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Abstract
The Pari-Mutuel model is a distortion model that has its origin in horse racing. Since then, it has
been applied in many different fields, such as finance or risk analysis. In this paper we investigate
the properties of the Pari-Mutuel model within the framework of Imprecise Probabilities. Since a
Pari-Mutuel model induces (2-monotone) coherent lower and upper probabilities, we investigate its
connections with other relevant models within this theory, such as probability intervals and belief
functions. We also determine the number of extreme points of the credal set induced by the Pari-
Mutuel model and study how to combine the information given by multiple Pari-Mutuel models.

Keywords: Pari-mutuel bets, credal sets, probability intervals, belief functions, information fu-
sion.

1. Introduction

The Pari-Mutuel model (PMM, for short) is a betting scheme originated in horse racing, that has
been used in other fields like economics, risk analysis or life insurance. It considers a probability
P0 which models the fair price for a bet fixed by an agent, usually called House. In order to ensure a
positive gain, House transforms this fair gain into a slightly greater value given by (1+ δ)P0, where
δ > 0 is interpreted as the taxation from House. We refer to (Gerber, 1979; Peters et al., 2007;
Terrell, 1994; Thaler and Ziemba, 1988) for some detailed studies on the PMM.

Using this interpretation, the PMM can be embedded into the Theory of Imprecise Probabilities:
it determines lower and upper bounds for the probability of any event. These lower and upper
probabilities satisfy the usual consistency requirement of coherence (Walley, 1991), and therefore
they can be equivalently represented by means of the set of probability measures they bound. This
set is a convex set of probabilities usually called credal set. Furthermore, the PMM satisfies the
additional property of 2-monotonicity that offers computational advantages (Destercke, 2013).

To the best of our knowledge, there are few studies of the PMM from the point of view of
imprecise probabilities. For example, (Pelessoni et al., 2010) studied the PMM as a risk measure
and how to extend it from events to gambles, and (Utkin and Wiencierz, 2013) investigated how to
use the PMM in classification problems.

In this paper, we further investigate the PMM from the point of view of Imprecise Probabilities.
The rest of the paper is organized as follows: Section 2 recalls the definition and basic properties
of the PMM. In Section 3 we investigate the connections between the PMM and other models from
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Imprecise Probability Theory. In particular, we first prove that a PMM can be represented by means
of a probability interval, and secondly we characterize the conditions a PMM must satisfy in order
for its lower probability to be not only 2-monotone but also a belief function. Then, Section 4
studies some properties of the extreme points of the credal set induced by a PMM. On the one hand
we investigate the form and the maximal number of extreme points of the credal set; on the other
hand we give an upper bound of the number of extreme points. A number of procedures for merging
different sources of information in the context of PMMs are investigated in Section 5. Due to space
limitations, proofs as well as some less relevant explanations have been omitted.

2. Basic Notions About the Pari-Mutuel Model

LetX = {x1, . . . , xn} denote a finite universe and let P0 be a probability measure defined onP(X ).
We shall assume throughout that P0({xi}) > 0 for i = 1, . . . , n; the results generalize easily to the
case where some elements have probability zero.

Given δ > 0, the pari-mutuel model (PMM, for short) induced by P0, δ, that we shall denote
(P0, δ), is given by the following lower and upper probabilities:

P (A) = max{(1 + δ)P0(A)− δ, 0} and P (A) = min{(1 + δ)P0(A), 1} ∀A ⊆ X . (1)

The functions P , P are conjugate, meaning that P (A) = 1 − P (Ac) ∀A ⊆ X . Also, since
P0({xi}) > 0 ∀i = 1, . . . , n, it holds that P (A) ≥ P0(A) > 0 for every A ⊆ X .

The interpretation of the parameter δ can be found in (Walley, 1991, Sec. 2.9.3). There, it is
proven that P (A)−P (A) ≤ δ for any A, and the equality is attained if and only if 1

1+δ ≤ P0(A) ≤
δ

1+δ . In particular, this condition holds when 0 < P (A) < P (A) < 1. Therefore, δ may be
understood in terms of the imprecision allowed in the definition of P0(A).

Note also that, since the lower probability of a PMM can be obtained as a convex transformation
of a probability measure, it follows (Denneberg, 1994) that P is 2-monotone, meaning that

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B)

for any A,B ⊆ X . As a consequence (Walley, 1991), P , P are coherent, that is, they are respec-
tively the lower and upper envelopes of the credal set associated with the PMM, given by

M(P0, δ) = {P probability | P (A) ≤ P (A) ≤ P (A) ∀A ⊆ X}. (2)

3. PMM and Other Imprecise Probability Models

In this section, we study the connection between the PMM and other relevant imprecise probability
models. In particular, we show that PMMs in a finite setting are particular instances of probability
intervals, and study the conditions a PMM must satisfy in order to induce a belief function.

3.1 Connection Between PMM and Probability Intervals

Probability intervals on X (de Campos et al., 1994; Tessem, 1992) are just lower probabilities
defined on the singletons and their complementaries. Specifically, a probability interval is given by:

I = {[li, ui] : i = 1, . . . , n},
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where it is assumed that li ≤ ui and where the interpretation of [li, ui] is that the unknown or impre-
cisely specified probability of xi belongs to the interval [li, ui]. A probability interval determines a
credal set by:

M(I) = {P probability | li ≤ P ({xi}) ≤ ui, i = 1, . . . , n}, (3)

and the lower and upper envelopes ofM(I) determine coherent lower and upper probabilities by:

l(A) = inf
P∈M(I)

P (A) and u(A) = sup
P∈M(I)

P (A) ∀A ⊆ X . (4)

A probability interval I is called reachable (coherent in the terminology of Walley (1991)) whenever
the functionals l, u determined by Eq. (4) satisfy l({xi}) = li and u({xi}) = ui for all i = 1, . . . , n.
This is equivalent to the following inequalities:∑

j 6=i
lj + ui ≤ 1 and

∑
j 6=i

uj + li ≥ 1 ∀i = 1, . . . , n. (5)

For a detailed study on probability intervals, we refer to (de Campos et al., 1994). See also (Guo
and Tanaka, 2010; Skulj, 2009; Tanaka et al., 2004) for other relevant works on this topic.

By considering the restrictions to singletons of the lower and upper probabilities associated
with a PMM, we can associate a reachable probability interval with any PMM. Interestingly, this
probability interval keeps all the information about the PMM, in the sense that both determine the
same credal set. In other words, PMMs are particular cases of reachable probability intervals, as
our next result shows:

Theorem 1 Let P0 be a probability measure on P(X ), δ > 0 and (P0, δ) the PMM they induce.
Define the probability interval I = {[li, ui] : i = 1, . . . , n} by li = P ({xi}) and ui = P ({xi}),
where P , P are given by Eq. (1). Then, ifM(I) denotes the credal set associated with I by means
of Eq. (3), it holds that:

1. The probability interval I = {[li, ui] : i = 1, . . . , n} is reachable.

2. M(I) =M(P0, δ), or equivalently, P (A) = l(A) and P (A) = u(A) for any A ⊆ X .

Thus, the PMM is a particular case of probability interval. On the other hand, the latter model is
more general, in the sense that not every reachable probability interval can be expressed in terms of
a PMM.

Example 1 Consider the four-element space X = {x1, x2, x3, x4} and the probability interval
I = {[li, ui] : i = 1, . . . , 4} given by:

x1 x2 x3 x4
li 0.2 0.1 0.3 0.2
ui 0.4 0.2 0.5 0.4

which can be shown to be reachable using Eq. (5). To see that I is not representable by a PMM
(P0, δ), note that from the comments in Section 2, any set A such that 0 < P (A) < P (A) < 1
should satisfy P (A)− P (A) = δ. However, in this example it holds that:

0 < l({x1}) = l1 = 0.2 < 0.4 = u1 = u({x1}) < 1 and

0 < l({x2}) = l2 = 0.1 < 0.2 = u2 = u({x2}) < 1,

whence u({x1})−l({x1}) = 0.2 and u({x2})−l({x2}) = 0.1. Thus, the difference is not constant,
and therefore l, u cannot be represented by means of a PMM. �
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3.2 Connection Between PMM and Belief Functions

As we mentioned in Section 2, the lower probability of a PMM is 2-monotone. In this section we
study under which conditions it is moreover completely monotone. Complete monotonicity means
that for any p ∈ N and any sets A1, . . . , Ap ⊆ X , it holds that

P (∪pi=1Ai) ≥
∑

J⊆{1,...,n}

(−1)|J |−1P (∩i∈JAi).

A completely monotone lower probability is usually called a belief function. Belief functions
(Shafer, 1976) are determined by their Möbius inverse m : P(X ) → [0, 1], which is a mass func-
tion on the subsets of X , by means of the formula P (A) =

∑
B⊆Am(B). The sets A ⊆ X such

that m(A) > 0 are called the focal elements of P . Conversely, the Möbius inverse m of a lower
probability P is determined by the formula

m(B) =
∑
A⊆B

(−1)|B\A|P (A), (6)

and P is a belief function if and only if the function m given by Eq. (6) satisfies m(A) ≥ 0 for
every A ⊆ X .

We start with a simple result from which we deduce that in general the PMM is not 3-monotone,
and therefore it is not completely monotone either.

Proposition 2 Let P be the lower probability associated with a PMM (P0, δ), with |X | ≥ 3. If
there are different xi, xj , xk such that P ({xi}), P ({xj}), P ({xk}) > 0, then P is not 3-monotone.

To see that the hypotheses of this proposition may be satisfied, let P0 be the uniform distribution on
{x1, x2, x3} and take δ = 1

3 : it follows from Eq. (1) that P ({x1}) = P ({x2}) = P ({x3}) = 1
9 .

Next, we establish necessary and sufficient conditions for the PMM to induce a belief function.
For this aim we define the non-vacuity index of a PMM as k = min{|A| : P (A) > 0}.

Theorem 3 Let P be the lower probability induced by a PMM (P0, δ) by Eq. (1), and denote by k
its non-vacuity index. P is a belief function if and only if one of the following conditions is satisfied:

(B1) k = n.

(B2) k = n− 1 and
∑n

i=1 P (X\{xi}) ≤ 1.

(B3) k < n − 1, there exists a unique B with |B| = k and P (B) > 0, and P (A) > 0 if and only
if B ⊆ A.

(B4) k < n− 1, there exists a unique B with |B| = k − 1 and δ = P0(B)
1−P0(B) , and P (A) > 0 if and

only if B ⊂ A.

Proof (Sketch) For sufficiency, it suffices to take into account that cases (B1)–(B4) determine a
belief function with focal elements:

(a) X , in the case of (B1);

(b) {X ,X \ {x} : ∀x ∈ X}, in the case of (B2);
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(c) {B,B ∪ {x} : ∀x /∈ B}, in the case of (B3); and

(d) {B ∪ {x} : ∀x /∈ B}, in the case of (B4).

For necessity, if P is a belief function and we consider its associated non-vacuity index, we
prove that the cases k = n, k = n− 1 and k < n− 1 determine the focal elements depicted in (a),
(b) or (c)-(d) above, respectively, from which it follows that we are in cases (B1)–(B4) above.

Boodgumarn et al. (2013, Thm. 1) established that a sufficient condition for a probability interval
to induce a belief function is that ∣∣∣∣∣∣

{
i : ui +

∑
j 6=i

lj < 1
}∣∣∣∣∣∣ ≤ 2. (7)

Theorem 3 tells us that this condition is not necessary. Although it holds trivially under condition
(B1) (i.e., for PMMs inducing a vacuous belief function), it is possible to find PMMs satisfying any
of the conditions (B2)–(B4) and not the one in Eq. (7).

4. Extreme points induced by a PMM

Since the coherence of the PMM implies that it is uniquely determined by its (closed and convex)
associated credal set, it becomes interesting to determine the extreme points of the set M(P0, δ)
given by Eq. (2); this is particularly relevant if we want to use the PMM in some applied contexts,
such as credal networks (Antonucci and Cuzzolin, 2010; Cozman, 2005).

Recall that the extreme points ofM(P0, δ) are the probability measures P ∈ M(P0, δ) such
that if P = αP1 + (1− α)P2 for some α ∈ (0, 1), P1, P2 ∈M(P0, δ), then P1 = P2.

Since the lower probability of a PMM is 2-monotone, the extreme points ofM(P0, δ) are asso-
ciated with permutations of X (Chateauneuf and Jaffray, 1989), in the following manner: if σ is a
permutation of {1, . . . , n}, we consider the probability measure Pσ given by

Pσ({xσ(1)}) = P ({xσ(1)}),
Pσ({xσ(k)}) = P ({xσ(1), . . . , xσ(k)})− P ({xσ(1), . . . , xσ(k−1)}) ∀k = 2, . . . , n. (8)

Then, the extreme points ofM(P0, δ) are {Pσ : σ ∈ Sn}, where Sn denotes the set of permutations
of {1, . . . , n}. As a consequence, the number of extreme points ofM(P0, δ) is bounded above by
n!, the number of permutations of a n-element space. In this section, we study if this upper bound
can be lowered in the particular case of the PMM.

4.1 Maximal Number of Extreme Points

We start our study by establishing two preliminary but helpful properties of the PMM. The first
result shows that under some conditions, P is not only sub-additive as a coherent upper probability,
but also additive.

Lemma 4 Let P be the upper probability induced by a PMM (P0, δ) by Eq. (1). If P (A) < 1, then

P (A) =
∑
x∈A

P ({x}). (9)
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We deduce that if P (A∪B) < 1 and A∩B = ∅, then P (A∪B) = P (A) +P (B). Using Eq. (9),
we can prove the second preliminary result, which gives the form of the extreme points in terms of
P and P .

Lemma 5 Consider a PMM (P0, δ), and let P , P be given by Eq. (1). The extreme point Pσ asso-
ciated with the permutation σ by Eq. (8) is given by:

P ({xi}) = P (xi) ∀i = σ(1), . . . , σ(j − 1),

P ({xσ(j)}) = P ({xσ(j), . . . , xσ(n)}),
P ({xσ(j+1)}) = . . . = P ({xσ(n)}) = 0,

where j ∈ {1, . . . , n} satisfies P ({xσ(1), . . . , xσ(j−1)}) < P ({xσ(1), . . . , xσ(j)}) = 1.

The above result is illustrated in the following example.

Example 2 Let X = {x1, x2, x3, x4}, P0 the uniform probability distribution and δ = 0.5. If we
consider the permutation σ = (1, 2, 3, 4), we obtain the extreme point Pσ given by:

Pσ({x1}) = P ({x1}) = 1.5 · 0.25 = 0.375.

Pσ({x2}) = P ({x2}) = 1.5 · 0.25 = 0.375.
Pσ({x3}) = P ({x3, x4}) = 1.5 · 0.5− 0.5 = 0.25.
Pσ({x4}) = 0.

In fact, it can be proven that the extreme points ofM(P0, δ) are given by

P ({xi}) = P ({xi}) = 0.375,

P ({xj}) = P ({xj}) = 0.375,
P ({xk}) = P ({xk, xl}) = 0.25,
P ({xl}) = 0,

for any possible combination of i, j, k, l in {1, 2, 3, 4}. �

Next we use the results above to compute the maximal number of extreme points induced by a
PMM. Note that from Theorem 1 we already know that any PMM is in particular a probability
interval. This means that the number of extreme points induced by a PMM is upper bounded by the
maximal number of extreme points induced by a probability interval. Next theorem shows that this
upper bound can be attained.

Theorem 6 Given a PMM (P0, δ) on X , the maximal number of extreme points ofM(P0, δ) is:

1. n
2

(
n
n
2

)
if n is even;

2. n+1
2

(
n
n+1
2

)
if n is odd.

Furthermore, these maxima are attainable, by considering P0 a uniform distribution and δ ∈(
n−2
n+2 , 1

)
, if n is even, or δ ∈

(
n−1
n+1 ,

n+1
n−1

)
if n is odd.
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The number of extreme points induced by a PMM (P0, δ) where P0 is the uniform probability
measure has already been studied in (Utkin, 2014, Sect. 5.2.) and (Utkin and Wiencierz, 2013,
Sect. 4.2). In this respect, note that, even if the definition of the PMM considered by Utkin and
Wiencierz (2013) is slightly different from the one given in Section 2 (they consider instead P (A) =
(1+ δ)P0(A)− δ and P (A) = (1+ δ)P0(A) ∀A ⊆ X ), both definitions determine the same credal
set: the lower and upper probabilities in Eq. (1) correspond to the natural extensions of the ones
considered by Utkin and Wiencierz (2013).

Remark also that the maximal number of extreme points for odd n can equivalently be expressed
by
(n+1
n+1
2

)
n+1
4 . Therefore, the formula of the maximal number of extreme points of the credal set of

a PMM coincides with that of probability intervals (Tessem, 1992).

4.2 Computing the Number of Extreme Points for an Arbitrary PMM

In this section, we establish a simple formula that provides an upper bound on the number of extreme
points associated with a PMM. Let (P0, δ) be a PMM, and define

L = {A ⊆ X | P (A) = 1}. (10)

This is a filter of subsets of X , and as a consequence also a poset with respect to set inclusion. We
can use it to bound the number of extreme points of a PMM.

Proposition 7 Consider a PMM (P0, δ), and let L be given by Eq. (10). Then, the number of
extreme points ofM(P0, δ) is bounded above by:

∑
A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L
B

∣∣∣∣∣∣ . (11)

Furthermore, the number of extreme points coincides with this upper bound if and only if P0(A) >
1

1+δ for every A ∈ L.

The following example illustrates the result.

Example 3 Consider a four-element space X = {x1, x2, x3, x4} with probabilities 0.1, 0.1, 0.3
and 0.5, respectively, and let δ = 0.3. The poset (L,⊆) is given by

L = {X , {x2, x3, x4}, {x1, x3, x4}, {x3, x4}}

Eq. (11) provides an upper bound for the number of extreme points ofM(P0, δ). Specifically, it is
easy to see that for any A ∈ L, it holds that:∣∣∣∣∣∣

⋂
B⊆A,B∈L

B

∣∣∣∣∣∣ =
∣∣∣{x3, x4}∣∣∣ = 2;

therefore, the number of extreme points ofM(P0, δ) is bounded by:

∑
A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L
B

∣∣∣∣∣∣ = 2 + 2 + 2 + 2 = 8.

Moreover, this bound is tight, taking into account that P0(A) >
1

1+δ ∀A ∈ L, and applying Propo-
sition 7. �
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p(x1)

p(x2)

p(x3)

P1
0
P2
0

P∩
0

M(P1
0 , δ1) ∩M(P2

0 , δ2)

(a) Conjunction.

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P∪
0

M(P∪
0 , δ

∪)

(b) Disjunction (approximated).

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P ε
0

εM(P1
0 , δ1) + (1− ε)M(P2

0 , δ2)

(c) Average.

Figure 1: Illustration of combination rules. Initial credal sets are in light grey and delimited by
dashed lines, combination results in dark grey.

However, when the additional condition given in Proposition 7 is not satisfied, the formula of
Eq. (11) provides only an upper bound of the number of extreme points.

Example 4 Take X = {x1, x2, x3}, the uniform distribution P0 on P(X ) and δ = 0.5. It holds
that L = {{x1, x2}, {x1, x3}, {x2, x3},X}. By Eq. (11), the number of extreme points is bounded
above by: ∑

A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L
B

∣∣∣∣∣∣ = 2 + 2 + 2 + 0 = 6.

However,M(P0, δ) has only three extreme points: (0.5,0.5,0), (0.5,0,0.5) and (0,0.5,0.5). Thus, the
bound given by Eq. (11) is not tight. Note moreover that in this case P0({x1, x2}) = 2

3 = 1
1+δ . �

5. Information Fusion of PMMs

When two credal sets M(P 1
0 , δ1) and M(P 2

0 , δ2) are provided to describe our uncertainty over
X , one often needs to combine them into a single model. Three classical ways to achieve such a
combination are to consider the conjunction (intersection), the disjunction (union) or the average
(convex mixture) of the models. The results of these combinations is illustrated in Figure 1, where
the specific used models are described in Examples 5, 6 and 7 for the conjunction, disjunction and
average, respectively.

Before studying these three cases, we show a useful result which can be derived from Lemma 4.

Proposition 8 Let M(P0, δ) denote the credal set associated with a PMM (P0, δ) by means of
Eq. (2). Then, a probability measure P belongs toM(P0, δ) if and only if:

P ({x}) ≤ (1 + δ)P0({x}) ∀x ∈ X .

Thus, the credal set M(P0, δ) is not only determined by the restrictions of the lower and upper
probabilities to singletons (as we know from the connection with probability intervals established
in Theorem 1) but moreover that only the upper bounds on the singletons are necessary. This fact is
instrumental in the derivation of the results of this section.

8
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5.1 Conjunction

LetM(P∩0 , δ
∩) :=M(P 1

0 , δ1) ∩M(P 2
0 , δ2) denote the credal set obtained by conjunctively com-

biningM(P 1
0 , δ1) andM(P 2

0 , δ2). We then have the following result.

Proposition 9 The setM(P∩0 , δ
∩) is non-empty if and only if∑

x∈X
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
≥ 1. (12)

In that case, it is induced by the PMM (P∩0 , δ
∩) such that

δ∩ =

(∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

})
− 1 (13)

P∩0 ({x}) =
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
1 + δ∩

. (14)

In the particular case where P 1
0 = P 2

0 , Eq. (12) is always satisfied because:∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
=
∑
x∈X

min
{
(1 + min{δ1, δ2})P0({x}), 1

}
≥
∑
x∈X

P0({x}) = 1,

and the values of δ∩ and P∩0 given in Eqs. (13) and (14) become δ∩ = min{δ1, δ2} and P∩0 = P0.

Example 5 Consider the space X = {x1, x2, x3} and the two models given by δ1 = δ2 = 0.3 and:

P 1
0 = (0.3, 0.3, 0.4), P 2

0 = (0.4, 0.3, 0.3),

that are such thatM(P 1
0 , δ1) ∩M(P 2

0 , δ2) 6= ∅. Their conjunction is given by P∩0 = (1/3, 1/3, 1/3)
and δ∩ = 0.17. The result is illustrated on Figure 1a, where the initial two PMMs are in light gray,
and the resulting conjunction is in dark gray. �

5.2 Disjunction

When the intersection of two credal sets is empty (they are conflicting), an alternative is to consider
their union, that is to consider M(P 1

0 , δ1) ∪ M(P 2
0 , δ2) or its convex hull, since M(P 1

0 , δ1) ∪
M(P 2

0 , δ2) will not be convex in general.
The convex hull conv(M(P1

0, δ1)∪M(P2
0, δ2)) will also not be induced by a PMM in general.

However, we can easily provide a best outer-approximating PMM (P∪0 , δ
∪) using the fact that any

outer-approximation ofM(P 1
0 , δ1) ∪M(P 2

0 , δ2) must satisfy the constraint

max
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
≥ P ({x}) ∀x ∈ X .

Indeed, using the same arguments as in Proposition 9, we can define

δ∪ =

(∑
x∈X

max
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

})
− 1

9
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and

P∪0 ({x}) =
max

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
1 + δ∪

so thatM(P∪0 , δ
∪) ⊇ M(P 1

0 , δ1) ∪M(P 2
0 , δ2). To see that this inclusion holds, simply note that

for any event A, we have

∑
x∈A

max
{
P

1
(x), P

2
(x)
}
≥ max

{∑
x∈A

P
1
(x),

∑
x∈A

P
2
(x)

}

where P 1
, P

2 are the upper probabilities induced by (P 1
0 , δ1) and (P 2

0 , δ2), respectively.

Example 6 Consider the space X = {x1, x2, x3} and the two models given by δ1 = 0.2, δ2 = 0.3
and:

P 1
0 = (0.3, 0.4, 0.3), P 2

0 = (0.2, 0.2, 0.6),

for whichM(P 1
0 , δ1) ∩M(P 2

0 , δ2) = ∅. Their outer-approximation is P∪0 = (0.222, 0.297, 0.481)
and δ∪ = 0.62. The result is illustrated on Figure 1b, where the initial two PMMs are in light gray,
and the resulting outer-approximation of the disjunction is in dark gray. �

5.3 Mixture

The mixture of two PMMs, that is, the computation of

M(P ε0 , δε) := εM(P 1
0 , δ1) + (1− ε)M(P 2

0 , δ2)

for a given ε ∈ (0, 1) is straightforward when applying results established by Moral and del Sagrado
(1998) for probability intervals. In particular, the modelM(P ε0 , δε) is described by the constraints

ε(1 + δ1)P
1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})) ≥ P ({x}) ∀x ∈ X

on a probability measure P . From this, we easily deduce that

1 + δε =
∑
x∈X

ε(1 + δ1)P
1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})

= ε(1 + δ1)
∑
x∈X

P 1
0 ({x}) + (1− ε)(1 + δ2)

∑
x∈X

P 2
0 ({x}) = ε(1 + δ1) + (1− ε)(1 + δ2)

and P ε0({x}) =
ε(1+δ1)P 1

0 ({x})+(1−ε)(1+δ2)P 2
0 ({x})

1+δε
.

Example 7 Consider the initial models of Example 6 with ε = 0.5. We obtain the model pε0 =
(0.248, 0.296, 0.456) and δε = 0.25. The result is illustrated on Figure 1c, where the initial two
PMMs are in light gray, and the resulting average is in dark gray. �

Other, more elaborate combinations can be derived from these basic ones; see for example (Moral
and del Sagrado, 1998; Walley, 1982).
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6. Conclusion

This paper presents some advances on the study of the PMM as a model within Imprecise Probability
Theory. Our results show that the PMM is a particular type of probability interval (Thm. 1). This
means that any property satisfied by a probability interval is also satisfied by a PMM. In this paper,
we have studied the extreme points of the credal set induced by a PMM, and proven that the maximal
number of extreme points coincides with that of probability intervals (Thm. 6). In addition, we
have established a formula that gives an upper bound for the number of extreme points and that is
somewhat easier to apply.

With respect to the connection with other imprecise probability models, we have also given
necessary and sufficient conditions for a PMM to induce a belief function, improving upon some
results from the literature. Our results show that those belief functions that are attained as a PMM
are quite specific, since the PMM imposes strong constraints on the focal elements. Although not
reported here, from this it is easy to characterize in which cases the lower probability of a PMM is
a minitive function. However, this only happens in even more particular scenarios.

Finally, we have also investigated the properties of the PMM when merging different sources of
information, each providing a PMM. In particular, we have seen that the conjunction or the mixture
of PMMs give rise to other PMM, while the disjunction of PMMs can be outer-approximated by a
PMM. This gives simple tools to perform such combinations.

There are other practical aspects of uncertainty models that we did not study in the present
paper, but that would deserve some attention, such as what happens when combine into a joint
model PMM models issued from marginal variables. In particular, it would be worth checking
whether such operations can be performed efficiently and preserve the form of the initial model,
i.e., is the result still a PMM?
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