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The existence of perfect codes in a family of generalized

Fibonacci cubes

Michel Mollard
∗

Abstract

The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of the n-cube
Qn induced by vertices with no consecutive 1’s. In an article of 2016 Ashrafi and
his co-authors proved the non-existence of perfect codes in Γn for n ≥ 4. As an
open problem the authors suggest to consider the existence of perfect codes in
generalization of Fibonacci cubes. The most direct generalization is the family
Γn(1

s) of subgraphs induced by strings without 1s as a substring where s ≥ 2 is a
given integer. We prove the existence of a perfect code in Γn(1

s) for n = 2p − 1
and s ≥ 3.2p−2 for any integer p ≥ 2.

Keywords: Error correcting codes, perfect code, Fibonacci cube.
AMS Subj. Class. : 94B5,0C69

1 Introduction and notations

Let G be a connected graph. The open neighbourhood of a vertex u is N(u) the set
of vertices adjacent to u. The closed neighbourhood of u is N [u] = N(u) ∪ {u}. The
distance between two vertices noted dG(x, y), or d(x, y) when the graph is unambiguous,
is the length of the shortest path between x and y. We have thus N [u] = {v ∈
V (G); d(u, v) ≤ 1}.

A dominating set D of G is a set of vertices such that every vertex of G belongs to
the closed neighbourhood of at least one vertex of D. In [2], Biggs initiated the study
of perfect codes in graphs a generalization of classical 1-error perfect correcting codes.
A code C in G is a set of vertices C such that for all pair of distinct vertices c, c′ of C
we have N [c] ∩N [c′] = ∅ or equivalently such that dG(c, c

′) ≥ 3.
A perfect code of a graph G is both a dominating set and a code. It is thus a set of

vertices C such that every vertex of G belongs to the closed neighbourhood of exactly
one vertex of C. A perfect code is some time called an efficient dominating set. The
existence or non-existence of perfect codes have been considered for many graphs. See
the introduction of [1] for some references.
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The vertex set of the n-cube Qn is the set Bn of binary strings of length n, two ver-
tices being adjacent if they differ in precisely one position. Classical 1-error correcting
codes and perfect codes are codes and perfect codes in the graph Qn. The concatena-
tion of strings x and y is noted x||y or just xy when there is no ambiguity. A string
f is a substring of a string s if there exist strings x and y, may be empty, such that
s = xfy.

A Fibonacci string of length n is a binary string b = b1 . . . bn with bi · bi+1 = 0 for
1 ≤ i < n. In other words a Fibonacci string is a binary string without 11 as substring.
The Fibonacci cube Γn (n ≥ 1) is the subgraph of Qn induced by the Fibonacci strings of
length n. Fibonacci cubes were introduced as a model for interconnection networks [3]
and received a lot of attention afterwards. These graphs also found an application
in theoretical chemistry. See the survey [4] for more results and applications about
Fibonacci cubes.

The sets {00} and {010, 101} are perfect codes in respectively Γ2 and Γ3. In a
recent paper [1] Ashrafi and his co-authors proved the non-existence of perfect codes
in Γn for n ≥ 4. As an open problem the authors suggest to consider the existence of
perfect codes in generalization of Fibonacci cubes. The most complete generalization
proposed in [5] is, for a given string f , to consider Γn(f) the subgraph of Qn induced
by strings that do not contain f as substring. Since Fibonacci cubes are Γn(11) the
most immediate generalization [6, 7] is to consider Γn(1

s) for a given integer s. We
will prove the existence of perfect codes in Γn(1

s) for an infinite family of parameters
(n, s).

It will be convenient to consider the binary strings of length n as vectors of Fn

the vector space of dimension n over the field F = Z2 thus to associate to a string
x1x2 . . . xn the vector θ(x1x2 . . . xn) = (x1, x2, . . . , xn). The Hamming distance between
two vectors x,y ∈ F

n, d(x,y) is the number of coordinates in which they differ. The
parity function is the function from F

n to Z2 defined by π(x) = π(x1, x2, . . . , xn) =
x1+x2+ . . .+xn. By the correspondence θ we can define the sum x+y, the Hamming
distance d(x,y) and the parity π(x) of strings in Bn. Note that Hamming distance
is the usual graph distance in Qn. The complement of a string x ∈ Bn is the string
x = x+ 1n.

We will first recall some basic results about perfect codes in Qn. Since Qn is a
regular graph of degree n the existence of a perfect code of cardinality |C| implies
|C|(n + 1) = 2n thus a necessary condition of existence is that n + 1 is a power of 2
thus that n = 2p − 1 for some integer p.

For any integer p Hamming [8] constructed, a linear subspace of F2p−1 which is a
perfect code. It is easy to prove that all linear perfect codes are Hamming codes.
In 1961 Vasilev [9], and later many authors, see [10, 11] for a survey, constructed perfect
codes which are not linear codes. Let us recall Vasilev’s construction of perfect codes.

Theorem 1.1 [9] Let Cr be a perfect code of Qr. Let f be a function from Cr to Z2 and
π be the parity function. Then the set C2r+1 = {x||π(x) + f(c)||x+ c;x ∈ Br, c ∈ Cr}
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is a perfect code of Q2r+1

We recall also the proof of Theorem 1.1 in such a way our article will be self contained.
Proof. Fist notice that |C2r+1| = 2r|Cr| = 2r 2r

r+1 = 22r+1

2r+2 . Thus if is sufficient to
prove that the distance between to different elements of C2r+1 is at least 3.
Consider d(x||π(x) + f(c)||x + c,x′||π(x′) + f(c′)||x′ + c′) = d1 + d2 + d3 where
d1 = d(x,x′), d2 = d(π(x) + f(c), π(x′) + f(c′)) and d3 = d(x+ c,x′ + c′).
If d1 = 0 then x = x′ thus d3 = d(c, c′) ≥ 3.
If d1 = 1 and c = c′ then d2 = d3 = 1
If d1 = 1 and c 6= c′ then d3 ≥ 2 otherwise d(c, c′) ≤ 2
If d1 = 2 then d3 6= 0 otherwise d(c, c′) = 2
Thus d = d1 + d2 + d3 ≥ 3. �

If f(c) = 0 for any c ∈ Cr we obtain the classical inductive construction of Hamming
codes with C1 = {0} as basis.

In the next section we will use this construction starting from the Hamming code
in Qr as Cr and a function f chosen in such way that the strings of the constructed
code C2r+1 has not a too big number of consecutive 1’s.

2 Main Result

Lemma 2.1 Let m be an integer. Let A0 be the set of strings A0 = {0m+1y;y ∈ Bm}.
For i ∈ {1, . . . ,m} let Ai = {z10m+1y;z ∈ Bi−1,y ∈ Bm−i}. Then the sets Ai are
disjoint and any string of B2m+1 containing 0m+1 as substring belongs to a Ai.

Proof. Let x be a string of B2m+1 containing 0m+1 as substring and i be the minimum
integer such that xi+1xi+2 . . . xi+m+1 = 0m+1. Then i = 0, and x belongs to A0, or
m ≥ i ≥ 1. In this case xi = 1 thus x ∈ Ai. Assume x ∈ Ai ∩Aj with m ≥ j > i ≥ 0
then xj = 1 thus j ≥ i+m+ 2 > m a contradiction.

Theorem 2.2 Let n = 2p − 1 where p ≥ 2 and let s = 3.2p−2. There exists a perfect
code C in Qn such that no elements of C contains 1s as substring.

Proof. Let m = 2p−2 − 1 thus 2m + 1 = 2p−1 − 1 and s = 3m + 3. Let C2m+1 be a
perfect code in Q2m+1. Let f be the function from B2m+1 to Z2 defined by

• f(0m+1y) = 1 for y ∈ Bm

• f(10m+1y) = 0 for y ∈ Bm−1

• f(z10m+1y) = π(z) for z ∈ Bi−1 and y ∈ Bm−i for i = 2 to m.

• f = 0 otherwise.

3



Note that from the previous lemma the function is well defined. Let C be the perfect
code obtained from Vasilev’s construction from C2m+1 and f . Assume there exists a
string d in C with 13m+3 as substring. Therefore d is obtained from x = d1d2 . . . d2m+1

and c ∈ C2m+1. Since n = 4m + 3 note first that dm+1dm+2 . . . d3m+3 = 12m+2. Let i
be the minimum integer such that didi+1 . . . d3m+i+2 = 13m+3. We consider 3 cases

• i = 1 then x = d1d2 . . . d2m+1 = 12m+1 and d2m+2d2m+3 . . . d3m+3 = 1m+2. Since
c + x = 1m+1d3m+4d3m+5 . . . d4m+3 we have c = 0m+1y for some y ∈ Bm. Thus
f(c) = 1 and since π(x) = 1 we obtain d2m+2 = f(c) + π(x) = 0 a contradiction.

• i = 2 then x = 012m and d2m+2d2m+3 . . . d3m+4 = 1m+3. Since c + x =
1m+2d3m+5d3m+6 . . . d4m+3 we have c = 10m+1y for some y ∈ Bm−1. Thus
f(c) = 0 and since π(x) = 0 we obtain d2m+2 = f(c) + π(x) = 0 a contra-
diction.

• i ≥ 3 then x = z012m−i+2 for z ∈ Bi−2 and d2m+2d2m+3 . . . d3m+2+i = 1m+i+1.
Since c + x = 1m+id3m+i+3d3m+i+4 . . . d4m+3 we have c = z10m+1y for some
y ∈ Bm−i+1. Thus f(c) = π(z). Since π(x) = π(z) + π(12m−i+2) and π(z) +
π(z) = π(1i−2) we obtain d2m+2 = f(c) + π(x) = π(12m) = 0 a contradiction.

Therefore there exists no string d in C with 13m+3 as substring. �

Corollary 2.3 Let n = 2p − 1 where p ≥ 2 and let s ≥ 3.2p−2. There exists a perfect
code in Γn(1

s).

Proof. Indeed let C be a perfect code in Qn such that no element of C contains 13.2
p−2

as substring. The strings of C are in V (Γn(1
s)). Let x be a vertex of V (Γn(1

s)). If
x /∈ C then x is adjacent in Qn to a vertex c in C. Note that x and c are also adjacent
in Γn(1

s) thus C is a dominating set of Γn(1
s). If c and c′ are two strings of C then

dΓn(1s)(c, c
′) ≥ dQn

(c, c′) ≥ 3. Therefore C is a perfect code in Γn(1
s).

3 Concluding remark and open problems

Whenever n = 2p−1 it will be interesting to determine the minimum s such that there
exists a perfect code in Γn(1

s).
Corollary 2.3 is not always the best result possible. For example for n = 7 the code

C7 obtained in Vasilev’s construction starting from C3 = {000, 111} with f(000) =
f(111) = 1 is a perfect code in Γn(1

5). Indeed

• 11111ab or 0011111 cannot be in C7 since the P (111) + 1 = P (001) + 1 = 0

• 011111a cannot be in C7 since the possible codewords begining with 011 are
0111011 and 0111100.
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Note that that all strings of this code are obtained from strings in the Hamming code
of length 7 by a translation of 0001000. This simple idea can be generalized but is less
efficient than our result in the general case.

We propose also the following conjecture:

Conjecture 3.1 For n ≥ 3 and s ≥ 1 if C is a perfect code in Γn(1
s) then n = 2p − 1

for some integer p and furthermore C is a perfect code in Qn.

.
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