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Jerome Chevalier3, Theo Saunders1,4, Ton Peijs1, Mike J. Reece1 & Eduardo Saiz2

The properties of graphene open new opportunities for the fabrication of composites

exhibiting unique structural and functional capabilities. However, to achieve this goal we

should build materials with carefully designed architectures. Here, we describe the fabrication

of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers

and spark plasma sintering. The result is a material containing an interconnected, microscopic

network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network

generates electrical conductivities up to two orders of magnitude higher than those of other

ceramics with similar graphene or carbon nanotube contents and can be used to monitor

‘in situ’ structural integrity. In addition, it directs crack propagation, promoting stable crack

growth and increasing the fracture resistance by an order of magnitude. These results

demonstrate that the rational integration of nanomaterials could be a fruitful path towards

building composites combining unique mechanical and functional performances.

DOI: 10.1038/ncomms14425 OPEN

1 School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK. 2 Department of Materials, Centre for
Advanced Structural Ceramics, Imperial College London, London SW7 2AZ, UK. 3 Université de Lyon, INSA Lyon, MATEIS CNRS UMR5510, F-69621
Villeurbanne, France. 4 Nanoforce Technology Limited, Mile End Road, London E14NS, UK. * These authors contributed equally to this work. Correspondence
and requests for materials should be addressed to E.S. (email: e.saiz@imperial.ac.uk).

NATURE COMMUNICATIONS | 8:14425 | DOI: 10.1038/ncomms14425 | www.nature.com/naturecommunications 1

mailto:e.saiz@imperial.ac.uk
http://www.nature.com/naturecommunications


T
he development of new technologies in key areas from
construction to transportation to energy generation
increasingly demands new structural materials with

improved performance. These materials will not only have to
be lighter, stronger and tougher but also play additional
functional roles, including sensing external stimuli, self-monitor-
ing their structural health, conducting electricity and storing
energy. It is becoming evident that monolithic materials cannot
meet these stringent demands. Consequently, researchers are
looking at the development of new composites as a solution to
meet the challenge. As the work progresses, it is becoming
increasingly clear that, to reach the desired performance, the
structure of these composites will have to be carefully designed at
multiple length scales from the atomic to the macro level. For
example, an increasing body of work has been devoted to the
integration of carbon nanostructures such as carbon nanotubes
(CNTs) or graphene, in ceramic or polymer matrices. While there
have been some promising results, in terms of mechanical
response, the outcome has been inconclusive at best1–3. The
unique intrinsic mechanical properties reported for these
nanostructures are often based on modelling or experiments
performed at the nanoscale. However, translation to materials at
practical dimensions is extremely complicated and involves
structural design and processing. For example, it has been
recently shown how defects can lead to significant variations in
the strength of graphene4. Furthermore, in many applications
strength is not the limiting practical property, fracture resistance
is, which opens the fundamental question: how to effectively use
nanoscale reinforcements to promote fracture resistance when in
composites toughness is often generated through extrinsic
mechanisms that act at much larger length scales (from the
microscopic and upwards). Moreover, improved mechanical
performance alone may not be enough to warrant the use of
nanofillers, which should also provide functional capabilities.
A possible solution to this problem is to move away from
the traditional approach that sees all these carbon nanomaterials
as ‘reinforcements’ dispersed in a matrix and instead use their
unique dimensionality to engineer complex microstructures that
can deliver the desired properties and functionalities.

Graphene-ceramic composites are being investigated for
many different applications, from protective coatings, to energy
storage or medicine5–7. Diverse techniques (from colloidal
processing to chemical vapour deposition) have been used to
fabricate composites with a homogeneous distribution of
graphene nanoplatelets8–10. Some degree of toughening has
been observed in these materials and crack bridging by the
graphene nanoplatelets has been identified as one of the main
mechanisms11–13. However, because of the relatively small size of
the platelets the degree of bridging is limited. To trigger
additional toughening it is necessary to manipulate the platelet
distribution but this has proven challenging. There are reports of
the use of layered arrangements prepared by sequential powder
stacking to improve mechanical and electrical performance.
It is difficult to refine the microstructures using these approaches
and the thickness of the graphene containing layers is usually
above a micron with ceramic layers 450 mm thick14,15.

Material scientists are increasingly looking at the design of
natural structural mineralized composites such as bone or nacre
in search of new design concepts16. These natural materials
develop unique mechanical response from very simple compo-
nents. They usually exhibit complex anisotropic architectures
with layered, columnar or fibrous motifs17. Furthermore, to
a large extent their properties depend on the careful engineering
of interfaces at the chemical and structural levels. These
design concepts have also been employed in synthetic
composites and, in particular, weak interfaces are often used in

ceramic-based materials as a way to promote toughness
through mechanisms such a crack deflection or fibre pull-out18.
Here graphene opens new opportunities as its two-dimensional
(2D) structure is very well adapted to interfacial engineering.
Carbon has been used before to create weak interfaces, for
example, in layered ceramic materials15,19,20. However, in
these systems the ceramic layers are usually hundreds of
microns thick and the interfaces are also in the micron range
and relatively flat. Nature also uses interfacial roughness to
promote friction during crack propagation and enhance fracture
resistance. This strategy has been more difficult to replicate
synthetically but, for example, Mirkhalaf et al.21 increased
the toughness of glass by laser engraving wavy internal
interfaces. However, the waviness and layer thickness were in
the hundreds of micrometers range and the procedure
significantly reduced the strength of the material. One of the
critical features of some natural systems that has been very
difficult to replicate synthetically is the presence of very thin
(few nanometres) soft interfaces separating hard, mineral layers16.
In general, and with few exceptions, the architectural motives
of most synthetic structures are still orders of magnitude
larger than in their natural counterparts22,23.

To address these issues, in this study we take advantage of
the 2D nature of chemically modified graphene (CMG) to
engineer a fine network of internal interfaces in a glass ceramic
matrix. We use networks of CMG as the starting point to create
composites with layered architectures and an interconnected
carbon grid. The use of graphene allows the engineering of
very thin (o20 nm) nano-rough, interfaces. Despite the fact that
the matrix is brittle and constitutes B99 vol% of the material,
these interfaces promote stable crack growth and a fracture
resistance up to an order of magnitude (in terms of energy)
higher than that of the glass ceramic. They also provide a highly
electrically conductive network (conductivity4500 S m� 1) that
can be used to sense the formation and progress of damage. This
combination of self-monitoring and high-fracture resistance
can be used to develop intelligent materials able to avoid
catastrophic failure in service and illustrate a different approach
for the integration of graphene in ceramic and polymer-based
composites as opposed to the traditional ‘reinforcement’ strategy.

Results
Building graphene/ceramic composites. The first step of our
process is the fabrication of CMG networks using freeze cast-
ing24,25. Graphene oxide (GO) suspensions in water were
prepared through the chemical exfoliation of large flake
graphite using a modified Tours’ method26. Diverse organic
additives (PVA:sucrose in a 1:1 fixed weight ratio and with a total
content varying between 0.2 and 2 wt.%) were added to
the concentrated GO suspensions (2–20 mg ml� 1) to bond the
GO flakes after the freeze-casting process. The suspensions were
frozen directionally to form 3D porous networks with
macroscopic dimensions and a characteristic anisotropic layered
architecture templated by the ice. The internal structure of the
network consists of long microscopic channels oriented along the
ice growth direction Their diameter is of the order of E20–30mm
and they are separated by thin (20–30 nm) walls formed by the
confined rearrangement of GO flakes between growing ice
crystals during freezing (Fig. 1; Supplementary Fig. 1).
Subsequently, the networks were freeze dried and heat
treated at 900 �C in a reducing atmosphere to form reduced
CMG (rCMG). After the reduction, the network walls are
extensively wrinkled (Fig. 1). There is a 20% volume shrinkage
after the treatment. The thermal reduction process is
complex and involves the removal of oxygenated functional
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groups (epoxy and hydroxyl functional groups present on
the basal planes and carbonyl, carboxyl groups located at
the sheet edges) in the form of gaseous species through the
porous network, defect formation, lattice contraction, folding and
unfolding of the layers and layer stacking. All contribute to some
extent to an effective restoration of the sp2 carbon network.
This was confirmed by X-ray photoemission spectroscopy (XPS)
and Raman analysis (Fig. 2 and Supplementary Fig. 2).
XPS characterization indicates that the C/O ratio increased
from 1 to 12 after thermal reduction. Interestingly, the changes
were not as clearly reflected in the Raman spectra presumably due
to the low annealing temperature. Here the main features are the
so-called D and G peaks, which lie around 1,360 and 1,560 cm� 1

respectively. Thermal reduction results in sharper D and G peaks
and, more importantly, the appearance of the 2D peak
at 2,700 cm� 1, which is characteristic of graphene27.
The combination of freeze casting with the use of high-purity
CMG flakes with large (lateral size 410 mm, Supplementary
Fig. 3) results in strong networks that can withstand very large
deformations24,25.

These 3D porous networks were infiltrated with polymethyl
siloxane, a pre-ceramic polymer which was chosen for its
high ceramic yield (90%), and heat treated up to 1,000 �C in
N2 to convert the siloxane polymer to a silicon oxycarbide glass.
The hydrophobic nature of rCMG facilitates complete infiltra-
tion24. Because of their mechanical properties the networks
can maintain their shape and structure during polymer infusion
and crosslinking. They shrink with the matrix as the polymer
converts to a ceramic during heating. The result is a dense
material (Fig. 3). The remaining silane that does not polymerize is

removed around 350 �C during pyrolysis and the polymer
continues to degrade forming gaseous products such as
methane and/or hydrogen up to 700 �C (ref. 28) (Fig. 3c). The
presence of graphene did not affect the degradation process
and the overall ceramic yield was around 90%. FTIR studies
(Fig. 3d) confirmed the organic–inorganic conversion. The
graphene network is essential to maintain the structural
integrity of the composite during conversion. The polymer
alone cracks into a glass powder during pyrolysis due to the
stresses that can be generated if there is some inhomogeneity
during conversion (and therefore in the associated dimensional
changes) and also due to the liberation of gaseous species29. In
the composite, the network walls are able to hold the material
during pyrolysis and maintain integrity (Fig. 3b). A method
has been recently proposed to fabricate dense bulk ceramics in
which the polymer is used to infiltrate a proprietary scaffold
followed by pyrolysis. It has been proposed that the scaffold
facilitates gas release during heating to avoid pressure build up29.
However, it is not clear that the carbon network can facilitate
gas release in our system.

Composite structure and chemistry. The density of the
pyrolysed samples is B1.9±0.1 g cm� 3, in good agreement with
results reported in the literature for polymer derived Si–O–C
(ref. 29). To increase the density of the composite and further
restore the sp2 network of the rCMG, the samples were sintered
by Spark Plasma (SPS). During SPS, nano- and micropores are
closed by the combined effect of the applied pressure and creep
deformation of the matrix30. The glass transition temperature of

a b

c d

Figure 1 | CMG networks. Scanning electron micrographs of the CMG network (taken using secondary electrons) (a) before and (b–d) after thermal

reduction. The inset in a shows the sample size. The images a and b were taken in the plane perpendicular to the direction of ice growth during freeze

casting, while c and d were taken in the parallel plane. Comparison of a and b shows that thermal reduction results in wrinkling and roughening of the

network walls, while the comparison of a and d illustrates the shrinkage or the cells. The network shows large scale ordering (c) retaining very thin walls

after reduction (d). The inset in d shows a high-resolution transmission electron micrograph of the cross section of one of the network walls showing the

stacking of the carbon layers. Scale bar, 10mm (a) and (b); 100 mm (c); 5 mm (d); 10 Å (d) inset.
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Figure 2 | Reduction of the CMG networks. (a) XPS analysis of the networks before and after reduction. The XPS C1 signals were fitted to five

components: C¼C and C–C, C–O, C¼O and COOR for the as-prepared ice template CMG network and C¼C, C¼O and C–O, and COOR and the

p–p shake up for the reduced CMG network. The rCMG atomic composition is C1s (79.1%), N1s (0.5%), O1s(12.0%), Si2p (7.6%), Mn2p (0.6%),

Na1s (0.3%). Silicon and Nitrogen are attributed to the vacuum grease used during the freeze casting process while the small fraction of Manganese could

be a residue from the synthesis route. (b) Corresponding Raman analysis. Thermal reduction results in sharper D and G peaks and, the appearance of the

2D peak at 2,700 cm� 1 which is characteristic of graphene.
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Figure 3 | Characterization of the composites after infiltration and pyrolysis. (a) SEM micrographs (taken using secondary electrons) showing that the

graphene network has been fully infiltrated and maintains its interconnected structure after crosslinking (parallel to the ice growth direction, 8, and

perpendicular, >). (b) A dense composite is obtained after pyrolysis. (c) The thermogravimetric analysis indicates that the polymer pyrolysis is not

affected by its confinement in the graphene network. Weight losses occur at the same temperature in the pure polymer and in the composite and cease

around 800 �C. (d) FTIR analyses before (crosslinked) and after pyrolysis shows that the thermal treatment has been effective in the conversion to an

inorganic material. The peaks corresponding to the asymmetric stretching (B2,900 cm� 1) and deformation (B1,250 cm� 1) of the -CH3 groups have

disappeared. Scale bar, 200 mm (a) top; 50mm (a) bottom; 25 mm (b) top; 50mm (b) bottom.
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Si–O–C is around 1,350 �C, hence higher temperatures are
required to reach full densification. Although the heating
rate during SPS is fast (100 �C min� 1) and the dwell is only
8 min, Si–O–C glasses undergo a series of structural and chemical
changes at high temperature such as bond redistribution
and phase separation29,31. Comparison of the material with
and without graphene suggests that these changes are not affected
by the presence of the network (Supplementary Fig. 4).
The optimum sintering temperature is 1,700 �C which resulted
in a 20% increase in density. Higher temperatures (1,900 �C)
led to a drop in density due to further loss of oxygen from the
Si–O–C and the formation of pores. The final content of rCMG in
the composite is B1 vol.%.

After SPS, the sample retains a layered structure in which an
interconnected rCMG network is immersed in a glass-ceramic
matrix (Fig. 4). SPS at temperatures41,500 �C induced partial
crystallization of SiC (Fig. 4d). Higher sintering temperatures
(1,700 �C) lead to the apperarance of an additional X-ray
diffraction peak at 26� that can be attributed to the formation
of graphitic domains in the matrix as confirmed by Raman
spectroscopy. It should be pointed out that characterisation data
(X-ray diffraction and Raman) for the composite are dominated
by signal from the matrix phase that includes free carbon and
therefore it is not possible to clearly comment on the state of the
rCMG (Supplementary Fig. 4). However, the Raman spectra of
the composite sintered at 1,700 �C when compared with 1,500 �C

ones show a sharper 2D peak at 2,700 cm� 1 and lower ID/IG ratio
as a consequence of an increase in the graphitic order of the
graphene network and the free carbon in the matrix
(Supplementary Fig. 4). After SPS, the network walls remain
extensively crumpled and wrinkled (Fig. 4b,c). The crumpling is
more evident in the walls perpendicular to the applied pressure.
Their thickness ranges between 20 to 30 nm and they are
composed of rCMG sheets self-assembled into a regular
arrangement induced by the ice growth. There is no apparent
reaction or interfacial layer between the ceramic matrix and the
rCMG. The Young modulus of the network walls is relatively low
(10 GPa or the order of graphene paper)25. This could be
expected as the walls are formed by the entanglement of graphene
flakes held together by van der Walls type of forces. In addition,
there is a very large difference in the thickness of the graphene
and ceramic layers (the ratio is below 1/100). Therefore, it
could be expected that the network does not constrain the
dimensional changes associated to pyrolysis, sintering and
shrinkage during cooling after SPS and that the thermal stresses
in the ceramic remain low.

Mechanical performance. The carbon network modifies
the fracture behaviour of the matrix. The glass-ceramic
exhibits the expected brittle behaviour with catastrophic failure
and low initiation toughness (KICB0.80±0.03 MPam� 1/2).
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Figure 4 | Composites after SPS. (a) X-ray diffraction analysis of the sample after SPS showing the crystallization of SiC at 1,700 �C. (b) SEM micrograph

(plane parallel to the ice front) showing the corrugated walls of the graphene network. The interfaces are rough at the micro to nano scale. The red arrows

correspond to the pressure direction during SPS. The images have been taken using secondary electrons with non-coated samples to enhance contrast

between the matrix and the interfaces. As a result a grey halo is visible around the carbon interfaces. (c)TEM micrographs showing two different carbon

interfaces (B20–30 nm thick) at high magnification. The interfaces (marked with the white arrows) are generated by the rCMG network encapsulated

in a glass-ceramic matrix formed by nanocrystals (in the white circles) dispersed in glass. (d) High-resolution TEM analysis confirms that the nanocrystals

are SiC. Scale bar, 25mm (b); 5 mm (b) inset; 50 nm (c) top; 10 nm (c) bottom; 2 nm (d).
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The corresponding critical strain energy release rate is
6.3±2 J m� 2, calculated as:

GIC ¼
K2

IC

E
1� n2
� �

ð1Þ

Where E and n are the Young modulus and Poisson ratio of
the material (100 GPa and 0.11, respectively)32. The work of
fracture measured from the area under the stress strain curve
is 28.7±5 J m� 2. However, this is just an upper limit as
fracture is unstable in this material with the value calculated
from equation (1) being a closer estimate.

The initiation toughness in the composite is of the order of
1.7±0.1 MPa m1/2, double that than that of the glass-ceramic
matrix. More importantly, even though the composite contains
only 1 vol.% of carbon it is possible to achieve stable crack
propagation. As a result, it exhibits a rising R-curve behaviour
with a steady rise of KJ (Fig. 5a). The maximum toughness values
within the limits of the short bridging regime are of the order
of 3–3.5 MPa �m1/2 (according to ASTM E1820-13), which is
B3.8 times higher than for the pure glass-ceramic (in terms of
K), which corresponds toB14 times higher in terms of
energy (B88 J m� 2, taking KJB3 MPa m1/2 and assuming that
1 vol% graphene does not have a substantial effect on the Young
modulus and Poisson ratio). As we have stable crack propagation
we can calculate the corresponding work of fracture from the
stress strain curve, and it is of the order of 46.6±6 J m� 2 that
again is 7 to 8 times higher than the closer estimate for the glass-
ceramic.

The CMG has formed a continuous network of weak interfaces
that promote microcracking, crack branching and deflection
(Fig. 4c–f). These interfaces are thin (approximately 20–30 nm)
and rough at the microscopic scale, and friction between the
sliding glass layers/blocks adds another source of energy
dissipation during crack propagation. Because of the crack
deflection along the interfaces the ceramic layers can also provide
some degree of bridging in a way akin to what has been observed
in SiC or Si3N4 materials combining intergranular fracture with
large aspect ratio grains. The increase in toughness (in terms of
K) is comparable to the ones measured in these systems33–35. The
role of interfacial roughness has been highlighted by the work of
Mirkhalaf et al.21 where they are able to double the fracture
toughness (in terms of energy) by engraving interlocking
interfaces in a glass. However, this was done at the expense of
the strength which was reduced to 10% of its original value. Here
we have reduced the characteristic dimensions of the ceramic
layers down to 10–20 mm. In addition, by using CMG as a
precursor we have kept the thickness of the interfacial layers
below 30 nm while the overall carbon content of the material is
about 1 vol.%. One of the main challenges found in the
development of synthetic nacre-like materials has been to
reduce the thickness and overall content of the ‘soft mortar’
phase to values comparable to their natural counterparts. The use
of an atomically thin flake allows the assembly of such thin
interfaces to maintain up to 99 vol.% ceramic in the material and
retain a significant amount of strength (63±2 MPa for
the composites vs 120±5 MPa for the pure Si–O–C ceramic,
with the decrease probably due to the introduction of
the interface network).

It is interesting to compare the properties of the system
with ceramic laminates that use C or BN to form a thin, relatively
weak interface between SiC or Si3N4 layers19,20,36. In these
composites the thicknesses of the ceramic layer and the interfaces
are one to two orders of magnitude larger than those of
the materials described here. In addition the layers are flat
and continuous with lengths of centimetres. The samples are
usually tested in bending with the load applied perpendicular to

the layers. Increases of the work of fracture between two to
three orders of magnitude have been reported in these
materials. However, one of the main causes seems to be crack
deflection. Cracks form and run along the interfaces in some
cases even before the maximum force is reached in the load
deflection curve and they can run for distances of up to
millimetres in the set-ups used in the papers. The material
described here is closer to a brick and mortar structure and
crack deflection is much more limited. In addition, the work on
layered materials used high-performance technical ceramics
where here we have used a brittle glass-ceramic to prove the
concept.

In this work, the samples were tested in bending. If we assume
the structure close to a brick and mortar, when testing in
tension the ratio between the strength of the ceramic bricks
and the adhesion strength of the interface dictates the optimum
brick aspect ratio to achieve maximum strength while maintain-
ing interfacial crack propagation to maximize toughness37. As
the thin carbon interface is relatively weak interfacial failure is
most likely. A close system to this could be the laser-engraved
glass where a significant degree of brick sliding, crack bridging,
crack deflection and branching has been observed in tension21,38.
We could expect similar toughening mechanisms acting
here under similar loading conditions. The results suggest that
in these systems brick interlocking (as given for example by the
interfacial roughness) and the properties of the mortar will
determine to a large extent the degree of toughening.

Sensing damage. The continuous interfaces provide a highly
interconnected conductive network that can act as an efficient
Joule heater or can be used to monitor the formation of
defects and crack propagation (Fig. 6). The composite exhibited
anisotropic electrical conductivity as could be expected from
its structure. Measurements performed along the ice growth
direction gave values one order of magnitude higher than
perpendicular to it (500 versus 33 S m� 1 for samples sintered
at 1,700 �C). Despite the formation of SiC and free C in the
matrix, our measurements indicate that the electrical conductivity
of Si–O–C is at least two to three orders of magnitude below that
of the composite. Therefore its contribution to the conductivity is
negligible. These conductivities are significantly higher than those
of the reduced network alone (up to 60–70 S m� 1 in the ice
growth direction) and depend on the sintering temperature. The
electrical conductivity for the composite sintered at 1,500 �C was
found to be half of that prepared at 1,700 �C. This is consistent
with previous findings that indicate that high temperature treat-
ments in carbon containing atmospheres (SPS or hot pressing)
are very efficient in improving the crystallinity of CMG and
increasing its electrical conductivity24. In all cases the measured
conductivities are one to two orders of magnitude larger
than those of ceramic-carbon composites with similar nano-
carbon contents (Fig. 6). This is due to an approach that allows
the formation of an interconnected carbon network in a much
more efficient way than through the random dispersion of
particles, nanotubes or nanoplatelets. We have used a 4-point
probe set up to measure ‘in situ’ the variation in voltage
(constant current) during bending a notched bar of the composite
like the one used to calculate the R-curve (Fig. 6c). The measure-
ment clearly shows a rise in voltage due to microcracking,
before failure (and before the maximum stress has been reached).
Since crack propagation is stable, the load can be released
before fracture and the voltage is recovered as the network
recovers its connectivity. In absolute values, and with the set-up
and current (20 mA) used in this test, a voltage increase of 1.5 mV
was measured for a crack of 200 mm. In a second cycle, the same
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phenomena can be observed. However, in this case the
voltage rises first before the crack starts growing again as a
consequence of the opening of the existing crack that breaks
the network. It then reaches a value close to that observed in
the first cycle and subsequently there is a sharp increase in
voltage corresponding to crack growth followed by failure.

Discussion
Carbon nanomaterials such as graphene or nanotubes
have extraordinary intrinsic properties. They can combine
high strength and stiffness with functional properties such as
high electrical and thermal conductivity. However, to incorporate
them in synthetic composites that take full advantage of their
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potential, their random dispersion in a matrix will not
be sufficient. A high theoretical strength for a pristine material
often does not translate into practical structures. In addition,
strength is not the only design criteria in the selection
of materials, other properties such as toughness are equally or
more important, and in brittle materials toughness is often
generated by mechanisms that act at relatively large length scales
(micro-scale and up). If we have learned anything from our
previous experiences and the observations of Nature it is that
the only path to answer these requirements and create new
materials is to learn how to build complex architectures on
macroscopic dimensions. Here we have shown one example in
which a combination of freeze casting with pre-ceramic polymers
can be used to form CMG-ceramic composites containing
a microscopic network of ‘soft’, conductive interfaces. These
interfaces replicate two of the aspects observed in nacre, they
are very thin (their thickness, few tens of nanometers, is similar to
that of the protein layer in nacre) and rough at the submicron
level. Cracks propagate through them during fracture and
as a result, they generate a series of toughening mechanisms
that contribute to a substantial increase in fracture resistance in
materials with a minimal carbon content (1 vol%). However,
the properties of the soft-layers in nacre and the composites
(carbon vs proteins) are quite different. It has been proposed that

the soft interfacial phase should exert a ‘lubricant’ role to control
the sliding of the ceramic bricks39. In our materials, carbon
can play that role. In multilayer graphene flakes with a similar
configuration to the carbon interfaces described in this paper,
sliding has been identified as a predominant energy dissipation
mechanism40. However, the controlled unravelling of the
nacre proteins during crack propagation has a contribution to
toughness that is different to the one of graphene. In addition,
brick design at the microscopic scale is also important as
mechanisms such as interlocking have been proposed to
contribute to toughness in some nacres41. These results
underline the need for a systematic, rational comparison
of natural materials and their synthetic counterparts to
identify the key mechanisms that contribute to the mechanical
response and how they interact along the length scales as a way to
develop new bioinspired structural materials.

The finely interconnected carbon network provides a highly
conductive path that can be used to monitor the materials
integrity. It has been shown that graphene networks in relatively
soft polymeric matrix materials can provide a path for sensing
pressure or bending42 and electrical conductivity can also be
used to monitor the integrity of polymer-based composites43.
Here we show how a conductive network can be used to
sense damage in a stiff ceramic material. The microscopically
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connected structure of the network allows sensing of damage
at much smaller dimensions (with our conditions a 10 mm
crack will give rise to a measurable voltage change of B0.1 mV
but more sensitivity can be achieved by, for example, increasing
the current) and displacements than what has been achieved
in polymer-based materials43.

A very interesting point raised by our design is that graphene
here is not used as a conventional ‘reinforcement’ but rather to
engineer a fine network of relatively weak interfaces that provide
electrical conductivity and fracture resistance. The response
depends not only on the chemistry but also on the topology
(roughness) of the interfaces at the nano-scale. These results
underline the need to look at alternative approaches in the
way we design and build practical composites using nanomater-
ials and that these approaches will need to integrate mechanical
and functional response. The latter is probably the most
interesting possibility opened by these new layered nanomaterials
and a path to generate a step change in the field of structural,
multifunctional materials.

Methods
Synthesis of large amounts of CMG. Tens of grams of CMG were reproducibly
and safely prepared using a modified Tour et al.26 synthesis in a custom-built rig
designed to manipulate up to 10 l of concentrated acids. In a typical synthesis,
a 9:1 mixture of concentrated H2SO4/H3PO4 (3:0.3 l) was added to 24 g of natural
graphite flakes (150–500 mm sieved, Aldrich), followed by the addition of 144 g of
KMnO4 (6 wt. equiv.). This reaction was slightly exothermic and the temperature
rose to 35–40 �C. The reacting suspension was then heated to 50 �C and vigorously
stirred at 400 rpm for 18 h. Next, it was cooled to room temperature and the
oxidation was stopped by adding dropwise 1.72 l of aqueous H2O2 (2 wt.%). The
graphene oxide suspension was washed using repeated centrifugation at 9,000 rpm
(Thermo Scientific Sorvall LYNX 6000 Superspeed Centrifuge) and redispersion in
double-distilled water. The work-up was carried out until the supernatant water of
the centrifuged CMG was close to pH 6, typically occurring after 16 washing cycles.
Low speed (o1,000 r.p.m.) centrifugation cycles were performed to remove any
un-exfoliated graphite particles.

Preparation of rCMG ice templated networks. A suspension of CMG in
water (10 mg ml� 1) was prepared as described above and 0.5 wt.% of Sucrose
(S0389 Aldrich) with 0.5 wt.% of poly(vinyl alcohol) (Mw 89,0000-98,000
hydrolysed) with respect to the CMG content were added as binders and structural
modifiers. The modified slurry was stirred for 2 h and degassed. It was then poured
into a Teflon die and freeze casted at 2 �C min� 1 to form 33� 20� 8 mm3

parallelepipeds. The frozen green bodies were freeze dried for 48 h followed by
thermal reduction at 900 �C for 1 h in H2/Ar atmosphere.

CMG and freeze casted rCMG characterization. The lateral dimensions of
the CMG flakes were measured using optical microscopy and ImageJ software
over 100 flakes deposited on a silicon wafer. The CMG content in the slurry was
estimated from freeze-dried CMG samples.

Preparation of rCMG/ceramic composites. The rCMG/ceramic composites
were obtained by infiltrating the rCMG networks with a ceramic precursor
mixture followed the subsequent polymer-to-ceramic conversion. Infiltration
was done in a vacuum caster by immersing the rCMG networks in a solution
of polymethylsiloxane (MK Silres—Wacker Chemistry) and a cross-linkable
processing aid: methyltriethoxysilane (Sigma Aldrich). Components were mixed
in a 2:1 ratio with a small amount (0.1 wt.%) of dibutyltin dilaurate as catalyst.
The immersed networks were left to dry in ambient conditions and the polymer
formed a gel within 2 days. After gelation, the networks were extracted from the gel
and left to dry further in air for 1 week. The drying process was completed
by a heat treatment at 200 �C for 1 h in air. Finally, the rCMG/polymer composites
were pyrolysed in a tube furnace under flowing nitrogen. Samples were heated to
1,000 �C at 2 �C min� 1, followed by a 1 h dwell. The obtained rCMG/ Si–O–C
composites were left to cool down to room temperature. The samples were further
densified using spark plasma sintering (SPS). Composites were placed in standard
graphite dies (30 mm in diameter) and embedded in Al2O3 powder to ensure an
even load distribution (Supplementary Fig. 5). The samples were heated to the
sintering temperature at a rate of 100 �C min� 1 with a dwell time of 8 min. The
pressure was held constant at 5 MPa to allow degassing. Once the temperature
reached 1,400 �C, the pressure was increased to 50 MPa in 3 min.

Composites characterization. The density of the composites was measured using
the Archimedes method. The vol.% of rCMG in the composite was calculated by

considering the volume of the rCMG network, density of rCMG and density
of the matrix.

X-ray diffraction patterns in the 2y range 10–70� were measured on
a Bruker D2 PHASER desktop diffractometer using Cu-Ka radiation, with
a total integration time of 1,232 s. Raman spectra were recorded with a WITec
confocal Raman microscope using a 532 nm excitation laser source at a laser
power of 1 mW. The spectra were collected over an area of 25� 25 mm2 and an
average spectrum was calculated.

Mechanical testing. Rectangular beams were cut from the sintered composites
along the freezing direction, using a water cooled diamond blade. The final
dimensions of the beams were 25±0.05 mm long (L), 3±0.1 mm wide (W) and
2±0.2 mm thick (B) with the graphene layers parallel to the tension face. All of the
beams were polished to a 1 mm finish. Flexural strength was determined by
four point bending tests carried out on un-notched beams following the
ASTM C1161-13 standard. The tests were conducted at room temperature
on a Zwick Roell universal testing machine with a displacement rate of
0.2 mm min� 1. Both fracture toughness and R-curve measurements were
measured on single edge V-notched beams (SEVNB). The beams were pre-notched
using a water cooled diamond blade and sharpened manually using a razor blade
and 1 mm diamond paste.

The specimens for R-curve measurement and plane-strain fracture toughness
KIC, where first notched with a diamond blade of 200mm thickness. The notch was
then sharpened using a razor blade using paste of 1 mm. Sharp cracks of almost
the half (a/WB0.5) of the thickness of each specimens were obtained for the
R-curve measurement to favour a more stable crack propagation44. In accordance
with the standard (ASTM-E1820� 1), the notch sizes of SENB specimen for
KIC measurement were between 0.12 and 0.3 of W. For the R-curve measurements,
samples were tested in four point bending (SB18 mm) with an Instron
8500 universal testing machine at a displacement rate of 0.01 mm min� 1. The
beams were loaded until crack propagation was observed in the load/displacement
curve, apparent as a change in the compliance of the material. Afterwards, the
specimen was unloaded and the crack was measured with an optical microscope
(Zeiss, AxioCam). Different measurements of crack propagation were taken with
the precaution of loading the sample always in the same position. The deflections
were measured by a linear variable differential transformer.

Nonlinear elastic fracture mechanisms analysis was used to evaluate fracture
resistance of the samples as the crack propagated’ through the microstructure.
The J-integral versus Da crack extension were estimated. In the J-integral two
contributions were taken into account, the elastic Jel¼ KIC

2/E and the plastic
Jpl¼ 1.9Apl/Bb where Apl is the plastic area under the load-displacement curve,
B the specimen width and b the un-cracked ligament. From the evaluation of J it is
possible to extract the values of K using the J–K equivalence for nominally
mode I fracture (KJ¼ (J � E)1/2) The same type of evaluation has been used before in
other studies such as on bone, nacre-like composite and metallic glasses45,46.

Transmission electron microscopy. Work was carried out on a Cs aberration
corrected FEI Titan 80–300 S/TEM operated at 300 kV. Transmission electron
microscopy (TEM) specimens were prepared from the bulk composite sample
by focus ion beam (FIB) milling using a Helios NanoLab 600 instrument
(2–30 keV Gaþ incident beam energy with currents of 16 pA–21 nA). To reduce
the damage caused by the high energy Gaþ beam and improve the quality
of the specimens for subsequent TEM analysis, the specimens were polished at the
last stage with 2 keV Gaþ ions.

X-ray photoelectron spectroscopy. Analyses were performed on CMG and
rCMG 3D networks using a K-Alpha spectrometer (ThermoFisher Scientific;
East Grinstead, UK). XPS spectra were acquired using a microfocused
monochromatic Al Ka X-ray source (hu¼ 1,486.6 eV). An X-ray spot of
B400� 800mm ellipse shape was used and three different areas were spotted.
Core level C1s, CKLL, O1s, N1s,Mn1s, S2p, Na1s spectra were acquired using
a pass energy of 200 eV and high regions at 40 eV. Casa XPS was used for data
interpretation. Shirley or two-point linear background subtractions were employed
depending on background shape. Scofield cross-sections were used as relative
sensitivity factors in the calculation of the atomic percentages (with RSF of
C 1 s¼ 1.000). Peaks were fitted using GL(30) lineshapes; a combination
of a Gaussian (70%) and Lorentzian (30%). All XP spectra were charge corrected by
referencing the fitted contribution of C-C graphitic like carbon in the C 1 s signal to
284.6 eV. The atomic percentages were calculated from the peak areas in the
acquired high resolution C 1 s and O 1 s photoelectron spectra using Scofield
sensitivity factors.

Scanning electron microscopy. The microstructure of the material was analysed
with a JSM 6010 LA from JEOL using secondary or backscattered electrons. Green
CMG networks were gold coated prior to observations.

Bulk electrical conductivity. Measurements on the rCMG networks and
composites were performed using a four point probe setup composed by a standard
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bench-top PSU using a constant direct current of 20 mA, and a bench-top
multimeter to monitor the voltage drop across the sample.

Joule heating experiments. Experiments were performed under constant
nitrogen flow. Samples were mounted in a custom made setup. As the effective
crossectional area of the conductive phase is very low, sufficient pressure and
compliant electrodes are used to insure good contact.

Electrical sensing. Tests were performed on notched beams (25� 2� 3 mm3) of
rCMG/ Si–O–C composite materials by propagating stable cracks on four point
bending mode at displacement rate of 0.001 mm min� 1 allowing for the detection
of stable crack growth. The drop of potential across the notch was continuously
monitored through the same four point probe apparatus as described above whilst
keeping a constant current flow of 20 mA. Crack lengths were measured by pictures
taken in the SEM and correlated to the recorded voltage drop during bending.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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