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We propose a simplex spline basis for a space of C 1 -cubics on the Clough-Tocher split on a triangle. The 12 elements of the basis give a nonnegative partition of unity. We derive two Marsden-like identities, three quasi-interpolants with optimal approximation order and prove L ∞ stability of the basis. The conditions for C 1 -junction to neighboring triangles are simple and similar to the C 1 conditions for the cubic Bernstein polynomials on a triangulation. The simplex spline basis can also be linked to the Hermite basis to solve the classical interpolation problem on the Clough-Tocher split.

Introduction

Piecewise polynomials over triangles have applications in several branches of the sciences ranging from finite element analysis, surfaces in computer aided design and other engineering problems. For many of these applications, piecewise linear C 0 surfaces do not suffice. In some cases, we need smoother surfaces for modeling, or higher degrees to increase the approximation order. To obtain C 1 smoothness on an arbitrary triangulation, one needs piecewise quintic polynomials, [START_REF] Lai | Spline Functions on Triangulations[END_REF]. We can use lower degrees if we are willing to split each triangle into a number of subtriangles. Examples are the Clough-Tocher split (CT), [START_REF] Clough | Finite element stiffness matrices for analysis of plate bending[END_REF] and the Powell-Sabin 6 and 12-splits (PS6, PS12), [START_REF] Powell | Piecewise quadratic approximation on triangles[END_REF]. The 1 number of subtriangles is 3, 6 and 12 for CT, PS6 and PS12, respectively. A B-spline like basis both for C 1 cubics and C 2 quintics has been constructed for PS6, [START_REF] Grošelj | Construction and analysis of cubic Powell-Sabin B-splines[END_REF][START_REF] Speleers | A normalized basis for quintic Powell Sabin splines[END_REF] and references therein. Recently a B-spline like basis has also been proposed for a 9 dimensional subspace of C 1 cubics on CT, [START_REF] Grošelj | Construction and analysis of cubic Powell-Sabin B-splines[END_REF]. The PS12-split can be defined as the complete graph obtained by connecting vertices and edge midpoints of each triangle. A B-spline basis for PS12 and the full space of C 1 -cubics on CT seem difficult. An alternative to the B-spline basis is the Hermite basis. Since it uses both values and derivatives it is not as stable as the B-spline basis and it does not form a nonnegative partition of unity.

Here we construct a B-spline basis for one triangle in the coarse triangulation and connect to neighboring triangles using Bernstein-Bézier techniques. This was done for PS12 using C 1 quadratics, [START_REF] Cohen | A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines[END_REF], and C 2 and C 3 quintics, [START_REF] Lyche | A Hermite interpolatory subdivision scheme for C 2 -quintics on the Powell-Sabin 12-split[END_REF][START_REF] Lyche | Stable Simplex Spline Bases for C 3 Quintics on the Powell-Sabin 12-Split[END_REF]. These bases, consisting of simplex splines (see for example [START_REF] Micchelli | On a numerically efficient method for computing multivariate B-splines[END_REF] for a general introduction), all share attractive properties of univariate B-splines such as In this paper we consider the full 12 dimensional space of C 1 cubics on the CT-split. We will define a simplex spline basis for this split and show that it has all the B-spline and Bernstein-Bézier properties mentioned above.

The CT-split is interesting for many reasons. To obtain a space of C 1 piecewise polynomials of degree at most 3 on an arbitrary triangulation, we only need to divide each triangle into 3 subtriangles, while 6 and 12 subtriangles are needed for PS6 and PS12. Moreover, the approximation order of the space S 3 of piecewise C 1 cubics on CT is 4 and this is at least as good as for the spaces S 6 and S 12 of piecewise cubics on PS6 and piecewise quadratics on PS12. The degrees of freedom for S 6 are values and gradients of the vertices of the coarse triangulation while for S 3 and S 12 we need in addition cross boundary derivatives at the midpoint of the edges, see Figure 1 (left). For further comparisons of these three spaces see Section 6.6 in [START_REF] Lai | Spline Functions on Triangulations[END_REF].

This paper is organized as follows: In the remaining part of the introduction, we review some properties of CT, introduce our notation and recall the main properties of simplex splines. In Section 2, we construct a cubic simplex spline basis for CT, from which, in Section 3, we derive two Marsden identities and then, in Section 4, three quasi-interpolants, and show L ∞ stability of the basis. In Section 5, conditions to ensure C 0 and C 1 continuity through an edge between two triangles are derived. The conversion between the simplex spline basis and the Hermite basis for CT is considered in Section 6. Lagrange and Hermite interpolation on triangulations using C 1 cubics, quartics and higher degrees have also been considered in [START_REF] Davydov | Interpolation by Splines on Triangulations[END_REF]. We end the paper with numerical examples of interpolation on a triangulation.

The Clough-Tocher split

To describe this split, let T := p 1 , p 2 , p 3 be a nondegenerate triangle in R 2 . Using the barycenter p T := (p 1 + p 2 + p 3 )/3 we can split T into three subtriangles T 1 := p T , p 2 , p 3 , T 2 := p T , p 3 , p 1 and T 3 := p T , p 1 , p 2 . On T we consider the space

S 1 3 ( ) := {f ∈ C 1 (T ) : f |T i is a polynomial of degree at most 3, i = 1, 2, 3}.
(1) This is a linear space of dimension 12, [START_REF] Lai | Spline Functions on Triangulations[END_REF]. Indeed, each element in the space can be determined uniquely by specifying values and gradients at the 3 vertices and cross boundary derivatives at the midpoint of the edges, see Figure 1,(right).

We associate the half open edges

p i , p T ) := {(1 -t)p i + tp T : 0 ≤ t < 1}, i = 1, 2, 3,
with subtriangles of T as follows

p 1 , p T ) ∈ T 2 , p 2 , p T ) ∈ T 3 , p 3 , p T ) ∈ T 1 , (2) 
and we somewhat arbitrarily assume p T ∈ T 2 . 

Notation

We let N be the set of natural numbers and N 0 := N ∪ {0} the set of nonnegative integers. For a given degree d ∈ N 0 , the space of polynomials of total degree at most d will be denoted by P d . The Bernstein polynomials of degree d on T are given by

B d ijk (p) := B d ijk (β 1 , β 2 , β 3 ) := d! i!j!k! β i 1 β j 2 β k 3 , i, j, k ∈ N 0 , i+j +k = d, (3) 
where p ∈ R 2 and β 1 , β 2 , β 3 , given by

p = β 1 p 1 + β 2 p 2 + β 3 p 3 , β 1 + β 2 + β 3 = 1, (4) 
are the barycentric coordinates of p. The set

B d := {B d ijk : i, j, k ∈ N 0 , i + j + k = d} (5) 
is a partition of unity basis for P d . The points

p d ijk := ip 1 + jp 2 + kp 3 d , i, j, k ∈ N 0 , i + j + k = d, (6) 
are called the domain points of B d relative to T . In this paper, we will order the cubic Bernstein polynomials by going counterclockwise around the boundary, starting at p 1 with B 3 300 and ending with B 3 111 , see Figure 2 {B 1 , B 2 , . . . , B 10 } := {B 3 300 , B 

p 3 , 2p 3 + p 1 3 , p 3 + 2p 1 3 , p T . (8) 
The partial derivatives of a bivariate function

f = f (x 1 , x 2 ) are denoted ∂ 1,0 f := ∂f ∂x 1 , ∂ 0,1 f := ∂f ∂x 2 , and ∂ u f := (u 1 ∂ 1,0 + u 2 ∂ 0,1
)f is the derivative in the direction u := (u 1 , u 2 ). We denote by ∂ β j f , j = 1, 2, 3 the partial derivatives of f (β 1 , β 2 , β 3 ) with respect to the barycentric coordinates of f . The symbols S and S o are the closed and open convex hull of a set S ∈ R m . For k ≤ m, we let vol k (S) be the k dimensional volume of S and define 1 S : R m → R by

1 S (x) := 1, if x ∈ S, 0, otherwise. 
By the association (2), we note that for any x ∈ T

1 T 1 (x) + 1 T 2 (x) + 1 T 3 (x) = 1 T (x). (9) 
We write #K for the number of elements in a sequence K.

Bivariate simplex splines

In this section we recall some basic properties of simplex splines.

For n ∈ N, d ∈ N 0 , let m := n + d and k 1 , . . . , k m+1 ∈ R n be a sequence of points called knots. The multiplicity of a knot is the number of times it occurs in the sequence. Let σ = k 1 , . . . , k m+1 with vol m (σ) > 0 be a simplex in R m whose projection π : R m → R n onto the first n coordinates satisfies π(k i ) = k i , for i = 1, . . . , m + 1.

With [K] := [k 1 , . . . , k m+1 ], the unit integral simplex spline M [K] can be defined geometrically by

M [K] : R n → R, M [K](x) := vol m-n σ ∩ π -1 (x) vol m (σ) .
For properties of M [K] and proofs see for example [START_REF] Micchelli | On a numerically efficient method for computing multivariate B-splines[END_REF]. Here, we mention:

• If n = 1 then M [K]
is the univariate B-spline of degree d with knots K, normalized to have integral one.

• In general M [K] is a nonnegative piecewise polynomial of total degree d and support K .

• For d = 0 we have

M [K](x) := 1/vol n ( K ), x ∈ K o , 0, if x / ∈ K . (10) 
• The value of M [K] on the boundary of K has to be delt with separately, see below.

• If vol n ( K ) = 0 then M [K] can be defined either as identically zero or as a distribution.

We will deal with the bivariate case n = 2, and for our purpose it is convenient to work with area normalized simplex splines, [START_REF] Lyche | Stable Simplex Spline Bases for C 3 Quintics on the Powell-Sabin 12-Split[END_REF]. They are defined by Q[K](x) = 0 for all x ∈ R 2 if vol 2 ( K ) = 0, and otherwise

Q T [K] = Q[K] := vol 2 (T ) d+2 2 M [K], (11) 
where T in general is some subset of R 2 , and in our case will be the triangle T := p 1 , p 2 , p 3 . The knot sequence is [p 1 , p 2 , p 3 , p T ] taken with multiplicities. Using properties of M [K] and [START_REF] Powell | Piecewise quadratic approximation on triangles[END_REF], we obtain the following for

Q[K]:
• It is a piecewise polynomial of degree d = #K -3 with support K

• knot lines are the lines in the complete graph of K

• local smoothness: Across a knot line, Q[K] ∈ C d+1-µ
, where d is the degree and µ is the number of knots on that knot line, including multiplicities

• differentiation formula: ∂ u Q[K] = d d+3 j=1 a j Q[K \ k j ],
for any u ∈ R 2 and any a 1 , . . . , a d+3 such that j a j k j = u, j a j = 0 (A-recurrence)

• recurrence relation: Q[K](x) = d+3 j=1 b j Q[K \ k j ](x), for any x ∈ R 2 and any b 1 , . . . , b d+3 such that j b j k j = x, j b j = 1 (B-recurrence) • knot insertion formula: Q[K] = d+3 j=1 c j Q[K ∪ y \ k j ],
for any y ∈ R 2 and any c 1 , . . . , c d+3 such that j c j k j = y, j c j = 1 (C-recurrence)

• degree zero: From ( 10) and ( 11) we obtain for d = 0

Q[K](x) := vol 2 (T )/vol 2 ( K ), x ∈ K o , 0, if x / ∈ K . ( 12 
)
2 A simplex spline basis for the Clough-Tocher split

In this section we determine and study a basis of C 1 cubic simplex splines on the Clough-Tocher split on a triangle. For fixed x ∈ T we use the simplified notation

i j k := Q[p [i] 1 , p [j] 2 , p [k] 3 , p [l] T ](x), i, j, k, l ∈ N 0 , i + j + k + l ≥ 3,
where the notation p

[n] m denotes that p m is repeated n times. When one of the integers i, j, k, l is zero we have Lemma 1 For i, j, k, l ∈ N 0 , i+j +k+l = d ≥ 0 and x ∈ T with barycentric coordinates β 1 , β 2 , β 3 we have

i = 0, j+1 k+1 + = d! j!k!l! (β 2 -β 1 ) j (β 3 -β 1 ) k (3β 1 ) l 1 1 1 , j = 0, i+1 k+1 + = d! i!k!l! (β 1 -β 2 ) i (β 3 -β 2 ) k (3β 2 ) l 1 1 1 , k = 0, i+1 j+1 
+ = d! i!j!l! (β 1 -β 3 ) i (β 2 -β 3 ) j (3β 3 ) l 1 1 1 , l = 0, i+1 j+1 k+1 = d! i!j!k! β i 1 β j 2 β k 3 1 1 1 = B d ijk (x), ( 13 
)
where the constant simplex splines are given by

1 1 1 = 3 1 T 1 (x), 1 1 1 = 3 1 T 2 (x), 1 1 1 = 3 1 T 3 (x), 1 1 1 = 1 T (x). ( 14 
)
Proof: Suppose i = 0. The first equation in (13) holds for d = 0. Suppose it holds for d -1 and let j + k + l = d. Let β 023 j , j = 0, 2, 3 be the barycentric coordinates of x with respect to T 1 = p 0 , p 2 , p 3 , where p 0 := p T . By the B-recurrence

j+1 k+1 + = β 023 2 j k+1 + + β 023 3 j+1 k + + β 023 0 j+1 k+1 .
It is easily shown that

β 023 2 = β 2 -β 1 , β 023 3 = β 3 -β 1 , β 023 0 = 3β 1 .
Therefore, by the induction hypothesis

j+1 k+1 + = (d -1)! j!k!l! (j + k + l)(β 023 2 ) j (β 023 3 ) k (β 023 0 ) l 1 1 1 Since j + k + l = d we obtain the first equation in (13).
The next two equations in (13) follow similarly using

β 031 1 = β 1 -β 2 , β 031 3 = β 3 -β 2 , β 031 0 = 3β 2 , β 012 1 = β 1 -β 3 , β 012 2 = β 2 -β 3 , β 012 0 = 3β 3 .
Using the B-recurrence repeatedly, we obtain the first equality for l = 0. The values of the constant simplex splines are a consequence of [START_REF] Speleers | A normalized basis for quintic Powell Sabin splines[END_REF].

Remark 2 For i = 0 we note that the expression

d! j!k!l! (β 2 -β 1 ) j (β 3 - β 1 ) k (3β 1 ) l in (13) is a Bernstein polynomial on T 1 . Similar remarks hold for j, k = 0. The set C1 := i j k ∈ S 1 3 ( ) : i j k = 0 (15)
of all nonzero simplex splines that can be used in a basis for S 1 3 ( ) contains precisely the following 13 simplex splines.

Lemma 3 We have

C1 = i j k : i, j, k ∈ N, i + j + k = 6 2 2 1 1 , 1 2 2 1 , 2 1 2 1 
.

Proof: For l = 0 it follows from Lemma 1 that i j k ∈ S 1 3 ( ) for all i + j + k = 6. Consider next l = 1. By the local smoothness property, C 1 smoothness implies that each of i, j, k can be at most 2. But then

2 2 1 1 , 1 2 2 1 , 2 1 2 1 
are the only possibilities. Now if l = 2 then i + j + k = 4 implies that one of i, j, k must be at least 2 and we cannot have C 1 smoothness. Similarly l > 2 is not feasible. Recall that S 1 3 ( ) is a linear space of dimension 12, [START_REF] Clough | Finite element stiffness matrices for analysis of plate bending[END_REF]. Thus, in order to obtain a possible basis for this space, we need to choose 12 of the 13 elements in C1. Since C1 contains the 10 cubic Bernstein polynomials we have to include at least two of

2 2 1 1 , 1 2 2 1 , 2 1 2 1 
. We also want a symmetric basis and therefore, we have to include all of them. But then one of the Bernstein polynomials has to be excluded. To see which one to exclude, we insert the

knot p 3 = -p 1 -p 2 + 3p T into 2 2 1 1
and use the C-recurrence to obtain

2 2 1 1 = - 1 2 2 1 - 2 1 2 1 + 3 2 2 2
, or by (13)

2 2 1 1 + 1 2 2 1 + 2 1 2 1 = 3B 3 111 (x). ( 16 
)
Thus, in order to have symmetry and hopefully obtain 12 linearly independent functions, we see that B 3 111 is the one that should be excluded. We obtain the following simplex spline basis for S 1 3 ( ).

Theorem 4 (CTS-basis) The 12 simplex splines S 1 , . . . , S 12 , where

S j (x) := B j (x)
, where B j is given by (7) j = 1, . . . , 9,

S 10 (x) := 1 3 2 2 1 1 = (B 3 210 -B 3 300 )1 T 1 + (B 3 120 -B 3 030 )1 T 2 + (B 3 111 -B 3 102 -B 3 012 + 2B 3 003 )1 T 3 S 11 (x) := 1 3 1 2 2 1 = (B 3 111 -B 3 210 -B 3 201 + 2B 3 300 )1 T 1 + (B 3 021 -B 3 030 )1 T 2 + (B 3 012 -B 3 003 )1 T 3 S 12 (x) := 1 3 2 1 2 1 = (B 3 201 -B 3 300 )1 T 1 + (B 3 111 -B 3 120 -B 3 021 + 2B 3 030 )1 T 2 + (B 3 102 -B 3 003 )1 T 3 .
(17) form a partition of unity basis for the space S 1 3 ( ) given by (1). This basis, which we call the CTS-basis, is the only symmetric simplex spline basis for S 1 3 ( ). On the boundary of T the functions S 10 , S 11 , S 12 have the value zero, while the elements of {S 1 , S 2 , . . . , S 9 } reduce to zero, or to univariate Bernstein polynomials.

Proof: By Lemma 1, it follows that the Bernstein polynomials B 1 , . . . , B 9 are cubic simplex splines, and the previous discussion implies that the functions in (17), apart from scaling, are the only candidates for a symmetric simplex spline basis for S 1 3 ( ).

We can find the explicit form of (see definitions at the end of Section 1) . Consider the C-recurrence. Insert-ing p 1 twice and using p 1 = -p 2p 3 + 3p T and (13) we find

2 2 1 1 = - 3 1 1 1 - 3 2 1 + 3 3 2 1 = 4 1 1 + 4 1 1 -3 4 1 1 - 3 2 1 + 3 3 2 1 = (β 1 -β 2 ) 3 1 1 1 + (β 1 -β 3 ) 3 1 1 1 -3β 3 1 1 1 1 -3(β 1 -β 3 ) 2 (β 2 -β 3 ) 1 1 1 + 9β 2 1 β 2 1 1 1 = (β 1 -β 2 ) 3 1 1 1 + [(β 1 -β 3 ) 3 -3(β 1 -β 3 ) 2 (β 2 -β 3 )] 1 1 1 + 3β 2 1 (3β 2 -β 1 ) 1 1 1 . 
(18)

Using ( 9) and Lemma 1, we can write 3

1 1 1 = 1 1 1 + 1 1 1 + 1 1 1 , so that 2 2 1 1 = [(β 1 -β 2 ) 3 + β 2 1 (3β 2 -β 1 )] 1 1 1 + β 2 1 (3β 2 -β 1 ) 1 1 1 + [(β 1 -β 3 ) 2 (β 1 -3β 2 + 2β 3 ) + β 2 1 (3β 2 -β 1 )] 1 1 1 = (3β 2 1 β 2 -β 3 1 ) 1 1 1 + (3β 1 β 2 2 -β 3 2 ) 1 1 1 + (6β 1 β 2 β 3 -3β 1 β 2 3 -3β 2 β 2 3 + 2β 3 3 ) 1 1 1 . ( 19 
)
By symmetry we obtain

1 2 2 1 = (6β 1 β 2 β 3 -3β 2 1 β 2 -3β 2 1 β 3 + 2β 3 1 ) 1 1 1 + (3β 2 2 β 3 -β 3 2 ) 1 1 1 + (3β 2 β 2 3 -β 3 3 ) 1 1 1 , 2 1 2 1 = (3β 2 1 β 3 -β 3 1 ) 1 1 1 + (3β 1 β 2 3 -β 3 3 ) 1 1 1 + (6β 1 β 2 β 3 -3β 1 β 2 2 -3β 2 2 β 3 + 2β 3 2 ) 1 1 1 . ( 20 
)
The formulas for S 10 , S 11 and S 12 in (17) now follows from ( 19) and (20) using ( 3) and ( 14).

By the partition of unity for Bernstein polynomials we find

12 j=1 S j (x) = i+j+k=3 B 3 ijk (x) = 1, x ∈ T .
It is well known that B 3 ijk reduces to univariate Bernstein polynomials or zero on the boundary of T .

Clearly S j ∈ C(R 2 ), j = 10, 11, 12, since no edge contains more than 4 knots. This follows from general properties of simplex splines. By the local support property they must therefore be zero on the boundary. It also follows that S j ∈ C 1 (T ), j = 10, 11, 12, since no interior knot line contains more than 3 knots.

It remains to show that the 12 functions S j , j = 1, . . . , 12 are linearly independent on T . Suppose that 12 j=1 c j S j (x) = 0 for all x ∈ T and let (β 1 , β 2 , β 3 ) be the barycentric coordinates of x. On the edge p 1 , p 2 , where β 3 = 0, the functions S j , j = 5, . . . 12 vanish, and thus

12 j=1 c j S j (x) = c 1 B 3 300 (x) + c 2 B 3 210 (x) + c 3 B 3 120 (x) + c 4 B 3 030 (x) = 0.
On p 1 , p 2 this is a linear combination of linearly independent univariate Bernstein polynomials and we conclude that c 1 = c 2 = c 3 = c 4 = 0. Similarly c j = 0 for j = 5, . . . , 9. It remains to show that S 10 , S 11 and S 12 are linearly independent on T . For x ∈ T o 3 and β 3 = 0 we find

∂S 10 ∂β 3 | β 3 =0 = 6β 1 β 2 = 0, ∂S j ∂β 3 | β 3 =0 = 0, j = 11, 12.
We deduce that c 10 = 0 and similarly c 11 = c 12 = 0 which concludes the proof.

In Figure 3 we show graphs of the functions S 10 , S 11 , S 12 .

Two Marsden identities and representation of polynomials

We give both a barycentric and a Cartesian Marsden-like identity.

Theorem 5 (Barycentric Marsden-like identity) For u := (u 1 , u 2 , u 3 ), The CTS-basis functions S 10 , S 11 , S 12 on the triangle (0, 0), (1, 0), (0, 1) .

β := (β 1 , β 2 , β 3 ) ∈ R 3 with β i ≥ 0, i = 1, 2, 3 and β 1 + β 2 + β 3 = 1 we have (β T u) 3 = u 3 1 S 1 (β) + u 2 1 u 2 S 2 (β) + u 1 u 2 2 S 3 (β) + u 3 2 S 4 (β) + u 2 2 u 3 S 5 (β) + u 2 u 2 3 S 6 (β) + u 3 3 S 7 (β) + u 1 u 2 3 S 8 (β) + u 2 1 u 3 S 9 (β) + u 1 u 2 u 3 S 10 (β) + S 11 (β) + S 12 (β) .
Proof: By the multinomial expansion we obtain

(β 1 u 1 + β 2 u 2 + β 3 u 3 ) 3 = i+j+k=3 3! i!j!k! (β 1 u 1 ) i (β 2 u 2 ) j (β 3 u 3 ) k = i+j+k=3 u i 1 u j 2 u k 3 B 3 ijk (β).
Using B 3 111 = S 10 + S 11 + S 12 and the ordering in Theorem 4 we obtain (21).

Corollary 6 For l, m, n ∈ N 0 with l + m + n ≤ 3 we have an explicit representation for lower degree Bernstein polynomials in terms of the CTSbasis (17).

B l+m+n lmn = 3 l + m + n -1 3 l 0 m 0 n S 1 + 2 l 1 m 0 n S 2 + 1 l 2 m 0 n S 3 + 0 l 3 m 0 n S 4 + 0 l 2 m 1 n S 5 + 0 l 1 m 2 n S 6 + 0 l 0 m 3 n S 7 + 1 l 0 m 2 n S 8 + 2 l 0 m 1 n S 9 + 1 l 1 m 1 n S 10 + S 11 + S 12 , (22) 
where 0 0 := 1 and r s := 0 if s > r.

Proof: Differentiating, for any d ∈ N 0 , (β 1 u 1 +β 2 u 2 +β 3 u 3 ) d a total of l, m, n times with respect to u 1 , u 2 , u 3 , respectively, and setting

u 1 = u 2 = u 3 = 1 we find d! (d -l -m -n)! β l 1 β m 2 β n 3 = i+j+k=d i(i -1) . . . (i -l + 1)j . . . (j -m + 1)k . . . (k -n + 1)B d ijk ,
and by a rescaling

B l+m+n lmn = d l + m + n -1 i+j+k=d i l j m k n B d ijk , l + m + n ≤ d.
(23) Using ( 17) with d = 3, we obtain (22).

As an example, we find

B 1 100 = 1 3 3S 1 + 2S 2 + S 3 + S 8 + 2S 9 + S 10 + S 11 + S 12 .
Theorem 7 (Cartesian Marsden-like identity) We have

(1 + x T v) 3 = 12 j=1 ψ j (v)S j (x), x ∈ T , v ∈ R 2 , ( 24 
)
where the dual polynomials in Cartesian form are given by

ψ j (v) := 3 l=1 (1 + d T j,l v), j = 1, . . . , 12, v ∈ R 2 . ( 25 
)
Here the dual points d j := [d j,1 , d j,2 , d j,3 ], are given as follows.

                     d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10 d 11 d 12                      :=                      p 1 p 1 p 1 p 1 p 1 p 2 p 1 p 2 p 2 p 2 p 2 p 2 p 2 p 2 p 3 p 2 p 3 p 3 p 3 p 3 p 3 p 1 p 3 p 3 p 1 p 1 p 3 p 1 p 2 p 3 p 1 p 2 p 3 p 1 p 2 p 3                      . ( 26 
)
The domain points p * j in (8) are the coefficients of x in terms of the CTSbasis

x = 12 j=1 p * j S j (x), ( 27 
)
where p * 10 = p * 11 = p * 12 = p T .

Proof: We apply (21) with β 1 , β 2 , β 3 the barycentric coordinates of x and

u i = 1 + p T i v, i = 1, 2, 3.
Then

β 1 u 1 + β 2 u 2 + β 3 u 3 = β 1 + β 2 + β 3 + β 1 p T 1 v + β 2 p T 2 v + β 3 p T 3 v = 1 + x T v.
and ( 24), ( 25), (26) follow from (21). Taking partial derivatives in (24) with respect to v,

∂ v 1 , ∂ v 2 (1 + x T v) 3 = 3x(1 + x T v) 2 = 12 j=1 ∂ v 1 , ∂ v 2 ψ j (v)S j (x),
where

∂ v 1 , ∂ v 2 ψ j (v) := d j,1 (1+d T j,2 v)(1+d T j,3 v)+d j,2 (1+d T j,1 v)(1+d T j,3 v)+ d j,3 (1 + d T j,1 v)(1 + d T j,2 v).
Setting v = 0 we obtain (27). Note that the domain point p T for B 3 111 has become a triple domain point for the CTS-basis.

Following the proof of (27) we can give explicit representations of all the monomials x r y s spanning P 3 . We do not give details here.

Three quasi-interpolants

We consider three quasi-interpolants on S 1 3 ( ). They all use functionals based on point evaluations and the third one will be used to estimate the L ∞ condition number of the CTS-basis.

To start, we consider the following polynomial interpolation problem on T . Find g ∈ P 3 such that g(p * i ) = f i , where f := [f 1 , . . . , f 10 ] T is a vector of given real numbers and the p * i given by ( 8) are the domain points for the cubic Bernstein basis.

Using the ordering (7), we write g in the form 10 j=1 c j B j and obtain the linear system 

A = A 1 0 A 2 A 3 , (28) 
and if A 1 and A 3 are nonsingular then

A -1 = A -1 1 0 -A -1 3 A 2 A -1 1 A -1 3 = B 1 0 B 2 B 3 . ( 29 
)
Using the barycentric form of the domain points in ( 8) we find

A 2 = [1, 3, 3, 1, 3, 3, 1, 3, 3]/27, A 3 = B 3 111 ( 1 3 , 1 3 , 1 3 ) = 2 9 , A 1 := 1 27              
27 0 0 0 0 0 0 0 0 8 12 6 1 0 0 0 0 0 1 6 12 8 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 8 12 6 1 0 0 0 0 0 1 6 12 8 0 0 0 0 0 0 0 0 27 0 0 1 0 0 0 0 0 8 12 6 8 0 0 0 0 0 1 6 12

              ∈ R 9×9 (30) 
and 

B 1 := A -1 1 = 1 6               6 0 0 0 0 0 0 0 0 -5 18 -9 2 0 0 0 0 0 2 -9 18 -5 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 -5 18 -9 2 0 0 0 0 0 2 -9 18 -5 0 0 0 0 0 0 0 0 6 0 0 2 0 0 0 0 0 -5 18 -9 -5 0 0 0 0 0 2 -9 18               , B 3 = [ 9 2 ], B 2 := -B 3 A 2 B 1 = 1 12 
λ P i (f )B i , λ P i (f ) := 10 j=1 α i,j f (p * j ), ( 32 
)
where the matrix α := A -1 has elements α i,j in row i and column j, i, j = 1, . . . , 10. We have

λ P i (B j ) = 10 k=1 α i,k B j (p * k ) = 10 k=1 α i,k a k,j = δ i,j , i, j = 1, . . . , 10.
It follows that QI P (g) = g for all g ∈ P 3 . Since B j = S j , j = 1, . . . , 9 and B 10 = B 3 111 = S 10 + S 11 + S 12 the quasi-interpolant

QI P : C(T ) → S 1 3 ( ), QI P (f ) := 12 i=1 λ P i (f )S i , λ P 11 = λ P 12 = λ P 10 , ( 33 
)
where λ P i (f ) is given by (32), i = 1, . . . , 10, reproduces P 3 . Moreover, since for any f ∈ C(T ) and x ∈ T

|QI P (f )(x)| ≤ max 1≤i≤12 |λ P i (f )| 12 i=1 S i (x) = max 1≤i≤10 |λ P i (f )|,
we obtain

QI P (f ) L∞(T ) ≤ α ∞ f L∞(T ) = 10 f L∞(T ) ,
independently of the geometry of T . Using the construction in [START_REF] Lyche | Stable Simplex Spline Bases for C 3 Quintics on the Powell-Sabin 12-Split[END_REF], we can derive another quasi-interpolant which also reproduces P 3 . It uses more points, but has a slightly smaller norm. Consider the map P : C(T ) → S 1 3 (T ) defined by P (f ) = 12 ℓ=1 M ℓ (f )S ℓ , where

M ℓ (f ) := 1 6 f (d ℓ,1 ) + f (d ℓ,2 ) + f (d ℓ,3 ) + 9 2 f (p * ℓ ) - 4 3 f d ℓ,1 + d ℓ,2 2 + f d ℓ,1 + d ℓ,3 2 + f d ℓ,2 + d ℓ,3 2 . 
Here the d ℓ,m are the dual points given by (26) and the p * ℓ are the domain points given by (27). Note that this is an affine combination of function values of f .

We have tested the convergence of the quasi-interpolant, sampling data from the function f (x, y) = e 2x+y + 5x + 7y on the triangle A = [0, 0],

B = h * [1, 0], C = h * [0.2, 1.2]
for h ∈ {0.05, 0.04, 0.03, 0.02, 0.01}. The following array indicates that the error: f -P (f ) L∞(T ) , is O(h 4 ). h 0.05 0.04 0.03 0.02 0.01 error/h 4 0.0550 0.0547 0.0543 0.0540 0.0537 Using a standard argument the following Proposition shows that the error is indeed O(h 4 ) for sufficiently smooth functions.

Proposition 8

The operator P is a quasi-interpolant that reproduces P 3 . For any f ∈ C(T )

P (f ) L∞(T ) ≤ 9 f L∞(T ) , (34) 
independently of the geometry of T . Moreover,

f -P (f ) L∞(T ) ≤ 10 inf g∈P 3 f -g L∞(T ) . (35) 
Proof: Since d 10 = d 11 = d 12 and B 3 111 = S 10 + S 11 + S 12 , B 3 ijk = S ℓ for (i, j, k) = (1, 1, 1) and some ℓ, we obtain

P (f ) = i+j+k=3 Mijk (f )B 3 ijk
where Mijk = M ℓ for (i, j, k) = (1, 1, 1) and corresponding ℓ and M111 = 3M 10 .

To prove that P reproduces polynomials up to degree 3, i.e., P (B 3 ijk ) = B 3 ijk , whenever i + j + k = 3, it is sufficient to prove the result for B 

p 3 , p 2 + p 3 2 , it is easy to compute that M300 (B 3 300 ) = 1, M300 (B 3 ijk ) = 0 for (i, j, k) = (3, 0, 0), M210 (B 3 210 ) = 1, M210 (B 3 ijk ) = 0 for (i, j, k) = (2, 1, 0), M111 (B 3 111 ) = 1, M111 (B 3 ijk ) = 0 for (i, j, k) = (1, 1 , 1). 
Therefore, by a standard argument, P is a quasi-interpolant that reproduces P 3 . Since the sum of the absolute values of the coefficients defining M ℓ (f ) is equal to 9, another standard argument shows (34) and (35).

The operators QI P and P do not reproduce the whole spline space S 1 3 ( ). Indeed, since λ P 10 (B 10 ) = M 10 (B 10 ) = 1, we have λ P 10 (S j ) = M 10 (S j ) = 1 3 , j = 10, 11, 12.

To give un upper bound for the condition number of the CTS-basis we need a quasi-interpolant which reproduces the whole spline space. We again use the inverse of the coefficient matrix of an interpolation problem to construct such an operator. We need 12 interpolation points and a natural choice is to use the first 9 cubic Bernstein domain points p * j , j = 1, . . . , 9 and split the barycenter p * 10 = p T into three points. After some experimentation we redefine p * 10 and choose p * 10 := (3, 3, 1)/7, p * 11 := (3, 1, 3)/7 and p * 12 := (1, 3, 3)/7. The problem is to find s = 12 j=1 c j S j such that s(p * i ) = f i , i = 1, . . . , 12. The coefficient matrix for this problem has again the block tridiagonal form (28), where A 1 ∈ R 9×9 and B 1 := A -1 1 are given by ( 30) and (31) as before. Moreover, using the formulas in Theorem 4 we find 

A 3 = [S j (p * i )]
α S := A -1 = B 1 0 B 2 B 3 ,
where It follows that the quasi-interpolant QI given by

B 2 = -B 3 A 2 B 1 =    
QI : C(T ) → S 1 3 ( ), QI(f ) := 12 i=1 λ S i (f )S i , λ S i (f ) = 12 j=1 α S i,j f (p * j ), (37) 
is a projector onto the spline space S 1 3 ( ). In particular

s := 12 i=1 c i S i =⇒ c i = λ S i (s), i = 1, . . . , 12. (38) 
The quasi-interpolant (37) can be used to show the L ∞ stability of the CTS-basis. For this we prove that the condition number is independent of the geometry of the triangle.

We define the ∞-norm condition number of the CTS-basis on T by

κ ∞ (T ) := max c =0 b T c L∞(T ) c ∞ max c =0 c ∞ b T c L∞(T )
,

where b T c := 12 j=1 c j S j ∈ S 1 3 ( ). 

) |c i | = |λ S i (b T c)| ≤ α S ∞ b T c L∞(T ) . Therefore, c ∞ b T c L∞(T ) ≤ α S ∞ = 27 - 32 405 ,
and the upper bound κ ∞ < 27 follows.

5 C 0 and C 1 -continuity

In the following, we derive conditions to ensure C 0 and C 1 continuity through an edge between two triangles. The conditions are very similar to the classical conditions for continuity of Bernstein polynomials.

Theorem 10

Let s 1 = 12 j=1 c j S j and s 2 = 12 j=1 d j Sj be defined on the triangle T := p 1 , p 2 , p 3 and T := p 1 , p 2 , p3 , respectively, see Figure 4.

The function s

= s 1 on T s 2 on T is continuous on T ∪ T if d 1 = c 1 , d 2 = c 2 , d 3 = c 3 , d 4 = c 4 . (39) 
Moreover, s ∈ C 1 (T ∪ T ) if in addition to (39) we have

d 5 = γ 1 c 3 + γ 2 c 4 + γ 3 c 5 , d 9 = γ 1 c 1 + γ 2 c 2 + γ 3 c 9 , d 10 = γ 1 c 2 + γ 2 c 3 + γ 3 c 10 .
(40) where γ 1 , γ 2 , γ 3 are the barycentric coordinates of p3 with respect to T . Suppose next (39) holds and s ∈ C 1 (T ∪ T ). By the continuity property we see that S j , j = 6, 7, 8, 11, 12 are zero and have zero cross boundary derivatives on p 1 , p 2 since they have at most 3 knots on that edge. We take derivatives in the direction u := p3p 1 using the A-recurrence (defined at the end of Section 1) with a := (γ 1 -1, γ 2 , γ 3 , 0) for s 1 and a := (-1, 0, 1, 0) 

The Hermite basis

The classical Hermite interpolation problem on the Clough-Tocher split is to interpolate values and gradients at vertices and normal derivatives at the midpoint of edges, see Figure 1. These interpolation conditions can be described by the linear functionals

ρ(f ) = [ρ 1 (f ), . . . , ρ 12 (f )] T := [f (p 1 ), ∂ 1,0 f (p 1 ), ∂ 0,1 f (p 1 ), f (p 2 ), ∂ 1,0 f (p 2 ), ∂ 0,1 f (p 2 ), f (p 3 ), ∂ 1,0 f (p 3 ), ∂ 0,1 f (p 3 ), ∂ n 1 f (p 5 ), ∂ n 2 f (p 6 ), ∂ n 3 f (p 4 )] T ,
where p 4 , p 5 , p 6 , are the midpoints on the edges p 1 , p 2 , p 2 , p 3 , p 3 , p 1 , respectively, and ∂ n j f is the derivative in the direction of the unit normal to that edge in the direction towards p j . We let p j = (x j , y j ) be the coordinates of each point. The coefficient vector c := [c 1 , . . . , c 12 ] T of the interpolant g := 12 j=1 c j S j is solution of the linear system Ac = ρ(f ), where A ∈ R 12×12 with a i,j := ρ i (S j ).

Let H 1 , . . . , H 12 be the Hermite basis for S 1 3 ( ) defined by ρ i (H j ) = δ i,j . The matrix A transforms the Hermite basis to the CTS-basis. Since a basis transformation matrix is always nonsingular, we have

[S 1 , . . . , S 12 ] = [H 1 , . . . , H 12 ]A, [H 1 , . . . , H 12 ] = [S 1 , . . . , S 12 ]A -1 . (44)
To find the elements ρ i (S j ) of A we define for i, j, k = 1, 2, 3

ν ij := p ij 2 , p ij := p i -p j , x ij := x i -x j , y ij := y i -y j , ν ijk := p T i,j p j,k ν ij , for i = j, δ := 1 1 1 x 1 x 2 x 3 y 1 y 2 y 3 . (45) 
We note that ν ijk is the length of the projection of p j,k in the direction of p i,j and that δ is twice the signed area of T . By the definition of the unit normals and the chain rule for j = 1, . . . , 12 we find ∂ 1,0 S j = (y 23 ∂ β 1 S j + y 31 ∂ β 2 S j + y 12 ∂ β 3 S j )/δ, ∂ 0,1 S j = (x 32 ∂ β 1 S j + x 13 ∂ β 2 S j + x 21 ∂ β 3 S j )/δ, ∂ n 1 S j = (y 23 ∂ 1,0 S j + x 32 ∂ 0,1 S j )/ν 32 = (ν 32 ∂ β 1 S j + ν 231 ∂ β 2 S j + ν 321 ∂ β 3 S j )/δ, ∂ n 2 S j = (y 31 ∂ 1,0 S j + x 13 ∂ 0,1 S j )/ν 31 = (ν 132 ∂ β 1 S j + ν 31 ∂ β 2 S j + ν 312 ∂ β 3 S j )/δ, ∂ n 3 S j = (y 12 ∂ 1,0 S j + x 21 ∂ 0,1 S j )/ν 21 = (ν 123 ∂ β 1 S j + ν 213 ∂ β 2 S j + ν 21 ∂ β 3 S j )/δ. This leads to

A := A 1 0 A 2 A 3 , with A 1 ∈ R 9×9 , A 2 ∈ R 3×9 , A 3 ∈ R 3×3 ,
where We find

A 1 := 3 δ              
A -1 := B 1 0 B 2 B 3 = [b i,j ] 12 i,j=1 ,
where

B 1 := A -1 1 = 1 3              
3 0 0 0 0 0 0 0 0 3 x 21 y 21 0 0 0 0 0 0 0 0 0 3 x 12 y 12 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 x 32 y 32 0 0 0 0 0 0 0 0 0 3 x 23 y 23 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 x 13 y 13 3 x 31 y 31 0 0 0 0 0 0 

              ∈ R 9×9 ,

•

  a differentiation formula • a stable recurrence relation • a knot insertion formula • they constitute a nonnegative partition of unity • simple explicit dual functionals • L ∞ stability • simple conditions for C 1 and C 2 joins to neighboring triangles • well conditioned collocation matrices for Lagrange and Hermite interpolation using certain sites.

Figure 1 :

 1 Figure 1: The PS12-split (left) and the CT-split (right). The C 1 quadratics on PS-12 and C 1 cubics on CT have the same degrees of freedom as indicated.

Figure 2 :

 2 Figure 2: The cubic Bernstein basis (left) and the CTS-basis (right), where B 3 111 is replaced by S 10 , S 11 , S 12 .

  the B-or C-recurrence

  Figure 3:

10 j=1c

 10 j B j (p * i ) = f i , i = 1, . . . , 10, or in matrix form Ac = f for the unknown coefficient vector c := [c 1 , . . . , c 10 ] T . Since B 10 (p * i ) = B 3 111 (p * i ) = 0 for i = 1, . . . , 9 the coefficient matrix A is block triangular

4 - 9 -9 4 - 9 -9 4 - 9 - 9 .
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Theorem 9

 9 For any triangle T we have κ ∞ (T ) < 27. Proof: Since the S j form a nonnegative partition of unity it follows that max c =0 b T c L∞(T ) / c ∞ = 1. If s = 12 j=1 c j S j = b T c then by (38

  c 10 ,c 11 ,c 12

Figure 4 :

 4 Figure 4: C 1 -continuity and components

Figure 5 :

 5 Figure 5: C 1 smoothness

Figure 6 :

 6 Figure 6: The Hermite basis functions H 1 , H 2 , H 3 , H 10 on the unit triangle.

  ν 32 , ν 231 , ν 231 -ν 32 , ν 321 -ν 32 , ν 321 , ν 32 , 0 , A 2 (2) := 3 4δ ν 132 , ν 31 , 0, 0, 0, ν 31 , ν 312 , ν 312 -ν 31 ν 132 -ν 31 , A 2 (3) := 3 4δ ν 123 , ν 123 -ν 21 , ν 213 -ν 21 , ν 213 , ν 21 , 0, 0, 0, ν 21 ,

B 3 :

 3 3×3 , and the rows ofB 2 = -B 3 A 2 B 1 ∈ R 3×9 are given by B 2 (1) :=

Figure 7 :

 7 Figure 7: The triangulation and the C 1 surface

Figure 8 : A C 1

 81 Figure 8: A C 1 Hermite interpolating surface on the triangulation

  1 6ν 21 -6ν 123 , x 12 ν 123 + ν 21 x 23 , y 12 ν 123 + ν 21 y 23 , -6ν 213 , x 21 ν 213 + ν 21 x 13 , y 21 ν 213 + ν 21 y 13 , 0, 0, 0 , -6ν 231 , x 23 ν 231 + ν 32 x 31 , y 23 ν 231 + ν 32 y 31 , -6ν 321 , x 23 ν 231 + ν 32 x 21 + ν 32 x 23 , y 23 ν 231 + ν 32 y 21 + ν 32 y 23 , 6ν 132 , x 13 ν 132 + ν 31 x 32 , y 13 ν 132 + ν 31 y 32 , 0, 0, 0, -6ν 312 , x 31 ν 312 + ν 31 x 12 , y 31 ν 312 + ν 31 y 12 .

		P 6
	P 4	P 5
		P 3
	B 2 (2) := 0, 0, 0, B 2 (3) := 1 6ν 32 1 6ν 31 -P 1 P 2

for s 2 . We find with x ∈ p 1 , p 2

The last equality follows from (13) since β 3 = 0 on p 1 , p 2 so that = 3B 2 110 (x). Consider next Sj . By the same argument as for S j , we see that Sj , j = 6, 7, 8, 11, 12 are zero and have zero cross boundary derivatives on p 1 , p 2 . We find for x ∈ p 1 , p 2

We note that on p 1 , p 2 , the polynomials B 2 101 , B2 101 , B 2 011 , B2 011 vanish and

As an example, on the unit triangle (p 1 , p 2 , p 3 ) = ((0, 0), (1, 0), (0, 1)) we find

Some of the Hermite basis functions are shown in Figure 6.

We have also tested the convergence of the Hermite interpolant, sampling again data from the function f (x, y) = e 2x+y + 5x + 7y on the triangle 

Examples

Several examples have been considered for scattered data on the CT-split, see for example [START_REF] Farin | A modified Clough-Tocher interpolant[END_REF][START_REF] Mann | Cubic precision Clough-Tocher interpolation[END_REF]. Here, we consider a triangulation with vertices p 1 = (0, 0), p 2 = (1, 0), p 3 = (3/2, 1/2), p 4 = (-1/2, 1), p 5 = (1/4, 3/4), p 6 = (3/2, 3/2), p 7 = (1/2, 2) and triangles T 1 := p 1 , p 2 , p 5 , T 2 := p 2 , p 3 , p 5 , T 3 := p 4 , p 1 , p 5 , T 4 := p 3 , p 6 , p 5 , T 5 := p 6 , p 4 , p 5 , T 6 := p 4 , p 6 , p 7 ,. We divide each of the 6 triangles into 3 subtriangles using the Clough-Tocher split. We then obtain a space of C 1 piecewise polynomials of dimension 3V + E = 3 × 7 + 12 = 33, where V is the number of vertices and E the number of edges in the triangulation. We can represent a function s in this space by either using the Hermite basis or using CTS-splines on each of the triangles and enforcing the C 1 continuity conditions. The function s on T 1 depends on 12 components, while the C 1 -continuity through the edges gives only 5 free components for T 2 ,T 3 and T 4 . Closing the 1-cell at p 5 gives only one free component for T 5 and 5 free components for T 6 , Figure 7 left.

In the following graph, Figure 7, right, once the 12 first components on T 1 were chosen, the other free ones are set to zero. Then, in Figure 8, we have plotted the Hermite interpolant of the function f (x, y) = e 2x+y +5x+7y and gradients using the CTS-splines.