
I. Axial flux electrical permanent magnet machine modeling 
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 Introduction 

The present work proposes a methodology for electrical machines design. It is based on the use non-linear reluctance network (RelNet) and multilevel 

surrogate based optimization via Space Mapping technique: 

The non-linear reluctance network is solved by computing the meshes magnetic flux and its topology is automatically updated for each rotor position. 

Space Mapping (SM) is used to couple linear and saturated models in an optimization procedure by means of two techniques: Radial Output Space 

Mapping and Embedded Space Mapping. 

VI. Application 

III. Non-linear mesh-based resolution 
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IV. Numerical validation 

 Conclusion 
 A reliable tool dedicated to the modeling of machine based on the 

conventional reluctances network and multilevel optimization is presented.  

 Two SM techniques are presented to couple the saturated and linear models 

in order to reduce the computation time and to converge to the most accurate 

solution. 

V. Multilevel Optimization (ROSM/ ESM) 

 Objectif : Couple Saturated and non saturated model in an optimization      

           procedure in order to minimize global optimization simulation time 

II. Reluctance network 
 Air-gap network 

Air-gap modeled by 3 layers : 

ax : Horizontal reluctances 

 

 

ay : Vertical reluctances 
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Moving layer 
Air-gap is discretized along its length 

by means of dx 

 Rotor & stator networks Teeth reluctances reported to ay 

Ψ: Meshes flux 

Φ : Edges flux 

[S]: Structure matrix 

[R]: Reluctances matrix 

Fmm: Magnetomotive forces 

[Cg]: Geometrical constant matrix 

H: Magnetic field function: H(B) 

Bn : Normal flux density 

Ht : Tangentiel Magnetic field 
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V. 1.  ROSM 
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 Surrogate model: 

 RBF function: 

V. 2.  ESM 
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