of estimating
the motion vector u takes the form

min
u

[Edata(u) + Ereg(u)]. (8)

In this paper, we seek to exploit the sparse properties of
cardiac motion fields. Thus, we introduce a term Ereg that
combines two different types of regularization. The first one
expresses the sparsity of the motion field while the second one
exploits a more traditional spatial coherence. More precisely,
the regularization term is formulated as follows

Ereg(u) = λd Esparse(u) + λs Espatial(u) (9)

where (λd , λs ) ∈ R
2 balances the effects of the data fidelity

and regularization terms.
Sparse Regularization: The sparse regularization consists in

finding the motion u that is best described by a few atoms of a
dictionary that contains patterns of either horizontal or vertical
training motions. As mentioned in Section II, this approach
is based on the assumption of redundancy and self-similarity
properties of the motion field. Moreover, the sparse regular-
ization is performed patch-wise, so that each patch of motion
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P pu is constrained to have a sparse representation with respect
to the motion dictionary D, i.e,

Esparse(u) =
∑

p
‖P pu − Dα p‖

2
2 (10)

where α p is the sparse coefficient vector associated with the
pth patch. Note that the interest of the prior (10) has been
previously shown in [42].

Spatial Regularization: The spatial regularization term
expresses the smoothness of the motion estimate. It usually
takes the form Espatial(u) = φ(∇u), where φ is a penalty
function and ∇ is the gradient operator. In this work, we use
φ(.) = ‖ .‖22, which enforces weak spatial gradients on the
two motion components and thus ensures a smooth variation
of the motion field. This is a very common choice that leads
to the following first-order spatial regularization term [57]

Espatial(u) = ‖∇u‖22. (11)

Finally the global regularization term combining the spatial
and sparse priors is

Ereg(u) = λd

∑

p
‖P pu − Dα p‖

2
2 + λs‖∇u‖22. (12)

Note that the above term is computed independently for the
horizontal and vertical motion components ux and u y. The
combination of (7) and (12) results in an original motion
estimation problem exploiting jointly the statistical properties
of the speckle noise, using a Rayleigh noise model, and the
smooth and sparse properties of the cardiac motions with the
spatial smoothness and sparsity constraints (10) and (11).

IV. MOTION ESTIMATION

This section describes the methods proposed for learning the
dictionary before and during motion estimation for the offline
and adaptive learning strategies. The different steps allowing
the final motion field to be estimated are also presented.

A. Offline Dictionary Learning

We start by learning an offline dictionary (see Section II-B)
from a set of training motion fields denoted as u = ut . The
dictionary D is learned from patches of the training set ut by
solving

min
D,α p

∑

p
‖P put − Dα p‖

2
2 subject to ∀p, ‖α p‖0 ≤ K . (13)

In this work, the DL problem (13) is solved using the ODL
algorithm with OMP for the sparse coding step. This choice
is motivated by the fact that it has been shown to give more
accurate estimation results than the K-SVD algorithm and to
be more efficient from a computational point of view [58].
Once the dictionary D has been learned, it is fixed and used
for the motion estimation process described below.

B. Motion Field Estimation

Using the data fidelity and regularization terms detailed
in Section III, the cardiac motion estimation can be formulated
as the following optimization problem

min
α p,u

{

Edata(u) + λd

∑

p
‖P pu − Dα p‖

2
2 + λs‖∇u‖22

}

subject to ∀p, ‖α p‖0 ≤ K (14)

where Edata has been introduced in (7) and the dictionary has
been determined using the method described in Section IV-A.
Since (14) is hard to solve directly, we adopt an alternate
minimization scheme, similar to the half quadratic split-
ting strategy employed in [42] and [49]. For fixed values
of λd and λs , we alternate optimizations with respect to
α p and u. This process is repeated during a few iterations
(typically 4 or 5 [49]) after which the sparsity parameter λd

is increased. Note that when increasing λd , more importance
is attached to the distance ‖P pu − Dα p‖

2
2, which forces the

estimated patches to be close to the atoms of the dictionary.
More details about these two steps are provided below.

1) Sparse Coding: For fixed values of u and D, the sparse
coding problem is solved using the OMP algorithm. For all
patches, the corresponding sparse vectors are found by solving

min
α p

∑

p
‖P pu − Dα p‖

2
2 subject to ∀p, ‖α p‖0 ≤ K (15)

where p = 1, . . . , Np , with Np the total number of patches.
Recall that the parameter K indicates the maximum number
of non-zero coefficients of α p . The choice of K is briefly
discussed in Section V-C.

2) Motion Field Estimation: Once the sparse codes and the
dictionary have been determined, the motion field u is updated
(starting from a first initialization u0 = 0) by solving the
following minimization problem

min
u

{

Edata(u) + λd

∑

p
‖P pu − Dα p‖

2
2 + λs‖∇u‖22

}

(16)

where Edata(u) is given in (7). The solution to (16) can be
found by equating the gradient to zero leading to

∇Edata(u) + λd∇Esparse(u) + λs∇Espatial(u) = 0. (17)

Following the optimization approach studied in [28], we use
the implicit Euler time marching method [48] to solve (17).
At each iteration, the displacement u is estimated as

u = (Id+γ λs1)−1[u−γ (∇Edata(u)+λd∇Esparse(u))] (18)

where γ ∈ R is a stepsize parameter and 1 denotes the
Laplacian operator. Note that the gradient of the sparse regu-
larization term is easy to compute and can be expressed as

∇Esparse(u) ∝
∑

p
PT

p P pu −
∑

p
PT

p Dα p (19)

where ∝ means proportional to. Note also that the first term
∑

p PT
p P p does not depend on u and needs to be computed

only once, and that the second term
∑

p PT
p Dα p represents

the reconstruction of the motion field from the current sparse
representation.

A full description of the sparse coding, dictionary update
and motion estimation steps is given in Algorithm 1.



Algorithm 1: Motion Field Estimation for a Pair of Images
Using Dictionary Learning

Remark: Adaptive Dictionary Learning. When there are

missing motion patterns in the training set, e.g., specific to

a given cardiac pathology, it might be advantageous to use

an adaptive dictionary learning strategy such as the one in

Section II-B. Depending on the selected learning strategy,

the estimation process consists either of a sparse coding step

alone, i.e., offline learning, or of a joint sparse coding and

dictionary update step, i.e., adaptive learning. When the dic-

tionary needs to be updated, we start by an offline initialization

of the dictionary denoted as D0. The dictionary D is then

updated3 at each iteration from patches of the current estimate

of the motion field u by replacing (15) with (13). In the case

of adaptive DL, the motion estimation problem is formulated

as follows

min
D,α p,u

{

Edata(u) + λd

∑

p
‖P pu − Dα p‖

2
2 + λs‖∇u‖22

}

subject to ∀p, ‖α p‖0 ≤ K . (20)

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method for cardiac motion estimation using a sparse repre-
sentation and DL. The first experiments are conducted on a
dataset of highly realistic simulations for which ground-truth
measurements are available. Three sequences of in vivo US
B-mode images, representing healthy and pathological cases,
are then considered.

A. State-of-the-Art Methods

We compare the proposed approach with three state-of-the-
art motion estimation methods.

• Block-matching: we consider the block-matching algo-
rithm using the NCC similarity measure [47]. For each
patch, a full-grid search is conducted in a defined search-
ing window. Moreover, spatial regularization is induced in

3As with the offline DL strategy (Section IV-A), the dictionary is updated
using the ODL algorithm.

post-processing by the cubic interpolation used to derive
sub-pixel valued displacements and dense motion fields.
Note that block-matching algorithms are also referred to
as speckle tracking methods in the US literature.

• B-spline: in order to evaluate the performance of
the sparsity-based regularization term, we consider the
method studied in [28]. The algorithm of [28] uses the
same similarity measure (CD2) and spatial regularization
as the proposed method. However, a free form deforma-
tion model [59], [60] is considered to parameterize the
motion. The displacement is finally estimated for a mesh
of B-spline control points.

• Monogenic signal: this method uses the monogenic phase
in order to construct the similarity measure and considers
a local affine motion model, without any additional spatial
regularization. It corresponds to the method of [32] for
which the intensity-based similarity measure has been
replaced by a spatial phase-based metric. Note that the
monogenic signal method of [21] has been shown to
improve motion estimation with respect to [32].

B. Performance Measures

Endpoint Error: The first performance measure is the
endpoint error [21], [61] that can be used for datasets with an
available ground-truth, i.e., for the highly realistic simulations.
For each pixel n = 1, . . . , N , the endpoint error is the l2
point distance between the estimate and ground-truth and

is defined as en =
√

[ux(n) − ûx(n)]2 + [uy(n) − ûy(n)]2,

where ux(n), uy(n) and ûx(n), ûy(n) are the true and esti-
mated horizontal and vertical displacements at pixel #n.

Error Mean and Standard Deviation: For the kth frame,
the mean and standard deviation of the error are also computed
to evaluate the estimation performance. These parameters
denoted as me(k) and se(k) are defined as follows

me(k) =
1

N

N
∑

n=1

en(k)

se(k) =

√

√

√

√

1

N

N
∑

n=1

[en(k) − me(k)]2. (21)

Strain: Strain measurements are used to describe the
deformation of the myocardium with respect to its original
shape, allowing both quantitative and qualitative evaluations
of motion estimates. When a ground-truth is not available,
i.e., for in vivo data, the strain is used for qualitative assess-
ment only. For the kth frame, we compute the radial and
longitudinal (respectively circumferential) strains for the apical
four-chambers and short-axis views. Following the method in
[62], we measure along each direction the distance dk between
adjacent points in the kth frame of the cardiac cycle. Strain
values are then obtained relatively to the first frame as

sk =
dk

d0
− 1 (22)

where d0 is the distance between points in the first frame. The
myocardium is then automatically segmented into 6 regions of



Fig. 1. Initial points used for strain computation for the LADprox sequence
considered in Section V-D.

interest for which an average strain value is computed [62].
Note that the segmentation is not used for motion estimation
and that its impact on the strain values is the same for all
the presented methods. Through an example of simulated
data (see Section V-D), Fig. 1 displays the initial points and
segmentation of the myocardium.

C. Dictionary Learning and Regularization Parameters

The choice of the parameters used for DL and for the
proposed motion regularization are detailed in this section.
The parameters used for the three state-of-the-art algorithms
are also provided for each dataset in the following sections.

Dictionary Learning: DL parameters were selected empir-
ically and fixed for all tests. For simplicity, the horizontal
and vertical motion dictionaries Dx and Dy were learned
separately on patches of size w = 16 × 16 with 1.5 redun-
dancy. Therefore, the number of atoms was set to na =

384 and the dictionaries were of size Dx,y ∈ R
256×384.

Different patch sizes classically used in the literature [48],
[50] were considered, i.e., 8 × 8, 16 × 16 and 32 × 32. Since
the errors for the three patch sizes had the same order of
magnitude, the intermediate size 16 × 16 was selected to
obtain a compromise between the number of patches and
the size of the dictionary. Finally, the maximum number
of non-zero coefficients used to represent one patch was
fixed to K = 5. Generally, the sparsity parameter K is
much smaller than the number of atoms in the dictionary
K ≪ na [58] and is related to the noise level [35]. The
resulting horizontal and vertical dictionaries were finally used
as offline dictionaries. Note that these estimated dictionaries
could be used to initialize the adaptive DL strategy. However,
we have not observed significant improvement with this adap-
tive learning strategy for motion estimation (see [56] for more
details).

For all tests, the motion dictionaries were learned
on one pathological sequence (i.e., LADdist) considered
in Section V-D. This choice was motivated by the fact that
cardiac diseases are typically localized, allowing the presence
of normal and diseased motion patches in the training set.
Fig. 2 shows the resulting atoms for the obtained horizontal
dictionary Dx with Nt = 517225 patches used for learning.
This figure allows us to appreciate how the dictionary captures
the spatial properties of motion. Specifically, we can observe
the presence of atoms containing two distinct regions separated

Fig. 2. Atoms of the dictionary learnt from the displacements of the LADdist
sequence (Section V-D), patch size w = 16 × 16, maximum number of non-
zero coefficients K = 5.

TABLE I

VALUES OF λs (SPATIAL REGULARIZATION) USED FOR THE

REALISTIC SIMULATIONS AND In Vivo SEQUENCES

(SEE SECTIONS V-D AND V-E)

by clear edges. These types of motion patches are well suited
to the abrupt changes frequently observed in displacement
values, which usually occur in motion boundaries. Other atoms
correspond to more or less varying motions that belong to the
same region.

Regularization Parameters: The first-order spatial regular-
ization parameter λs was manually varied such that 0.01 ≤

λs ≤ 10. The optimal value of λs was selected as the
value providing the smallest average error for the sequences
with available ground-truth. Conversely, the value of λs was
chosen based on visualization results for the in vivo data.
The corresponding values of this regularization parameter are
reported in Table I. At this point, it is worth mentioning
that it would be interesting to consider approaches based
on Bayesian inference [63] or on the Stein’s unbiased risk
estimate (SURE) [64] to estimate this regularization parameter.
However, theses approaches are out of the scope of this paper.

For each outer iteration of the proposed method, the sparse
regularization parameter λd was logarithmically increased
from 10−3 to 102 (see Section IV) in 6 iterations. The same
procedure was applied for the parameters of the three state-of-
the-art methods considered in this paper. The parameter values
returning the smallest average error were selected for all the
experiments.

D. Realistic Simulations

This section evaluates the performance of the proposed
method on a set of highly realistic simulations of B-mode
US data [62]. The images and motion fields were generated
using real data combined with synthetic biomechanical and US
models. More precisely, the images were generated by varying



Fig. 3. Ground-truth and estimated meshes of the 5th frame of the LADprox
sequence: (a) apical four chambers view, (b) short axis view.

the parameters of a highly realistic E/M model, resulting
in 8 sequences of different pathophysiological conditions [62].
To the best of our knowledge, it is the most realistic simulation
method available in the recent literature. The reader is invited
to read [11], [62] for more details about the data generation
process. A ground-truth was available for all measurements.
We conducted tests on 4 sequences (LADdist, LADprox,
Normal and Rca) of 3D images (of size 224×176×208 voxel3,
voxel size 0.7×0.9×0.6 mm3, frame rate 21-23 Hz [62]) from
which we extracted 2D slices for apical four chambers and
short-axis views. All sequences contained 34 images that span
a full cardiac cycle and represent either healthy heart motion
(i.e., Normal), or ischemic cases (i.e., LADdist, LADprox and
Rca), which correspond to distal and proximal occlusions of
the left anterior descending artery and occlusions of right
coronary artery, respectively [62].4

The motion dictionaries were learned on one pathological
sequence (i.e., LADdist). The method was then tested on
the remaining sequences containing (i) one healthy sequence,
(ii) one sequence with a pathology that is similar to the training
sequence and (iii) one sequence with a distinct pathology. Note
that four other sequences (LBBB, LBBBsmall, LCX and sync)
were available in the dataset and were also tested. However,
the results obtained with these sequences were not significantly
different from the ones presented in this paper (see [56] for
more details and additional results conducted on synthetic data
with controlled ground-truth).

For all algorithms, the parameters giving the best mean
endpoint error were selected. These parameters are given
in Table I for the proposed method. For the B-spline algo-

4The data and related papers can be found at https://team.inria.fr/
asclepios/data/straus/.

TABLE II

ENDPOINTERROR (INmm, VOXEL SIZE 0.7×0.9×0.6 mm3) AND AVERAGE

EXECUTION TIMES (IN s) FOR THE 3 SEQUENCES OF

HIGHLY REALISTIC SIMULATIONS

rithm, the mesh window size between the B-spline control
points was wB-spline = 15×15 and the regularization parameter
was set to λB-spline = 3 to avoid too much deformation. For
the monogenic signal method, the initial wavelengths were
set to λ0 = 0.25 for the LADprox and normal sequences
and to λ0 = 0.1 for the Rca sequence. The number of
refinement steps was fixed to Np = 4. The window size for
the block-matching algorithm was set to wBM = 16 × 16.
Note that in order to cope with large displacements,
a coarse-to-fine estimation scheme was employed for the
monogenic signal and B-spline methods. However, this
multi-resolution scheme was not used for the proposed
and block-matching methods. Fig. 3 displays a typical
example of estimated motions using the proposed method
compared to the corresponding true displacement meshes.
The estimated motion field is clearly consistent with the
ground-truth.

1) Endpoint Error: The results obtained for the three
sequences LADprox, Normal and Rca in terms of mean end-
point error are summarized in Table II. Note that the LADdist
sequence was not considered for evaluation since it was used
for the training of the motion dictionaries. The results show
that the proposed method performs better than the three other
algorithms in terms of average mean and standard deviation
for the endpoint error calculated using the entire sequence.
The average execution times associated with the different
methods are also reported in Table II. The proposed method
is computationally intensive with respect to the state-of-the-art
methods. However, the current Matlab implementation could
be optimized using, e.g, a C implementation. Furthermore,
a parallel computing strategy could be also considered for
the horizontal and vertical dictionaries for the sparse coding
step and for the computation of the sparse regularization term
as well as in the learning phase. Note finally that real time
methods are not always required in US imaging applications,
e.g., for computer-aided diagnosis.

In order to appreciate the performance of the methods
during the cardiac cycle, Fig. 5 shows the time evolution of
the estimates for all the sequences. The difference between
the performance of the methods is less pronounced at the end
of the sequence, where the displacements are small. It is also
clear that the block-matching algorithm is the least accurate for
all sequences. The proposed method outperforms the B-spline
and monogenic signal algorithms for the LADprox sequence
and for almost all frames of the Rca sequence. However, for
the normal sequence, the proposed method is outperformed



Fig. 4. Error map and ground-truth meshes of the 4th and 14th frames of the LADprox sequence.

Fig. 5. Mean endpoint error (in mm) over the LADprox, normal and Rca
sequences.

by the B-spline method for the 4th and 6th frames and by
the monogenic signal algorithm for the 2nd and 5th frames,
whereas the proposed algorithm still provides better estimates
in the middle and end of the sequence. Note also that the
differences in estimation accuracy between the beginning
(large displacements) and the end (small displacements) of

the cardiac cycle are less pronounced, which is an interesting
property of the proposed method.

In order to examine the local behavior of the algorithms,
error maps of the displacement estimates are displayed
in Fig. 4. The error maps match the 4th and 14th frames
of the LADprox sequence, which respectively correspond
to the maximum average displacement value in systole and
diastole phases (additional results, including the 12th and
20th frames are available in [56]). Overall, all other tested
sequences present a similar behavior. As shown in previous
results, the block-matching algorithm is outperformed by all
methods. This can be explained by the resulting integer valued
displacements, which are necessary to interpolate in order to
achieve sub-pixel precision. Another issue with this method is
the use of the NCC similarity measure, which is less adapted
to UI than the data attachment term used in this paper. The
B-spline method provides high errors in regions of rapidly
varying motion. This is due to the fact that the B-spline
model imposes too much smoothness on the motion field.
When the regularization parameter is set to smaller values
to limit over-regularization, very large errors appear in some
frames of the sequence due to an excessive deformation of the
B-spline mesh. This makes the parameter λB-spline difficult to
tune over an entire sequence. The monogenic signal algorithm
does not suffer from over-regularization, but still performs
poorly for the 4th frame of the sequence. This is mainly due
to the fact that the phase constancy assumption considered
for this method holds less for large displacements. On the
other hand, the proposed method presents less errors even
for large displacements. This shows that the algorithm is less
sensitive to large variations and is adapted to more complex
patterns of motion. Note that some errors are located at the
border of the myocardium. These errors are probably due to
the influence of patches including estimates from outside this
region.

Finally, we have investigated the possibility of using the
proposed spatial and sparse regularizations jointly with other
data fidelity terms. More precisely, Table III shows the average
mean and standard deviations of the endpoint errors for
three different similarity measures, i.e., mutual information
(MI), SSD and the data fidelity term in (7) (CD2), for the



TABLE III

ENDPOINT ERROR (IN mm) FOR DIFFERENT SIMILARITY MEASURES

FOR THE LADPROX SEQUENCE

TABLE IV

AVERAGE MEANS AND STANDARD DEVIATIONS OF THE ENDPOINT

ERRORS OF STRAIN VALUES FOR THE LADPROX SEQUENCE

Fig. 6. Mean longitudinal strain values (LADprox sequence).

LADprox sequence. (Note that the regularization settings were
the same for all tests.) These results show that the CD2

measure is slightly better than the MI and SSD measures
for this sequence. However, the obtained results are clearly
interesting when compared to those of Table II.

2) Strain Accuracy: The average means and standard devi-
ations of strain errors for the LADprox sequence are summa-
rized in Table IV. The proposed method provides the most
accurate estimates in terms of endpoint error. Fig. 6 shows
the average longitudinal strains for the LADprox sequence.
We can observe that the strain estimated with the proposed
method is closer to the ground-truth.

E. In Vivo Data

This section evaluates the ability of the proposed approach
to process in vivo US data acquired with a commercial scanner.
In particular, we emphasize the coherence of the results
obtained via a comparison between strain curves of healthy
and pathological subjects. We also provide a visual analysis of
the motion fields obtained with different methods on the same
healthy cardiac sequence. Note that all the results presented
below have been obtained without any post-processing and that
the segmentation of the myocardium was performed manually
by the cardiologist. In order to appreciate the wall motion, all
acquisitions were performed using the bidimensional mode.
The data (image size: 248 × 267 pixels) was acquired from
a short axis view, using a GE Vivid S6 ultrasound machine
equipped with a 3Sc-RS 1.5-4.0 MHz transducer array (center
frequency 2.75 MHz).

Fig. 7. Examples of estimated motion fields for a systolic frame in the
healthy in vivo sequence.

The healthy reference sequence was acquired from a
37 years old male volunteer with no cardiovascular disease,
whereas the second sequence (i.e, patient n°1) corresponds to
an 88 years old female who has undergone non ST elevation
myocardial infarction in the left descending artery territory.
Finally, the third sequence (i.e.,, patient n°2) is from a 40 years
old male diagnosed with an acute myocarditis after an exami-
nation with coronary angiography and MRI. While the healthy
subject did not have any wall motion trouble, the 88 years
old woman had a severe hypokinesia in the antero-median
segment. In the case of the 40 years old male (i.e, patient n°2),
the initial echocardiography was deemed normal despite the
inflammation of the cardiac muscle further diagnosed by MRI.

First, a visual analysis of the motion estimates was per-
formed for the healthy sequence. The results obtained for all
previously introduced methods were then compared. Again,
for all algorithms, the parameters were manually tuned to give
the best visual aspect. The final parameters were λs = 0.1
and λB-spline = 0.1 for the regularization of the proposed and
B-spline methods whereas λ0 = 0.5 for the initial wavelength
of the monogenic signal algorithm. The block-size was fixed to
wBM = 32 × 32 for the block-matching method. For all other
parameters, we used the values from the tests conducted on the
highly realistic simulation dataset. The dictionaries Dx and Dy

were learned using the LADdist sequence. Fig. 7 shows the



Fig. 8. Strain curves of in vivo sequences: circumferential (top row) and radial (bottom row) strains of (a) the healthy sequence, (b) the patient n°1
and (c) the patient n°2.

estimated motion vectors obtained for a systolic frame of the
healthy sequence. Globally, all the methods provide a motion
field that is coherent with the inward contraction (systole) of
the cardiac muscle. However, the local behavior still presents
differences in the amount of smoothness and spatial variation
for the estimated fields. For instance, the B-spline method
imposes too much regularization on the displacements. In fact,
the estimated vectors were not allowed to change rapidly
enough to fit the spatial variations of the motion. On the
other hand, the monogenic signal algorithm is adapted to more
complex motions, but still lacks smoothness overall. Finally,
the proposed method provides a good compromise in terms
of smoothness and local motion estimation. Overall, these
observations confirm the outcome of the tests conducted on
the highly realistic simulations dataset in Section V-D.

In order to gain additional insight into the obtained in vivo

motion fields, the radial and circumferential strains were com-
puted for the healthy and pathological sequences. Fig. 8 shows
the results of the segmental strain values. In the case of the
healthy subject, both the circumferential and radial directions
present homogeneous strain curves for all segments. Typically,
the circumferential strain exhibits negative strain values during
the systolic contraction phase, followed by a plateau that
continues until complete left ventricular (LV) relaxation at end
diastole. On the other hand, the strain curves of the first patho-
logical subject (patient n°1) indicate clearly that the segments
corresponding to the left descending artery vascularization and
its neighboring region have been affected by the ischemia.
Specifically, the anterior segment is completely hypokinetic
(or akinetic), which also leads to abnormal myocardial wall
motion in the neighboring segments (i.e., anteroseptal and
anterolateral segments). Radial strain curves are usually harder
to interpret, but they are nonetheless coherent with the state
of the two subjects. Note that these findings can be assessed
through a simple visual inspection of the myocardial wall
motion in bidimensionnal mode. In the case of the patient n°2
we can clearly see abnormal deformations for the anterolateral,

inferolateral and inferior segments in the radial direction.
The anterolateral and inferior segments also present reduced
circumferential strains. It is worth pointing out that these
results suggest an abnormal heart condition, contrary to the
findings related to the visual examination of this sequence by
the cardiologist. A more quantitative analysis of these in vivo

images is beyond the scope of this paper. However, these final
results support the suitability of the method regarding clinical
assessment with real cardiac ultrasound data.

F. Adaptive Dictionary Learning

This section briefly explores the results of cardiac motion
estimation with adaptive DL, i.e., updated dictionary (see
Section II-B for more details) in the case of real data. The
adaptive learning is enabled by running the optional 4th step
of Algorithm 1 in Section IV. In order to illustrate the possible
differences between the offline and adaptive DL strategies,
we use the healthy in vivo sequence introduced above. Note
that in contrast with the offline strategy, the updated dictionary
is initialized using random patches of the estimated motion
field.

For a systolic frame in the healthy sequence, the adap-
tive and offline DL strategies result in close estimates, with
small relative differences (i.e, mean and standard deviation:
9.115% ± 6.757%). For the rest of the sequence, the relative
differences remain overall negligible. (For additional results
see [56]). Since the adaptive DL algorithm is more computa-
tionally intensive than its offline counterpart, we think that its
use is not necessary when a rich training dataset is available.
However, the adaptive DL strategy might be an appropriate
choice when there are few training data.

VI. CONCLUSIONS

This paper introduced a method for estimating the cardiac
motion of 2D US images with a regularization based on a



sparse representation and DL. The proposed approach com-
bined two pertinent aspects of cardiac US. First, it incorpo-
rated the noise characteristics of US B-mode images via a
similarity measure derived from the multiplicative Rayleigh
noise assumption. The proposed method also regularized the
motion by using a regularization smoothing term based on the
gradient of the motion field and by exploiting a sparse motion
prior based on DL. Our results showed the effectiveness of
these regularizations for cardiac motion estimation. In terms
of motion and strain accuracy, the results obtained with highly
realistic simulations demonstrated the competitiveness of this
approach with respect to state-of-the-art methods. The results
obtained on real data suggested that the method is consistent
with a clinical interpretation related to images of healthy and
pathological subjects.

For future work, it would be necessary to investigate possi-
ble extensions of the algorithm to 3D UI. In this work, we have
addressed the problem of 2D motion estimation, which can
present some shortcomings, such as out-of-plane motion and
limited geometrical information, that could be overcome in 3D.
Nevertheless, it should be pointed out that in contrast with
2D imagery, 3D UI is affected by the problems of frame rate
and image spatial resolution in the azimuthal direction and
thus, does not necessarily provide better motion estimation
results. Furthermore, it is worth mentioning that the data
fidelity and regularization terms used in the actual formulation
are not inherently limited to 2D and could be extended
to 3D. In the same way, the dictionaries could be learned
separately for each direction or jointly for the 3 dimensions.
The differences between these two strategies of learning the
dictionary have not been investigated in this paper, but would
also deserve consideration in future work. Another research
prospect would be to study the interest of adaptive dictionary
learning techniques for applications in which the training
database is updated periodically. Furthermore, the proposed
approach has not exploited the temporal properties of cardiac
motion. Integrating this aspect could be performed by using
more than two consecutive frames or by learning motion
dictionaries that take into account the sparsity of the motion
versus time. Another possible prospect concerns the problem
of outliers. Considering potential model deviations or viola-
tions of smoothness assumptions (e.g., motion boundaries) in
the current approach for robust motion estimation is clearly
an interesting prospect.

The dictionary and the resulting sparse codes could also
be used to gain additional information about the motion
estimates. The analysis of the sparse codes could, for instance,
be exploited for segmentation by using separate motion dictio-
naries for distinct anatomical regions. Other examples include
the detection of abnormal motions or specific cardiac malfunc-
tions encoded in associated motion dictionaries.
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