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Abstract— This paper presents an original methodology for 

machine design. The methodology is based on nonlinear 

reluctance network modeling and multilevel surrogate based 

optimization. The reluctance network is solved by computing the 

meshes magnetic flux and its topology is updated for each rotor 

position. In order to achieve an optimal design, in terms of 

satisfying some specifications, a surrogate based optimization 

inspired from the Space Mapping (SM) technique is considered. 

Optimization is held on the linear model and is iteratively 

corrected, through a new embedded strategy, by the nonlinear 

one. Finally, the proposed application is a constrained 

minimization of axial flux machine losses on an artemis cycles. 

Index Terms— Design methodology, design optimization, 

Nonlinear systems, Approximation methods, Permanent magnet 

machines, Automotive applications. 

I. INTRODUCTION 

Achieving an optimal design in engineering applications, in 

terms of design specifications, is often a compromise between 

final solution accuracy and fast computation/simulation time.  

In electromagnetic modeling magnetic equivalent circuit 

based on reluctance network method is known to be a good 

compromise between computation time and precision. 

Although the computation time using this methodology is 

reduced, the problem remains when taking into account the 

magnetic saturation in comparison with the linear model. 

Hence, in order to optimize the machine, it is more suitable to 

use the linear model, but the relevant problem remains the 

final solution accuracy. Surrogate based optimization by 

means of Space Mapping techniques is proven to be an 

efficient optimization method when dealing with costly 

models. Space Mapping technique allows the establishment of 

a surrogate model substituting a costly one on the bulk of an 

existing physical cheap model. 

This paper presents an original modeling methodology 

based on reluctance networks (linear/nonlinear) and multilevel 

optimization by means of an embedded correction strategy.  

II. MODELING METHODOLOGY 

The reluctance network can be solved by computing the 

nodal magnetic potential [1] or by computing the meshes 

magnetic flux [2]. A comparison between both formulations 

[3],[4] shows the advantage of using mesh-based model, under 

nonlinear operating conditions. In nodal formulation the 

deduced Jacobian can be ill conditioned. Therefore the 

Newton-Raphson algorithm convergence cannot be assured on 

the opposite of the mesh-based model. 

A. Nonlinear modeling 

With the purpose of determining outputs values of a 

machine, i.e. torque, electromotive forces, magnetic forces, 

energy. It is important at first sight to determine magnetic flux 

circulating in the machine. For the chosen model it has to be 

supplied by three-phase alternative currents. A machine’s map 

in terms of magnetic flux is established for all reluctances. It is 

function of nb rotor position, nc current values and np phase 

angle values. From this 4D flux matrix, mean torque and emf 

coefficients maps are deduced as a function of nc current 

values and np phase shift values. Though in saturation mode, 

the map is established as follows:  

Step 1; establish incidence matrix [S], describing 

reluctance network connections at current rotor position.  

Step 2; calculate f
stat

= [Fb1, Fb2, Fb3] for the current and 

phase angle values, magnetomotive forces for all branches: 

fmm= [f
ag

x, f
ag

yr, f
rot

, f
ag

yf,f
stat

], magnetomotive forces for  meshes 

Fmm=[S].fmm. 

Step 3; resolve the system in linear model (1): 

 Fmm−[S][R][S]
T
Ψ

L
=0 (1) 

Step 4; initialize Newton-Raphson such that: Ψ
NL

0 =Ψ
L
. 

Step 5; solve nonlinear system (2) using (3), [Cg] matrix 

describing geometrical aspect of reluctances, H magnetic field 

and Sect a vector describing the sections: 

 f(Ψ)=Fmm − [S][Cg]H([S]
T
Ψ

NL
.Sect

-1 
)=0 (2) 

Newton-Raphson: Ψ
NL

iter+1=Ψ
NL

k-λ .J(Ψ
NL

iter)
-1

.f(Ψ
NL

iter)  (3) 

Step 6; compute branches flux φ
NL

nijk =[S]
T
Ψ

NL
nijk  (4) 

III. SURROGATE MODEL BUILDING  

A. Space Mapping 

The Space Mapping technique, proposed by Bandler in 

1994 [5], is considered as an efficient surrogate based 

optimization, which allows us to exploit costly models without 

being prohibited by time calculation. In order to do so, 

optimization is held on a coarser, faster model, and the fine 

one is used to correct it. The corrected coarse model will be 

designated as the surrogate model. 

B. Embedded multilevel for MEC 

To use the reluctance network model efficiently, 

adjustment of the 4D flux matrix of the linear model (coarse) 

is done by means of the nonlinear one (fine). The used 

correction is based on an additive one [6], and the magnetic 
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state is supposed to be constant on a trust region around the 

surrogate optimal solution. The global outlines of the 

procedure are:  

Step 0; perform optimization on linear model, x
iter

=x
*

coarse.  

Step 1; evaluate nonlinear model at x
iter

, extract saturated 

flux map.φ
*NL

nijk, end if stopping criteria are satisfied.  

 

Step 2; compute flux corrector:  

 ϑ
iter

nijk= φ
*NL

nijk− φ
*L

nijk. (5) 

Step 3; iter=iter+1, define surrogate model as:  

 φ
SL

nijk(x) = φ
L

nijk(x)+ ϑ
iter-1

nijk. (6) 

Step 4; set x
iter

0 = x
*

coarse, carry out optimization on 
surrogate model, back to step 1. Computation time of fine 
model is 5803 (s) and for the coarse model 20 (s). 

IV. APPLICATION 

A. Optimization problem 

For the proposed application, our aim is to find optimal 

physical characteristics of an axial flux 6 slots 8 poles machine 

with a view to minimize the machine's total losses on an 

artemis automotive cycles and respect five constraints about 

the machine's torques, electromotive forces and current density 

[7]. The problem is in (8) 
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B. Results and comparison 

SQP algorithm is used in order to perform this mono 

objectif optimization. In this type of algorithms the final 

solution depends on the chosen starting point. Multistart points 

are chosen to perform optimization on the coarse model. Fig.1-

3 present the convergence histories for the space mapping 

optimization for two starting points. Fig.5-6 present the 

comparison between reluctance network flux and finite 

element method under linear and nonlinear conditions. 

 
Fig.1. Total losses convergence history  

 
Fig.2. Emf high speed convergence history  

 
Fig.3. Detailed high speed emf convergence history 

 
Fig.4. Emf for 56 (A) rated current and 25 (°) shift angle 

 
Fig.5.Comparison of flux linkage at 100 (A) linear 

 
Fig.6.Comparison of flux linkage at 100 (A) nonlinear 

V. CONCLUSION 

In the final paper, detailed explanations of the proposed 

method optimization and results will be further investigated as 

well as the results of a 12 slots 8 poles machine.  
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