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1. Context

1.1 Research framework: Embodied Learning
Our goal is to "teach" a robot to interact autonomously in a face-to-face task with a
human. Due to the complexity of the task, standard learning approach like learning by obser-
vation and kinesthetic demonstration are not efficient, notably for demonstrating social sig-
nals (such as gaze or head movements). Our approach consists in exploring the embodied
learning paradigm, where a human pilot teaches the robot with his/her own moves [10]. Like
a puppeteer, a pilot controls the robot remotely using an immersive teleoperation platform.
In order to record an interaction with minimal bias, the platform should become "transpar-
ent" and the remote world represented in a "natural" way. Our research aims at providing
the pilot with an active perception of the remote space, notably with a trustful and
coherent perception of depth.

1.2 State of the Art
What we know about humans:

• Depth perception is based on several factors : Binocular disparity (stereovision), occlusion,
parallax, convergence, known semantics of the objects, ... [16, 5].

• Stereoscopic vision is useful before 15m (cannot differentiate from monovision after)[1]

• Vergence is useful in the peri-personal space ( <2.0m) [14]

Current use of immersive teleoperation

• Search and rescue robot [8]

• Drone navigation [4]

• Immersive telepresence [6, 7, 3]

Our beaming platform "NINA" [9, 10]

Gaze controlled methods

• Virtual gaze joystick : "Moving to the
center" [17] [12]

• EyeSeeCam [11, 13]

Limitations of current immersive teleoperation devices

• Underestimation of depth in peripersonal space ( <2m), overestimation after 2m [2].

• Sensory motor conflict: Accommodation-convergence conflict [15]

Drawback : In those setups, the stereo rig is fixed. The pilot loses the vergence informa-
tion/control, has reduced depth perception and experiences the accomodation-vergence con-
flict. For a human facing the robot, the robot gaze is less interpretable.

1.3 SGCS : Stereo Gaze Contingent Steering
Proposed approach : Here we propose a new natural control method for a pair of stereo-
scopic robotic eyes with vergence abilities, called SGCS (Stereo Gaze Contingent Steering),
running alongside the control of a robotic head. An evaluation of the control method has also
been performed.

2. Technological platform

Beaminng process
We use the Mical platform NINA from the CRISSP team at Gipsa. Specification :
* Icub 2.0 with enhanced face articulation [9].
* Cluster of 4 PC (3 Linux + 1 windows) using YARP (client-server robotic middleware).
* HTC Vive + SMI integration for eye-tracking
* IPD cameras equivalent to human IPD => reduced hyperstereopsis
* Communication with UDP/TCP through the YARP middleware
* The camera’s feeds are synchronised and displayed in the HMD (Head Mounted display)
as video texture.

3. Control methods

The control of the head and eye is done trough a angular command for the six head encoders:[
neckpitch neckroll neckyaw eyestilt eyesversion eyesvergence

]
1. Head control: The head angles are driven by the HMD orientation value (standard ap-

proach).

2. Eye control: The gaze information returned (in pixel) is converted in UV coordinates,
relative to the displayed video texture referential.

3. Inverse model: Using a transfer matrix UV _to_angle – that links the ROI placement on
the rectified stereo camera images with the angular values that would align the ROI with
the cameras’ optical axis – , this inverse model carries over the pilot’s gaze direction to the
robot’s eyes movements. This inverse linear model has (surprisingly) a precision of 0.5◦

on the three angles.

UV _to_angle ∗
[
pxLu pxLv pxRu pxRv

]
=
[
eyestilt eyesversion eyesvergence

]
4. Foveal display: We then move the center of the video texture to a new UV coordinates

pair, calculated by the Forward model from the eyes encoders angular values. This moves
the video texture in the virtual world to a coherent position for the robot and cues on the
pilot side.

Overall controls methods

4. Platform validation

4.1 Setup & protocol
Setup: 7 target at various distance (25 to 100cm)
Protocol: For the reference condition (Ideal target angles determined semi-automatically)
and the pilot, every target has been seen 8 times. On 4 passes (left->right, front->back,
right->left, back->front) repeated two times.
Subjects: 16 subjects (3 women, 13 men), aged between 22-56 yo. No prior experience of
virtual reality before for most of them (13 inexperienced VR).

4.2 Results

SGCS characterisation setup
Encoders angle values for all subjects.The reference is in magenta

Heat map generated from the left eye position and associated visual feedback positions in pixels (one subject).
Resolution screen: 1200*2160px

The motion-to-photon mesured latency is ~200ms.

5. Discussion & future works

Discussion: Our SGCS control method is able to move the robotic eye in coherence with the
orientation of the human eye (the cameras’ optical axes are aligned with the human gaze).
The cameras are looking where the human is looking with respect of tilt, azimuth, and ver-
gence.
Future works: * Hypothesis: Control of vergence improves perception and evaluation of
depth in the near and medium field while maintaining oculomotor cues and reducing the
accomodation-vergence conflict.
* Improve the reactivity of the control method: detection of fixation and saccade.
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