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Abstract. Modelling the preferences of a decision maker about multi-criteria
alternatives usually starts by collecting preference information, then used to fit a
model issued from a set of hypothesis (weighted average, CP-net). This can lead
to inconsistencies, due to inaccurate information provided by the decision maker
or to a poor choice of hypothesis set. We propose to quantify and resolve such
inconsistencies, by allowing the decision maker to express her/his certainty about
the provided preferential information in the form of belief functions.

1 Introduction

Preference modelling and multi-criteria decision analysis (MCDA) are increasingly
used in our everyday lives. Generally speaking, their goal is to help decision mak-
ers (DM) to model their preferences about multi-variate alternatives, to then formulate
recommendations about unseen alternatives. Such recommendations can take various
shapes, but three common problems can be differentiated [1]:

– the choice problem, where a (set of) best alternative is recommended to the DM.;
– the ranking problem, where a ranking of alternatives is presented to the DM;
– the sorting problem, where each alternative is assigned to a sorted class.

In this paper, we will be interested in the two first problems, which are closely related
since the choice problem roughly consists in presenting only those elements that would
be ranked highest in the ranking problem.

One common task, in preference modelling as well as in MCDA, is to collect or
elicit preferences of decision makers (DM). This elicitation process can take various
forms, that may differ accordingly to the chosen model (Choquet Integral [6], CP-
net [4],. . . ). Anyway, in all cases, each piece of collected information then helps to
better identify the preference model of the DM. A problem is then to ensure that the
information provided by the DM are consistent with the chosen model. Ways to han-
dle this problem is to identify model parameters minimising some error term [6], or
to consider a probabilistic model [11]. Such methods solve inconsistent assessments in
principled ways, but most do not consider the initial information to be uncertain. An-
other problem within preference modelling problems is to choose an adequate family
of models, expressive enough to capture the DM preferences, but sufficiently simple
to be identified with a reasonable amount of information. While some works compare



the expressiveness of different model families, few investigate how to choose a family
among a set of possible ones.

In this paper, we propose to model uncertainty in preference information through
belief functions, arguing that they can bring interesting answers to both issues (i.e., in-
consistency handling and model choice). Indeed, belief functions are adequate models
to model uncertainty about non-statistical quantities (in our case the preferences of a
DM), and a lot of work have been devoted about how to combine such information
and handle the resulting inconsistency. It is not the first work that tries to combine be-
lief functions with MCDA and preference modelling, however existing works on these
issues can be split into two main categories:

– those starting from a specific MCDA model and proposing an adaptation to embed
belief functions within it [2];

– those starting from belief functions defined on the criteria and proposing preference
models based on belief functions and evidence theory, possibly but not necessarily
inspired from existing MCDA techniques [3].

The approach investigated and proposed in this paper differs from those in two ways:

– no a priori assumption is made about the kind of model used, as we do not start
from an existing method to propose a corresponding extension. This means that the
proposal can be applied to various methods;

– when selecting a particular model, we can retrieve the precise version of the model
as a particular instance of our approach, meaning that we are consistent with it.

Section 2 describes our framework. We will use weighted average as a simple il-
lustrative example, yet the described method applies in principle to any given set of
models. Needed notions of evidence theory are introduced gradually. Section 3 then
discusses how the framework of belief functions can be instrumental to deal with the
problems we mentioned in this introduction: handling inconsistent assessments of the
DM, and choosing a rich enough family of models.

2 The basic scheme

We assume that we want to describe preferences over alternatives X issued from a mul-
tivariate space X = ×C

i=1X
i of C criteria X i. For instance, X may be the space of

hotels, applicants . . . and a given criteria X i may be the price, age, . . . In the examples,
we also assume that X i is within [0,10], yet the presented scheme can be applied to
criteria ranked on ordinal scales, or even on symbolic methods such as CP-net [4].

We will denote by PX the set of partial orders defined over X . Recall that a strict
partial order P is a binary relation over X 2 that satisfies Irreflexivity (not P(x,x) for
any x ∈ X ), Transitivity (P(x,y) and P(y,z) implies P(x,z) for any (x,y,z) ∈ X 3)
and Asymmetry (either P(x,y) or P(y,x), but not both) and where P(x,y) can be read
“x is preferred to y”, also denoted x �P y. When P concerns only a finite set A =
{a1, . . . ,an} ⊆X of alternatives, convenient ways to represent it are by its associated
directed acyclic graph GP = (V,E) with V = A and (ai,a j) ∈ E iff (ai,a j) ∈ P, and by
its incidence matrix whose elements denoted Pi j will be such that Pi j = 1 iff (ai,a j)∈ P.



Given a partial order P and a subset A , we will denote by MaxP the set of its maximal
elements, i.e., MaxP = {a ∈A :6 ∃a′ ∈A s.t. a′ �P a}

2.1 Elementary information item

Our approach is based on the following assumptions:

– the decision-maker (DM) provides items of preferential information Ii together
with some certainty degree αi ∈ [0,1] (αi = 1 corresponds to a certain information).
Ii can take various forms: comparison between alternatives of X (“I prefer menu
A to menu B”) or between criteria, direct information about the model, . . .

– given a selected space H of possible models, each item Ii is translated into con-
straints inducing a subset Hi of possible models consistent with this information.

– Each model h∈H maps subsets of X to a partial order P∈PX . A subset H ⊆H
maps subsets of X to the partial order H(A ) = ∩h∈Hh(A ) with A ⊆X .

We model this information as a simple support mass function mi over H defined as

mi(Hi) = αi, mi(H ) = 1−αi. (1)

Mass functions are the basic building block of evidence theory. A mass function over
space H is a non-negative mapping from subsets of H (possibly including the empty-
set) to the unit interval summing up to one. That is, m :℘(H )→ [0,1] with ∑m(E) = 1
and ℘(H ) the power set of H . The mass m( /0) is interpreted here as the amount of
conflict in the information. A subset H ⊆H such that m(H)> 0 is often called a focal
set, and we will denote by F = {H ⊆H : m(H)> 0} the collection of focal sets of m.

Example 1. Consider three criteria X 1,X 2,X 3 that are averages of student notes in
Physics, Math, French (we will use P,M,F). X is then the set of students. We also
assume that the chosen hypothesis space H are weighted averages: a model h ∈H is
then specified by a positive vector (w1,w2,w3) where ∑wi = 1. A student ai is evaluated
by ai = w1P+w2M+w3F , and an alternative ai is better than a j if ai > a j.

Any subset of models can be summarized by a subset of the space H = {(w1,w2) :
w1 +w2 ≤ 1}, since the last weight can be inferred from the two firsts. For instance, let
us assume that the information item I is (0,8,5)� (8,4,5), meaning that

0w1 +8w2 +5w3 > 8w1 +4w2 +5w3→ w2 > 2w1

The resulting subspace H of models is then pictured in Figure 1. The decision maker
can then provide some assessment of how certain she/he is about this information by
providing a value α . For instance, if the DM is certain to choose a student with grades
(0,8,5) over one with grades (8,4,5), then α should be close to 1. Yet if the DM is
quite uncertain about this choice, then α should be closer to 0.

2.2 Combining elements of information

In practice, the DM will deliver multiple items of information, that should be com-
bined. If m1 and m2 are two mass functions over the space H , then their conjunctive
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Fig. 1: Information item subset

combination in evidence theory is defined as the mass

m1∩2(H) = ∑
Hi∈Fi,H1∩H2=H

m1(H1)m2(H2), (2)

which is applicable if we consider that the provided information items are distinct, a
reasonable simplifying assumption in a preference learning setting where the DM usu-
ally does not answer a question by consciously thinking about the ones she/he already
answered. If we have n masses m1, . . . ,mn to combine, corresponding to n informa-
tion items I1, . . . ,In, we can iteratively apply Equation (2), as it is commutative and
associative. If each mi has two focal elements (Hi and H ), then the number of focal el-
ements of the combined mass double after each application of (2). This of course limits
the number n we can consider, yet in frameworks where individual decision makers are
asked about their preferences, this number is often small.

It may happen that the given preferential information items conflict, producing a
non-null mass m( /0) > 0, meaning that no models in H satisfies all preferential infor-
mation items. In evidence theory, two main ways to deal with this situation exist:

W1 Ignoring the fact that some conflicting information exists and normalise m into
m′. There are many ways to do so [10], but the most commonly used consists in
considering m′ such that for any H ∈F \ /0 we have m′(H) = m(H)/1−m( /0).

W2 Use the value of m( /0) as a trigger to resolve the conflicting situation rather than
just relocating it. A typical solution is then to use alternative combination rules [8].

We discuss in Section 3 how m( /0) can be used in our context to select the relevant
information or to select alternative hypothesis spaces.

Example 2. Consider again the setting of Example 1, The first information delivered,
H1 = {(w1,w2) ∈H : w2 ≥ 2w1} is that (0,8,5) � (8,4,5) with a mild certainty, say
α1 = 0.6. The second item of information provided by the DM is that for her/him,
sciences are more important than language, which we interpret as the inequality

w1 +w2 ≥ w3→ w1 +w2 ≥ 0.5

obtained from the fact that ∑wi = 1. The DM is pretty sure about it, resulting in α2 = 0.9
and H2 = {(w1,w2) ∈H : w2 +w1 ≥ 0.5}. The mass resulting from the application
of (2) to m1,m2 is then

m(H1) = 0.06, m(H2) = 0.36, m(H1∩H2) = 0.54, m(H ) = 0.04.



2.3 Inferences: choice and ranking

When having a finite set A = {a1, . . . ,an} of alternatives and a mass with k focal ele-
ments H1, . . . ,Hk, two tasks in MCDA are to provide a recommendation to the DM, in
the form of one alternative a∗ or a subset A∗, and to provide a (partial) ranking of the
alternatives in A . We suggest some means to achieve both tasks.

Choice When a partial order P is given over A , a natural recommendation is to provide
the set A∗ =MaxP of maximal items derived from P. Providing a choice in an evidential
framework, based on the mass m, then requires to extend this notion. Assuming that the
best representation of the DM preferences we could have is a partial order P∗, a simple
way to do so is to measure the so-called belief and plausibility measures that a given
subset A ⊆ A is a subset of the set of maximal elements, considering that the subset
MaxPi derived from the focal element Hi represents a superset of A∗. These two values
are easy to compute, as under these assumptions we have

Pl(A⊆ A∗) = ∑
A⊆MaxPi

m(Hi), (3)

Bel(A⊆ A∗) = ∑
A=2

MaxPi \ /0

m(Hi) =

{
0 if |A|> 1,

∑MaxPi={a}
m(Hi) if A = {a}.

(4)

The particular form of Bel is due to the fact that we have no information about which
subset have to be necessarily contained in the set of maximal elements of the unknown
partial order P∗. Some noteworthy properties of Equations (3)- (4) are the following:

– for an alternative a ∈A , Pl({a}) = 1 iff {a} is a maximal element of all possible
partial orders (in particular, m( /0) = 0).

– given A⊆B⊆A , we can have Pl(A⊆A∗)≥Pl(B⊆A∗), meaning that it is sensible
to look for the most plausible set of maximal elements, that may not be A .

Example 3. Consider the four alternatives A = {a1,a2,a3,a4} presented in Table 1. We
then consider the mass of four focal elements given in Example 2 with the renaming:

H1 = H1, H2 = H2, H3 = H1∩H2, H4 = H

From these, we can for example deduce that P1 = {(a1,a4),(a2,a3)} using simple linear
programming. That (a1,a4)∈ P1 comes from the fact that the difference between a1 and
a4 evaluation is always positive in H1, that is

min
(w1,w2,w3)∈H1

(4w1 +3w2 +9w3)− (7w1 +w2 +7w3)> 0.

Similarly, we have P3 = {(a1,a4),(a2,a1),(a2,a3), (a3,a4),(a2,a4)} and P2 = P4 = {},
from which follows MaxP1 = {a1,a2}, MaxP3 = {a2}, MaxP2 = MaxP4 = A . Interest-
ingly, this shows us that while information I2 leading to H2 does not provide sufficient
information to recommend any student in A , combined with I1, it does improve our
recommendation, as |MaxP3 |= 1.

Table 2 gives the plausibilities and belief resulting from Equations (3)- (4) for sub-
sets of one or two elements. Clearly, {a2} is the most plausible answer, as well as the
most credible, and hence should be chosen as the predicted set of maximal elements.



Table 1: A set of alternatives
P M F

a1 4 3 9
a2 5 9 6

P M F
a3 8 7 3
a4 7 1 7

Table 2: Plausibilities and belief on sets of one and two alternatives
{a1} {a2} {a3} {a4} {a1,a2} {a1,a3} {a1,a4} {a2,a3} {a2,a4} {a3,a4}

Pl 0.46 1 0.4 0.4 0.46 0.4 0.4 0.4 0.4 0.4
Bel 0 0.54 0 0 0 0 0 0 0 0

Ranking The second task we consider is to provide a (possibly partial) ranking of the
alternatives. Since each (non-empty) focal element can be associated to a partial order
over A , this problem is close to the one of aggregating partial orders [9]. Focusing on
pairwise information, we can compute the plausibilities and belief that one alternative
ai is preferred to another a j, as follows:

Pl(ai � a j) = ∑
Pk,Pk, ji 6=0

m(Hk), Bel(ai � a j) = ∑
Pk,Pk,i j=1

m(Hk), (5)

where Pk,i j is the (i, j) value of the incidence matrix of Pk. In practice, Pl comes down
to sum all partial orders that have a linear extension with ai � a j, and Bel the partial
orders whose all linear extensions have ai � a j. The result of this procedure can be seen
as an interval-valued matrix R with Ri, j = [Bel(ai � a j),Pl(ai � a j)]. It can also be
noted that, if m( /0) = 0, we do have Pl(ai � a j) = 1−Bel(a j � ai). From this matrix,
we then have many choices to build a predictive ranking: we can either use previous
results about belief functions [7], or classical aggregation rules of pairwise scores to
predict rankings [5]. For instance, a classical way is to compute, for each alternative ai,
the interval-valued score [si,si] = ∑a j 6=ai [Bel(ai � a j),Pl(ai � a j)] and then to consider
the resulting partial order. This last approach is connected to optimizing the Spearman
footrule, and has the advantage of being straightforward to apply.

Example 4. The matrix R and the scores [si,si] resulting from Example 3 is


a1 a2 a3 a4

a1 0 [0,0.46] [0,1] [0.6,1]
a2 [0.54,1] 0 [0.6,1] [0.54,1]
a3 [0,1] [0,0.4] 0 [0.54,1]
a4 [0,0.4] [0,0.46] [0,0.46] 0

∑

=


[si,si]

[0.6,2.46]
[1.68,3]
[0.54,2.4]
[0,1.32]


from which we get the final partial order P∗ = {(a2,a4)}.

Note that, in practice, it could be tempting to first compute the set of maximal
elements and to combine them, rather than combining the models then computing a
plausible set of maximal elements, as the first solution is less constrained. However,
this can only be done when a specific set A of interest is known.



3 Inconsistency as a useful information

So far, we have largely ignored the problem of dealing with inconsistent information,
avoiding the issue of having a strictly positive m( /0). As mentioned in Section 2.2, this
issue can be solved through the use of alternative combination rules, yet in the setting
of preference learning, other treatments that we discuss in this section appear at least
as equally interesting. These are, respectively, treatments selecting models of adequate
complexity and selecting the “best” subset of consistent information. To illustrate our
purpose, consider the following addition to the previous examples.

Example 5. Consider that in addition to previously provided information in Example 2,
the DM now affirms us (with great certainty, α3 = 0.9) that the overall contribution of
mathematics (X2) should count for at least four tenth of the evaluation but not more
than eight tenth. In practice, if H is the set of weighted means, this can be translated
into H3 = {(w1,w2) : 8/10 ≥ w2 ≥ 4/10}. Figure 2 shows the situation, from which we
get that H1,H2 and H3 do not intersect, with m( /0) = 0.6 · 0.9 · 0.9 = 0.486, a number
high enough to trigger some warning.

0
w1

1

w2

1

H1

H2

H3

Fig. 2: Inconsistent information items

3.1 Model selection

m( /0) can be high because the hypothesis space H is not complex enough to properly
model a user preference. By considering more complex space H ′, we may decrease
the value m( /0), as if H ⊆H ′, we will have that for any information Ii, the corre-
sponding sets of models will be such that Hi ⊆H ′i (as all models from H satisfying the
constraints of Ii will also be in H ′), hence we may have Hi∩H j = /0 but H ′i ∩H ′j 6= /0.

Example 6. Consider again Example 5, where H ′ is the set of all 2-additive Choquet
integrals. A 2-additive Choquet integral can be defined by a set of weights wi and wi j,
i 6= j where wi and wi j are the weights of groups of criteria {X i} and {X i,X j}. The
evaluation of alternatives for a 2-additive Choquet integral then simply reads

ai = ∑
j

w jx j + ∑
j<k

wk j min(x j,xk).



For the evaluation function to respect the Pareto ordering, these weights must satisfy
the following constraints

wi ≥ 0 for all i,

wi j +wi +w j ≥max(wi,w j) for all pairs i, j, (6)

∑
i

wi +∑
i j

wi j = 1.

Also, the contribution φi of a criterion i can be computed through the Shapley value

φi = wi + 1/2 ∑
j 6=i

wi j.

In the case of Example 5, this means that H corresponds to the set of vectors (wi,wi j)
that satisfy the constraints given by Equation (6). In this case, the information items
H1,H2 provided in Example 1 and H3 in Example 5 induce the following constraints:

H1 = {w ∈H ′ : 4w2 +w23 ≥ 8w1 +4w12 +5w13}
H2 = {w ∈H ′ : φ1 +φ2 ≥ φ3}= {w ∈H ′ : w1 +w2 +w12 ≥ w13}
H3 = {w ∈H ′ : 4/10≤ φ2 ≤ 8/10}= {w ∈H ′ : 4/10≤ w2 + 1/2w12 + 1/2w13 ≤ 8/10}

These constraints are not inconsistent, as for example the solution where w1 = 0.2,w2 =
0.4,w23 = 0.4 are the only non-null values is within H1,H2 and H3. Among other things,
this means that combining m1,m2,m3 within the hypothesis space H ′ leads to m( /0) = 0

When considering a discrete nested sequence H 1⊆ . . .⊆H K of hypothesis spaces,
then a simple procedure to select a model is to iteratively increase its complexity is
summarised in Algorithm 1, where H i

j is the set of possible hypothesis induced by in-
formation I j in space H j. It should be noted that the mass given to the empty set
is guaranteed to decrease as the hypothesis spaces are nested. One could apply the
same procedures to non-nested hypothesis spaces H 1, . . . ,H K (e.g., considering lexi-
cographic orderings and weighted averages), yet in this case there would be no guaran-
teed relations between the conflicting mass induced by each hypothesis spaces.

Algorithm 1: Algorithm to select preference model
Input: Spaces H 1 ⊆ . . .⊆H K , Information I1, . . . ,IF , threshold τ , i = 1
Output: Selected hypothesis space H ∗

repeat
foreach j ∈ {0, . . . ,m} do Evaluate H i

j;
Combine mi

1, . . . ,m
i
F into mi ;

i← i+1
until mi( /0)≤ τ or i = K +1;



3.2 Information selection

If we assume that H is sufficiently rich to describe the DM preferences, then m( /0)
results from the fact that the DM has provided some erroneous information. It then
makes sense to discard those information items that are the most uncertain and introduce
inconsistency in the result. In a short word, given a subset S ⊆ {1, . . . ,n}, if we denote
by mS the mass obtained by combining the masses {mi : i ∈ S}, then we can try to find
the subset S such that mS( /0) = 0 and Cer(S) = ∑i 6∈S αiis minimal with this property.

An easy but sub-optimal way to implement this strategy is to consider first the set
S0 = {1, . . . ,n}, and then to consider iteratively subsets by removing the set of sources
having the lowest cumulated weight so far. In Example 5, this would come to consider
first S1 = {2,3} (with Cer(S1) = 0.6), then either S2 = {1,3} or S2 = {1,2} (with
Cer(S1) = 0.9). From Figure 2, we can see that for S = {2,3}, we already have mS( /0) =
0, thus not needing to go any further. When n is small enough (often the case if MCDA),
then such a naive search may remain affordable. Improving upon it then depends on
the nature of the space H . It seems also fair to assume that the DM makes his/her
best to be consistent, and therefore the number of information items to remove from
S0 = {1, . . . ,n} should be small in general.

One can also combine the two previously described approach, i.e., to first increase
the model complexity if the conflict is important at first, and then to discard the most
conflicting and uncertain information. There is a balance between the two: increasing
complexity keeps all the gathered information but may lead to over-fitting and to com-
putational problems, while letting go of some information reduces the computational
burden, but also delivers more conservative conclusions.

4 Conclusion

In this paper, we have described a generic way to handle uncertain preference informa-
tion within the belief function framework. In contrast with previous works, our proposal
is not tailored to a specific method but can handle a great variety of preference models.
It is also consistent with the considered preference model, in the sense that if enough
fully reliable information is provided, we retrieve a precise preference model.

Our proposal is very general, and maybe more or less difficult to apply depending
on the choice of H . In the future, it would be interesting to study specific preference
models and to propose efficient algorithmic procedures to perform the different calculi
proposed in this paper. For instance, how do the computations look like where we con-
sider numerical models? Indeed, all procedures described in this paper can be applied to
numerical as well as to non-numerical models, but numerical models may offer specific
computational advantages.
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