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ABSTRACT
Parallel Krylov Subspace Methods are commonly used for solv-

ing large-scale sparse linear systems. Facing the development of

extreme scale platforms, the minimization of synchronous global

communication becomes critical to obtain good efficiency and scal-

ability. This paper highlights a recent development of a hybrid

(unite and conquer) method, which combines three computation

algorithms together with asynchronous communication to acceler-

ate the resolution of non-Hermitian linear systems and to improve

its fault tolerance and reusability. Experimentation shows that our

method has an up to 5× speedup and better scalability than the

conventional methods for the resolution on hierarchical clusters

with hundreds of nodes.
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1 INTRODUCTION
Scientific applications require the solving of large-scale non-Hermitian

linear system Ax = b. The collection of Krylov iterative methods,

such as the Generalized minimal residual method (GMRES) [20],

the Conjugate Gradient (CG) [13] and the Biconjugate Gradient Sta-

bilized Method (BiCGSTAB) [22] are used to solve different kinds of

linear systems. These iterative methods approximate the solution

xm of specific matrix A and right-hand vector b from an initial

guessed solution x0. In practice, these methods are always restarted

after a specific number of iterations, caused by the augmentation

of memory and computational requirements with the increase of
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the iteration number. These methods are already well implemented

in parallel to profit from the great number of computation cores

on large clusters. The solving of complicated linear systems with

basic iterative methods cannot always converge fast. The conver-

gence rate depends on the specialties of operator matrix. Thus the

researchers introduce a kind of preconditioners which combine the

stationary methods and iterative methods, to improve the spectral

proprieties of operator A and to accelerate the convergence. This

kind of preconditioners includes the incomplete LU factorization

preconditioner (ILU) [6], the Jacobi preconditioner [5], the succes-

sive over-relaxation preconditioner (SOR) [1], etc. Meanwhile, there

is a kind of deflated preconditioners which use the approximated

eigenvalues during the solving procedure to form a new initial

vector for the next restart procedure, which allows to speed up a

further computation. Erhel [11] studied a deflated technique for

the restarted GMRES algorithm, based on an invariant subspace

approximation which is updated at each cycle. Lehoucq [15] in-

troduced a deflation procedure to improve the convergence of an

Implicitly Restarted Arnoldi Method (IRAM) for computing the

eigenvalues of large matrices. Saad [21] presented a deflated ver-

sion of the conjugate gradient algorithm for solving linear systems.

The implementation of these iterative methods was a good tool to

resolve linear systems for a long time during past decades.

Nowadays, the HPC cluster systems continue not only to scale up

in compute node and Central Processing Unit (CPU) core count, but

also the increase of components heterogeneity with the introduc-

tion of the Graphics Processing Unit (GPU) and other accelerators.

This trend causes the transition to multi- and many cores inside

of computing nodes which communicate explicitly through fast

interconnection networks. These hierarchical supercomputers can

be seen as the intersection of distributed and parallel computing.

Indeed, with a large number of cores, the communication of overall

reduction and global synchronization of applications are the bottle-

neck. When solving a large-scale problem on parallel architectures

with preconditioned Krylov methods, the cost per iteration of the

method becomes the most significant concern, typically because of

communication and synchronization overheads [8]. Consequently,

large scalar products, overall synchronization, and other opera-

tions involving communication among all cores have to be avoided.

The numerical applications should be optimized for more local

communication and less global communication. To benefit the full

computational power of such hierarchical systems, it is central to

explore novel parallel methods and models for the solving of linear

systems. These methods should not only accelerate the conver-

gence but also have the abilities to adapt to multi-grain, multi-level
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memory, to improve the fault tolerance, reduce synchronization

and promote asynchronization. The conventional preconditioners

have much additional global communication and sparse matrix-

vector products. They will lose their advantages on the large-scale

hierarchical platforms.

In order to explore the novel methods for modern computer

architectures, Emad [9] proposed the unite and conquer approach.

This approach is a model for the design of numerical methods by

combining different computation components together to work

for the same objective, with asynchronous communication among

them. Unite implies the combination of different calculation com-

ponents, and conquer represents different components work to-

gether to solve one problem. In the unite and conquer methods,

different computation parallel components work independently

with asynchronous communication. These different components

can be deployed on different platforms such as P2P, cloud and the

supercomputer systems, or on the same platform with different

processors. The idea of unite and conquer approach came from the

article of Saad [17] in 1984, where he suggested using Chebyshev

polynomial to accelerate the convergence of Explicitly Restarted

Arnoldi Method (ERAM) to solve eigenvalue problems. Brezinski

[4] proposed in 1994 an approach for solving a system of linear

equations which takes a combination of two arbitrary approximate

solutions of two methods. In 2005, Emad [10] proposed a hybrid ap-

proach based on a combination of multiple ERAMs, which showed

significant improvement in solving different eigenvalue problems.

In 2016, Fender [12] studied a variant of multiple IRAMs and gener-

ated multiple subspaces in a nested fashion in order to dynamically

pick the best one inside each restart cycle.

Inspired by the unite and conquer approach, this paper intro-

duces a recent development of unite and conquer method to solve

large-scale non-Hermitian sparse linear systems. This method com-

prises three computation components: ERAM Component, GMRES

Component and LS (Least Squares) Component. GMRES Compo-

nent is used to solve the systems, LS Component and ERAM Com-

ponent serve as the preconditioning part. The key feature of this

hybrid method is the asynchronous communication among these

three components, which reduces the number of overall synchro-

nization points and minimizes the global communication. This

method is called Unite and Conquer GMRES/LS-ERAM (UCGLE)

method.

There are three levels of parallelisms in UCGLE method to ex-

plore the hierarchical computing architectures. The convergence

acceleration of UCGLE method is similar with a deflated precon-

ditioner. The difference between them is that the improvement of

the former one is intrinsic to the methods. It means that in the

deflated preconditioning methods, for each time of precondition-

ing, the solving procedure should stop and wait for the temporary

preconditioning procedure. Asynchronous communication of the

latter can cover the synchronous communication overhead.

Obviously, the asynchronous communication among the differ-

ent computation components improves the fault tolerance and the

reusability of this method. The three computation components

work independently from each other, when errors occur inside of

ERAM Component, GMRES Component or LS Component, UCGLE

can continue to work as a normal restarted GMRES method to solve

the problems. In fact, the materials for accelerating the convergence

are the eigenvalues. With the help of asynchronous communication,

we can select to save the computed eigenvalues by ERAM method

into a local file and reuse it for the other solving procedures with

the same matrix.

We implement UCGLE method based on the scientific libraries

PETSc and SLEPc for both CPU and GPU versions. We make use

of these mature libraries in order to focus on the prototype of

the asynchronous model instead of exploiting the optimization of

codes performance inside of each component. PETSc provides also

different kinds of preconditioners which can be easily used to the

performance comparison with UCGLE method.

In Section 2, we present the three basic numerical algorithms

in detail which construct the computation components of UCGLE

method. The implementation of different levels parallelism and

communication are shown in Section 3. In Section 4, we evaluate the

convergence and performance of UCGLEmethod with our scientific

large-scale sparse matrices on top of hierarchical CPU/GPU clusters.

We give the conclusions and perspectives in Section 5.

2 COMPONENTS NUMERICAL ALGORITHMS
In linear algebra, them-order Krylov subspace generated by a n ×n
matrix A and a vector b of dimension n is the linear subspace

spanned by the images of b under the first m powers of A, that
is

Km (A,b) = span(b,Ab,A2b, · · · ,Am−1b)

The Krylov iterative methods are often used to solve large-scale

linear systems and eigenvalue problems. In this section, we present

in detail the three basic numerical algorithms used by UCGLE.

2.1 ERAM Algorithm

Algorithm 1 Arnoldi Reduction

1: function AR(input :A,m,ν , output : Hm ,Ωm )

2: ω1 = ν/| |ν | |2
3: for j = 1, 2, · · · ,m − 1 do
4: hi, j = (Aωj ,ωi ), for i = 1, 2, · · · , j

5: ωj = Aωj −
∑j
i=1 hi, jωi

6: hj+1, j = | |ωj | |2
7: ωj+1 = ωj/hj+1, j
8: end for
9: end function

Arnoldi algorithm is a well-known method to approximate the

eigenvalues of large sparse matrices, which was firstly proposed

by W. E. Arnoldi in 1951 [2]. The kernel of Arnoldi algorithm is

the Arnoldi reduction, which gives an orthonormal basis Ωm =

(ω1,ω2, · · · ,ωm ) of Krylov subspaceKm (A,v ), by theGram-Schmidt

orthogonalization, whereA is n×n matrix, and ν is a n-dimensional

vector. Arnoldi reduction can transfer a matrixA to be an upper Hes-

senberg matrix Hm , the eigenvalues of Hm are the approximated

ones of A, which are called the Ritz values of A. See Algorithm 1

for the Arnoldi reduction in detail. With the Arnoldi reduction, the

r desired Ritz values Λr = (λ1, λ2, · · · , λr ), and the correspond-

ing Ritz vectors Ur = (u1,u2, · · · ,ur ) can be calculated by Basic

Arnoldi method.
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The numerical accuracy of the computed eigenpairs of basic

Arnoldi method depends highly on the size of the Krylov subspace

and the orthogonality of Ωm . Generally, the larger the subspace

is, the better the eigenpairs approximation is. The problem is that

firstly the orthogonality of the computed Ωm tends to degrade with

each basis extension. Also, the larger the subspace size is, the larger

the Ωm matrix gets. Hence available memory may also limit the

subspace size, and so the achievable accuracy of the Arnoldi process.

To overcome this, Saad [19] proposed to restart the Arnoldi process,

which is the ERAM. ERAM is an iterative method whose main core

is the Arnoldi process. The subspace size is fixed asm, and only the

starting vector will vary. After one restart of the Arnoldi process,

the starting vector will be initialized by using information from

the computed Ritz vectors. In this way, the vector will be forced to

be in the desired invariant subspace. The Arnoldi process and this

iterative scheme will be executed until a satisfactory solution is

computed. The Algorithm of ERAM is given by Algorithm 2, where

ϵa is a tolerance value, r is desired eigenvalues number and the

function д defines the stopping criterion of iterations.

Algorithm 2 Explicitly Restarted Arnoldi Method

1: function ERAM(input : A, r ,m,ν , ϵa , output : Λr )
2: Compute an AR(input :A,m,v , output : Hm ,Ωm )

3: Compute r desired eigenvalues λi (i ∈ [1, r ]) of Hm
4: Set ui = Ωmyi , for i = 1, 2, · · · , r , the Ritz vectors
5: Compute Rr = (ρ1. · · · , ρr ) with ρi = | |λiui −Aui | |2
6: if д(ρi ) < ϵa (i ∈ [1, r ]) then
7: stop

8: else
9: set v =

∑d
i=1 Re (νi ), and GOTO 2

10: end if
11: end function

2.2 GMRES Algorithm
GMRES is a Krylov iterative method to solve non-Hermitian linear

systems. It approximates the solution xm of matrix A and right

hand vector b from an initial guessed solution x0, with the minimal

residual in a Krylov subspace Km (A,v ), which is given by Algo-

rithm 3. The GMRES method was introduced by Youssef Saad and

Martin H. Schultz in 1986 [20].

Algorithm 3 Basic GMRES method

1: function BASICGMRES(input : A,m,x0,b, output : xm )

2: r0 = b −Ax0, β = | |r0 | |2, and ν1 = r0/β
3: Compute an AR(input :A,m,ν1, output : Hm ,Ωm )

4: Compute ym which minimizes | |βe1 − Hmy | |2
5: xm = x0 + Ωmym
6: end function

If GMRES method is restarted after a number of iterations, to

avoid enormous memory and computational requirements with

the increase of Krylov subspace projection number. It is called the

restarted GMRES. The restarted GMRES won’t stop until the condi-

tion | |b −Axm | | < ϵд is satisfied. See Algorithm 4 for restarted GM-

RES algorithm in detail. A well-known difficulty with the restarted

GMRES algorithm is that it can stagnate when the matrix is not

positive definite. A typical method is to use preconditioning tech-

niques whose goal is to reduce the number of steps required to

converge.

Algorithm 4 Restarted GMRES method

1: function RESTARTEDGMRES(input : A,m,x0,b, ϵд , output :
xm )

2: BASICGMRES(input : A,m,x0,b, output : xm )

3: if (| |b −Axm | | < ϵд ) then
4: Stop

5: else
6: set x0 = xm and GOTO 2

7: end if
8: end function

2.3 Least Square Polynomial Algorithm
The Least Squares polynomial method is a kind of iterative meth-

ods to solve linear systems, which aims to calculate a new pre-

conditioned residual for restarted GMRES in the UCGLE method.

The iterates of the Least Squares method can be written as xn =
x0 + Pn (A)r0, where x0 is a selected initial approximation to the

solution, r0 the corresponding residual norm, and Pn a polynomial

of degree n − 1. We set a polynomial of n degree Rn such that

Rn (λ) = 1 − λPn (λ)

.

The residual of nth steps iteration rn can be expressed as equa-

tion rn = Rn (A)r0, with the constraint Rn (0) = 1. We want to find

a kind of polynomial which can minimize | |Rn (A)r0 | |2, with | |.| |2
the Euclidean norm.

If A is a diagonalizable matrix with its spectrum denoted as

σ (A) = λ1, · · · , λn , and the associated eigenvectors u1, · · · ,un .
Expanding the residual vector rn in the basis of these eigenvectors

as as rn =
∑n
i=1 Rn (λi )ρiui , which allows to get the upper limit of

| |rn | | as

| |r0 | |2 max

λ∈σ (A)
|Rn (λ) | (1)

In order to minimize the norm of rn , it is possible to find a

polynomial Pn which can minimize the Equation (1).

In article [16], Manteuffel proposed to expand Pn with a basis of

Chebyshev polynomial tj (λ) =
Tj λ−cd
Tj cd

, where ti is constructed by

an ellipse englobing the convex hull using the computed eigenval-

ues, with c the centre of ellipse, and d the focal distance of ellipse.

Pn is under form that Pn =
∑n−1
i=0 ηi ti . The selected Chebyshev

polynomials ti meet the three terms recurrence relation (2).

ti+1 (λ) =
1

βi+1
[λti (λ) − αi ti (λ) − δi ti−1] (2)

For the computation of parameters H = (η0,η1, · · · ,ηn−1), we
construct a modified gram matrix Mn with dimension n × n, and
matrixTn with dimension (n+1)×n by the three terms recurrence of

the basis ti .Mn can be factorized to beMn = LLT by the Cholesky
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factorization. The parametersH can be computed by a least squares

problem of the formula

min∥l11e1 − FdH ∥ (3)

With the definition of vectors ωi ∈ IR
n
by ωi = ti (A)r0, we can

obtain the Equation (4), and in the end iteration (5).

ωi+1 =
1

βi+1
(Aωi − αiωi − δiωi−1) (4)

xn = x0 + Pn (A)r0 = x0 +
n−1∑
i=1

ηiωi (5)

The pseudocode of this method is presented in Algorithm 5,

where A is a n × n matrix, b is a right-hand vector of dimen-

sion n, d is the degree of Least Squares polynomial, Λr the col-

lection of approximate eigenvalues, and the output values areAd =
(α0,α1, · · · ,αd−1), Bd = (β1, β2, · · · , βd ), ∆d = (δ1,δ2, · · · ,δd−1),
and Hd = (η0,η1, · · · ,ηd−1), which will be used for constitution of

a new GMRES initial vector. a, c,d are the required parameters to

fix an ellipse in the plan, with a the distance between the vertex

and centre, c the centre position and d the focal distance. For more

details of Least Squares iterative method, see[18].

Algorithm 5 Least Square method

1: function LS(input : A,b,d,Λr , output : Ad ,Bd ,∆d ,H )

2: construct the convex hull C by Λr
3: construct ellispe (a, c,d ) by the convex hull C
4: compute parameters Ad ,Bd ,∆d by ellispe (a, c,d )
5: construct matrix T (d + 1) × d matrix by Ad ,Bd ,∆d
6: construct GrammatrixMd by Chebyshev polynomials basis

7: Cholesky factorizationMd = LLT

8: Fd = LTT
9: Hd satisfies min ∥l11e1 − FdH ∥
10: end function

3 UCGLE METHOD IMPLEMENTATION
3.1 Workflow and Parameters Analysis
UCGLE method comprises mainly two parts: the first part uses the

restarted GMRES method to solve the linear systems; in the second

part, it computes a specific number of approximated eigenvalues,

and then applies them to the Least Squares method and gets a new

preconditioned residual, as a new initial vector for restarted GMRES.

Suppose that the computed convex hull by Least Squares contains

eigenvalues λ1, · · · , λm , the residual given by Least Square is

r =
m∑
i=1

ρ ((Rk ) (λi )
ι )ui +

n∑
i=m+1

ρ ((Rk ) (λi )
ι )ui

The first part of this residual is small as the Least Squares method

finds Rk minimizing |Rk (λ) | in the convex hull, but not with the

second part, where the residual will be rich in the eigenvectors

associated with the eigenvalues outside the convex hull. With the

number of approximated eigenvalues ι increasing, the first part will
be much closer to zero and the second part will be much larger. This

results in an enormous increase of restarted GMRES preconditioned

vector norm. Meanwhile, when restarted GMRES restarts with the

combination of a number of eigenvectors, the convergence will be

faster even if the residual is enormous.

Figure 1 gives the workflow of UCGLE method with three com-

putation components. ERAM Component and GMRES Component

are implemented in parallel, and the communication among them

is asynchronous. ERAM Component computes a desired number of

eigenvalues, and then sends them to LS Component; LS Component

uses these received eigenvalues to output a new residual vector,

and sends it to GMRES Component; GMRES Component uses this

residual as a new restarted initial vector for solving non-Hermitian

linear systems.

UCGLEmethod is a combination of three differentmethods, there

are a number of parameters, which have impacts on its convergence

rate. We summarize these different related ones, and classify them

according to their relations with different components.

I. GMRES Component

* mд : GMRES Krylov Subspace size

* ϵд : absolute tolerance for the GMRES convergence test

* Pд : GMRES core number

* suse : number of times that polynomial applied on the resid-

ual before taking account into the new eigenvalues

* L: number of GMRES restarts between two times of LS pre-

conditioning

II. ERAM Component

* ma : ERAM Krylov subspace size

* r : number of eigenvalues required

* ϵa : tolerance for the ERAM convergence test

* Pa : ERAM core number

III. LS Component

* d : Least Squares polynomial degree

The Algorithm 6 shows the implementation of UCGLE’s three

components and their asynchronous communication in detail. ERAM

Component loads the parametersma ,v, r , ϵa and the operator ma-

trix A, then launches ERAM function. When it receives a new vec-

tor X_TMP from GMRES Component, this vector will be stored in

ERAM Component. This vector is updated with the continuous re-

ceiving of a new one from GMRES Component. If the r eigenvalues
Λr are approximated by ERAM Component, it will send them to

LS Component, at the same time, it is able to save the eigenvalues

into the local file.

LS Component won’t start work until it receives the eigenvalues

Λr sent from ERAM Component. Then it will use them to compute

the parameters Ad ,Bd ,∆d ,Hd , whose dimensions are related to LS

parameter d , the Least Squares polynomial degree, and send these

parameters to GMRES Component.

GMRES Component loads the parametersA,mд ,x0,b, ϵд ,L, suse
to solve the linear systems. At the beginning of the execution, it

behaves like the basic GMRES method. When it finishes themth

iteration, it will check if the condition | |b −Axm | | < ϵд is satisfied,

if yes, xm is the solution of linear system Ax = b, or GMRES

Component will be restarted using xm as a new initial vector. A

parameter count is used to count the times of restart. All these

processes are similar as a Restarted GMRES. But when count is an
integer multiple of L (number of GMRES restarts between two times

preconditioning of LS), it will check if it has received the parameters
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Ad ,Bd ,∆d ,Hd from LS Component. If yes, these parameters will

be used to construct a preconditioning polynomial Pd , which can

be used to generate a preconditioned residual xd , then set the initial

vector x0 as xd , and restart the basic GMRES, until the exit condition

is satisfied.
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Figure 1: Workflow of UCGLE method’s three components

3.2 Distributed and Parallel Communications
UCGLE method is a distributed parallel method which can profit

both shared memory and distributed memory of computational

architectures. As shown in Figure 2, it has two levels of parallelism

for distributed memory: 1) Coarse Grain/Component level: UC-

GLE allows the distribution of different numerical components,

including the preconditioning part (LS and ERAM) and the solv-

ing part (GMRES) on different platforms or processors; 2) Medium

Grain/Intra-component level, GMRES and ERAM components are

both deployed in parallel; the third level for shared memory is

the Fine Grain/Thread parallelism: the OpenMP thread level paral-

lelism in CPU, or the accelerator level parallelism if GPUs or other

accelerators are available.

The GMRES method has been implemented by PETSc, and the

ERAM method is provided by SLEPc. Additional functions have

been added to the GMRES and ERAM provided by PETSc and SLEPc

in order to include the sending and receiving functions of different

types of data. For the implementation of LS Component, it computes

the convex hull and the ellipse encircling the Ritz values of matrix

A, which allows generating a novel Gram matrix M of selected

Chebyshev polynomial basis. This matrix should be factorized into

LLT by the Cholesky algorithm. The Cholesky method is ensured

by PETSc as a preconditioner but can be used as a factorization

method. The implementation based on these libraries allows the

recompilation of the UCGLE codes to adapt into both CPU and GPU

architectures. The experimentation of this paper does not consider

the OpenMP thread level of parallelism since the implementation of

PETSc and SLEPc is not thread-safe due to their complicated data

structures. The data structures of PETSc and SLEPc makes it more

Algorithm 6 Implementation of Components

1: function LOADERAM(input : A,ma ,ν , r , ϵa )
2: while exit==False do
3: ERAM(A, r ,ma ,ν , ϵa , output : Λr )
4: Send (Λr ) to LS

5: if save f lд == TRUE then
6: write (Λr ) to file eiдenvalues .bin
7: end if
8: if Recv (X_TMP ) then
9: update X_TMP
10: end if
11: if Recv (exit == TRUE) then
12: Send (exit ) to LS Component and stop

13: end if
14: end while
15: end function
16: function LOADLS(input : A,b,d)
17: if Recv(Λr ) then
18: LS(input : A,b,d,Λr , output : Ad ,Bd ,∆d ,Hd )

19: Send (Ad ,Bd ,∆d ,Hd ) to GMRES Component

20: end if
21: if Recv (exit == TRUE) then
22: stop

23: end if
24: end function
25: function LOADGMRES(input : A,mд ,x0,b, ϵд ,L, suse , output :

xm )

26: count = 0

27: BASICGMRES(input : A,m,x0,b, output : xm )

28: X_TMP = xm
29: Send (X_TMP ) to ERAM Component

30: if | |b −Axm | | < ϵд then
31: return xm
32: Send (exit == TRUE) to ERAM Component and stop

33: else
34: if count | L then
35: if recv (Ad ,Bd ,∆d ,Hd ) then
36: r0 = f −Ax0, ω1 = r0 and x0 = 0

37: for k = 1, 2, · · · , suse do
38: for i = 1, 2, · · · ,d − 1 do
39: ωi+1 =

1

βi+1
[Aωi − αiωi − δiωi−1]

40: xi+1 = xi + ηi+1ωi+1
41: end for
42: end for
43: set x0 = xd , and GOTO 1

44: count + +
45: end if
46: else
47: set x0 = xm , and GOTO 1

48: count + +
49: end if
50: end if
51: end function
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Figure 2: Communication and different levels parallelism of
UCGLE method

difficult to partition the data among the threads to prevent conflict

and to achieve good performance [3].

The main characteristic of UCGLE method is its asynchronous

communication. But the synchronous communication takes place

inside of GMRES and ERAM components. Distributed and parallel

communication involves different types of exchange data, such

as vectors, scalar tables, and signals among different components.

When the data are sent and received in a distributed way, it is

essential to ensure the consistency of data. In our case, we choose

to introduce an intermediate node as a proxy to carry out only

several types of exchanges, and thus facilitate the implementation

of asynchronous communication. This proxy is called Manager
Process as in Figure 2. One process can fulfill all the data exchanges.

Asynchronous communication allows each computation com-

ponent to conduct independently the work assigned to it without

waiting for the input data. The asynchronous data sending and

receiving operations are implemented by the non-blocking commu-

nication of Message Passing Interface (MPI). Sending takes place

after the sender has completed the task assigned to it. Before any

prior shipment, the component checks whether several transactions

are now on the way. If yes, this task will be canceled to avoid the

competition of different types of sending tasks. Sent data are copied

into a buffer to prevent them from being modified while sending.

For the asynchronous data receiving, before starting this task, the

component will check if data is expected to be received. Once the

receiving buffer is allocated, the component performs the receiving

of data while respecting the distribution of data globally according

to the rank of sending processes. It is also important to validate the

consistency of receiving data before any use of them by the tasks

assigned to the components.

From a view of asynchronous communication, the implementa-

tion of UCGLE is to establish of several communicators inside of

MPI_COMM_WORLD and their inter-communication. The topol-

ogy of communication among these groups is a circle shown in

Figure 2. The total number of computing units supplied by the user

is thus divided into four groups according to the following distribu-

tion: Pt is the total number of processes, then Pt = Pд+Pa+Pl +Pm ,

where Pд is the number of processes assigned to GMRES Compo-

nent, Pa the number of processes to ERAM component, Pl the
number of processes allocated to LS Component and Pf the num-

ber of processes allocated toManaдerProcess proxy. Pд and Pa are

greater than or equal to 1, Pl and Pm are both exactly equal to 1.

LS Component is a serial component because the Least Squares

polynomial method cannot be parallelized.

Pt is thus divided into several MPI groups according to a color

code. The minimum number of processes that our program requires

is 4. We utilize the mechanism of MPI standard to fully support the

communication of our application. The communication layer that

does not depend on the application, this allows the replacement

and scalability of various components provided.

3.3 Reusability Analysis
In this section, we study the potential reusability of UCGLE method,

which is assured by its asynchronous communication. Indeed, the

eigenvalues are used to improve the convergence rate of linear

systems by GMRES method. These eigenvalues approximated by

ERAM Component can be saved into a local file. For the next time

of a different linear system with the same operator matrix, these

eigenvalues can be directly reloaded from the local file by LS Com-

ponent and execute the preconditioning procedure. This reusability

proposes also a new strategy of resolving a series of linear systems

in sequence with the same matrix and different right-hand sides.

This type of multiple resolving linear systems is well needed in var-

ious scientific fields. This strategy is similar to a traditional GMRES

method using the Least Squares polynomial method as a deflated

preconditioner. But the LS Component and GMRES Component

communication keeps asynchronous, thus the preconditioning on

the restarted GMRES can be flexible, we can control the frequency

of preconditioning and restart (the parameter L). In the experiments,

we can propose an autotuning strategy to get an optimized L for

specific linear systems.

It seems if we compute a specific number of eigenvalues before

the first time computation and then load them for all the resolving

procedures with the same matrix, ERAM component will be not

needed, and the existence of UCGLE method will be questioned.

In fact, the speedup of UCGLE method depends on the quality

and quantity of approximated eigenvalues which cannot always

be quickly approximated. The more eigenvalues are calculated,

the more accurate these eigenvalues are, the more significant the

acceleration of LS preconditioning will be. The multiple solving

different linear systems with the same matrix by UCGLE allows

the augmentation of eigenvalues number and the amelioration of

these values. The reusability of UCGLE method will be presented

in future as the page limitation of this article.

3.4 Fault Tolerance Analysis
One important property of the asynchronous UCGLE algorithm is

its fault tolerance. That means, the loss of either GMRES Compo-

nent or ERAM Component at run time doesn’t impede the whole

computation.

To be more precise:

1) If ERAM computing units are in fault, GMRES Component

can continue to run as a classic GMRES method without receiving
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Matrix utm300 from Matrix Market

Figure 3: Two strategies of large and sparsematrix generator
by a original matrix utm300 of Matrix Market

the eigenvalues from ERAM Component and the acceleration of LS

algorithm.

2) If GMRES computing units are in fault, the fault tolerance

mechanism will be more complex. In this situation, firstly the tasks

of ERAM Component will be canceled, secondly, these released

computing units will be reset as a GMRES Component to continue

the resolving procedure without acceleration. The feasibility of

replacing ERAM by GMRES is guaranteed. The required materials

to retake the resolving task is the operator matrixA, the right-hand
side b and the temporary solution xm . The two former ones have

been loaded along with the set-up of UCGLE method. The xm is

ensured to be on the former ERAM computing units since it can be

sent and received by the asynchronous communication between

GMRES and ERAM Components.

The simulation of ERAM and GMRES Components’ fault toler-

ance will be given in Section 4.5.

4 EVALUATION
In this section, we evaluate the acceleration of convergence and the

scaling performance of UCGLE method comparing with selected

classic preconditioners using the four selected large-scale matrices

on both CPU and GPU platforms.

4.1 Hardwares
In experiments, we implement UCGLEmethod on a cluster ROMEO.

ROMEO is located at University of Reims Champagne-Ardenne

of France. It is a heterogeneous system made of Xeon CPUs and

Nvidia GPUs, with 130 BullX R421 nodes, each node composes 2

processors Intel Ivy Bridge 8 cores @ 2.6 GHz, 2 NVIDIA Tesla

K20X accelerators, and 32 GB DDR memory. The exact information

of ROMEO is given in Table 1.

4.2 Test Sparse Matrices
UCGLE method has been tested with different matrices, both indus-

trial and generated. Our purpose is to test this algorithm on large

sparse linear systems. We have successfully evaluated UCGLE with

a number of sparse matrices from Matrix Market. However, these

matrices are small compared to the desired sizes. Thus we proposed

a matrix generator to create several large-scale linear systems. Ad-

ditionally, the speedup of UCGLE method depends on the spectrum

Table 1: Node Specifications of the cluster ROMEO

Nodes Number BullX R421 × 130

Mother Board SuperMicro X9DRG-QF

CPU Intel Ivy Bridge 8 cores 2,6 GHz × 2 sockets

Memory DDR 32GB

GPU NVIDIA Tesla K20X × 2

Memory GDDR5 6 GB / GPU

1 2 4 8 16 32 64 128 256

CPU core or GPU count

10−3

10−2

10−1

100

101

T
im
e
(s
)

Sum operation (CPU) Dot Product operation (CPU)

Sum operation (GPU) Dot product operation (GPU)

Figure 4: Global synchronous communication evaluation by
parallel sum and dot product operations on ROMEO; X-axis
refers respectively to the CPU core number from 1 to 256

and the GPU core number from 2 to 128; Y-axis refers to the
operation time; a base 10 logarithmic scale is used for Y-axis
and a base 2 logarithmic scale is used for X-axis.

of linear systems. We have used our scientific large-scale matrices

with known eigenvalues to test the UCGLE method.

4.2.1 Matrix Generation. We developed this parallel sparse ma-

trix generator based on MPI and PETSc, which reads an industrial

matrix of Matrix Market collection as an initial one to build larger

ones. This generator allows building a new matrixA by performing

several copies of a same small unsymmetrical matrix B onto the

diagonal. In order to keep the generated matrices being unsymmet-

rical and especially non-block in diagonal, we propose two different

strategies to add the values on the off-diagonal of A, as shown in

the Figure 3, the first one is calledML type matrix, and the second is

calledMB type matrix. The reason of adding different values on the

off-diagonal is to ensure that the eigenvalues of newly generated

matrix won’t be the same as the original one, and the convergence

rate won’t be too fast.

For the generation of matrixML, several parallel lines with dif-

ferent values can be added to the off-diagonal. The good selection
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Figure 5: Convergence comparison of matLine, matBlock , MEG1 and MEG2 by UCGLE, classic GMRES, Jacobi preconditoned
GMRES, SOR preconditioned GMRES, UCGLE_FT(G) and UCGLE_FT(E); X-axis refers to the iteration step for each method;
Y-axis refers to the residual, a base 10 logarithmic scale is used for Y-axis; GMRES restarted parameters formatLine,matBlock ,
MEG1,MEG2 are respectively 250, 280, 30 and 40; ERAM fault points are respectively 500, 560, 60,30, and GMRES fault points are
600, 700, 70 and 48.

Table 2: Test matrices information

Matrix Name n nnz Matrix Type

matLine 1.8 × 107 2.9 × 107 non-Symmetric

matBlock 1.8 × 107 1.9 × 108 non-Symmetric

MEG1 1.024 × 107 7.27 × 109 non-Hermitian

MEG2 5.1 × 106 3.64 × 109 non-Hermitian

of added values can prevent the generated matrix to converge fast

with the basic iterative solvers. The way to generate theMB type

matrix is much easier, the original matrix is copied on the diagonal

and the first block column matrix as shown in the Figure 3.

4.2.2 Test matrices. We have selected four different matrices to

evaluate UCGLE method. The matrixmatLine is aML type matrix,

andmatBlock is aMB type matrix, they are both generated by the

industrial matrixutm300 which can be downloaded from the Matrix

Market. The distribution of eigenvalues in the complex plane has

an important impact on the convergence of linear systems. We have

selected two scientific matrices with known eigenvalues: MEG1
andMEG2. The eigenvalues of the matrixMEG1 andMEG2 have
different eigenvalues distribution in the complex plane. The Table

2 gives the details of these test matrices.

4.3 Global Communication Evaluation
In the parallel algorithms, often one must synchronize the com-

munication. The parallel computation of dot product and the sum

reduction are the good examples. Synchronization is needed for the

execution of these operations. Before the test of UCGLE method,

we evaluate the global synchronous communication of both homo-

geneous and heterogeneous architecture platforms by the parallel

operations of sum and dot product with a real array of size 1.0 × 109.

In Figure 4, we can conclude that these global reductions will lose

its good scalability if the computing unit number is larger than

64, although ROMEO platform has only hundreds of cores. It can

be predicted that this situation will be much worse on the com-

ing exascale platforms. In this background, UCGLE is proposed

to promote local communication and reduce global synchronous

communication.

4.4 Convergence Evaluation
We evaluate the convergence acceleration of four large-scale matri-

cesmatLine ,matBlock , MEG1, MEG2 using different methods: 1)

UCGLE, 2) restarted GMRES without preconditioning, 3) restarted

GMRES with SOR preconditioner, 4) restarted GMRES with Jacobi

preconditioner. We select the Jacobi and SOR preconditioners for

the experimentations because they two are well implemented in
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Table 3: Summary of iteration number for convergence of 4 test matrices using SOR, Jacobi, non preconditioned GM-
RES,UCGLE_FT(G),UCGLE_FT(G) and UCGLE: red × in the table presents this solving procedure cannot converge to accurate
solution (here absolute residual tolerance 1 × 10−10 for GMRES convergence test) in acceptable iteration number (20000 here).

Matrix Name SOR Jacobi No preconditioner UCGLE_FT(G) UCGLE_FT(G) UCGLE

matLine 1430 × 1924 995 1073 900

matBlock 2481 3579 3027 2048 2005 1646

MEG1 217 386 400 81 347 74

MEG2 750 × × 82 × 64

parallel by PETSc. The GMRES restarted parameter formatLine ,
matBlock ,MEG1,MEG2 are respectively 250, 280, 30 and 40.

Figure 5 compares the convergence curves of experimentation,

and the Table 3 gives the convergence steps of each method with 4

test matrices in details. We find that UCGLEmethod has spectacular

acceleration on the convergence rate comparing these conventional

preconditioners. It has almost two times of acceleration formatLine ,
matBlock andMEG1 matrices, and more than 10 times of acceler-

ation for MEG2 than the conventional preconditioner SOR. The

SOR preconditioner is already much better than the Jacobi precon-

ditioner for the test matrices.

4.5 Fault Tolerance Evaluation
The fault tolerance of UCGLE method is also studied by the simula-

tion of loss of either GMRES or ERAM Components. UCGLE_FT(G)

in Figure 5 represents the fault tolerance simulation of GMRES Com-

ponent, and UCGLE_FT(E) implies the fault tolerance simulation

of ERAM Component.

The failure of ERAM Component is simulated by fixing the exe-

cution loop number of ERAM algorithm, in this case, ERAM exits

after a fixed number of solving procedures. We mark the ERAM

fault points of four matrices in Figure 5: respectively 500, 560, 60

and 30 iteration step for each case. The UCGLE_FT(E) curves of four

experimentations show that GMRES Component will continue to

resolve the systems without LS acceleration. The Table 3 shows that

the iteration number is greater than the normal UCGLE method

but less than the GMRES method without preconditioning.

The failure of GMRES Component is simulated by setting the

allowed iteration number of GMRES algorithm to be much smaller

than the needed iteration number for convergence. The values of

these four cases are respectively 600, 700, 70 and 48. They are also

marked in Figure 5. In this figure, after the quitting of GMRES

Component without the finish of its task, ERAM computing units

will automatically take over the position of GMRES component.

The new GMRES resolving procedure will use the temporary solu-

tion xm as a new restarted initial vector received asynchronously

from the previous restart procedure of GMRES Component before

its failure. In this case, ERAM Component no longer exists, thus

the resolving task can be continued as the classic GMRES with-

out preconditioning. In Figure 5, the UCGLE_FT(E) curves of four

experimentations give the simulation of this case. We can find

there’s the difference between UCGLE_FT(E) and UCGLE_FT(G).

In UCGLE_FT(G), the new GMRES Component takes xm of pre-

vious restart procedure, thus it will repeat the iteration steps of

previous restart iterations until the failure of GMRES. Another fact

of UCGLE_FT(G) which cannot be concluded from Figure 5, but

can be easily obtained, is that the resolving time will be different

if the computing units numbers of previous GMRES and ERAM

Components are different.

4.6 Scalability Evaluation
The main concern of preconditioned Krylov methods is the cost of

per iteration, because of the global communication and synchro-

nization overheads. In order to evaluate the performance of UCGLE

method on both CPU and GPU clusters, we evaluate its strong scal-

ability comparing with the classic and preconditioned GMRES by

the average time cost per iteration. The test matrix isMEG1. The
average time cost for these methods is computed by a fixed num-

ber of iterations. Time per iteration is suitable for demonstrating

scaling behavior.

For the evaluation of UCGLE method on the homogeneous clus-

ter, the four computing components are all implemented on the

CPUs, the core number of GMRES Component is set respectively to

be 1, 2, 4, 8, 16, 32, 64, 128, 256, and both the core number of LS Com-

ponent and Manager Component is 1. ERAM Component should

ensure to supply the approximated eigenvalues in time for each time

restart of GMRES Component, thus the core number is respectively

1, 1, 1, 1, 4, 4, 4, 10, 16, referring to different GMRES Component

core number. For the evaluation on the heterogeneous cluster, GM-

RES Component and ERAM Component are implemented on GPUs,

both LS Component and Manager Component allocate only 1 core

on CPU. The GPU number of GMRES Component is set respectively

to be 2, 4, 8, 16, 32, 64, 128, with the GPU number of ERAM Compo-

nent respectively 1, 1, 1, 4, 4, 4, 8. The computing resource number

of classic and preconditioned GMRES keeps always the same with

the core number of GMRES Component in UCGLE method, thus it

ranges from 1 to 256 for CPU performance evaluation, and from 2

to 128 for GPU performance evaluation.

In the experimentations, firstly we can find that UCGLE method

is able to take advantages of the GPU accelerators which has almost

4 times speed up for the time cost per iteration comparing with the

homogenous cluster without accelerators.

In Figure 6, we can find that these methods have good scalabil-

ity both on CPU and GPU with the augmentation of computing

units except the SOR preconditioned GMRES. The classic GMRES

has smallest time cost per iteration. The Jacobi preconditioner is

the simplest preconditioning form for GMRES. This time cost gap

between Jacobi preconditioned GMRES and classic GMRES is not

enormous. The GMRES with SOR preconditioner has the largest

time cost per iteration since SOR preconditioned GMRES has the

additional matrix-vector and matrix-matrix multiplication opera-

tions in each step of the iteration. These operations have global
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Figure 6: Strong scalability test of solve time per iteration
for UCGLE, GMRES without preconditioner, Jacobi and SOR
preconditioned GMRES using matrix MEG1 on CPU and
GPU; X-axis refers respectively to CPU cores of GMRES
from 1 to 256 and GPU number of GMRES from 2 to 128;
Y-axis refers to the average execution time per iteration. A
base 2 logarithmic scale is used for X-axis, and a base 10 log-
arithmic scale is used for Y-axis.

communication and synchronization points. The communication

overhead makes the SOR preconditioned GMRES much more eas-

ily lose its good scalability with the augmentation of computing

unit number. There isn’t much difference between the time cost

per iteration of classic GMRES and UCGLE. This phenomenon is

caused by the asynchronous communication of UCGLE method.

Since the resolving part and preconditioning part of UCGLE work

independently, the global communication and synchronize points

of UCGLE is similar with the classic GMRES for each time of pre-

conditioning. That’s the benefits of UCGLE and its asynchronous

communication.

4.7 Performance Evaluation
The average time cost per iteration is also used to evaluate their

performance. For the performance comparison, it is necessary to

keep the total computing resource number of UCGLE and other

methods the same. We have tested the classic and conventional pre-

conditioned GMRES with the CPU core number fixed respectively

as 4, 5, 7, 11, 22, 38, 70, 140, 274 and the GPU number fixed respec-

tively as 3, 5, 9, 20, 36, 68, 136, referring to the previous evaluation

of UCGLE method in Section 4.6. In the evaluation on GPU cluster,

the two CPUs for LS Component and Manager Component have

been ignored because they have a minor influence.

The performance comparison is given in Figure 7. We can find

that if the computing resource number is small, the performance

of classic and conventional preconditioned GMRES is much better
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Figure 7: Performance comparison of solve time per itera-
tion for UCGLE, GMRES without preconditioner, Jacobi and
SORpreconditionedGMRESusingmatrixMEG1 onCPUand
GPU; X-axis refers respectively to the total CPU cores num-
ber or GPU number for these four methods; Y-axis refers to
the average execution time per iteration. A base 2 logarith-
mic scale is used for X-axis, and a base 10 logarithmic scale
is used for Y-axis.

than UCGLE since the latter allocates extra computing resources for

other components. With the augmentation of computing resources,

if the CPU core number is larger than 22 or the GPU number is

larger than 5, it comes that the etra computing ressources have

slight influence on the resolution, and the average time cost per it-

eration of UCGLE method trends to be similar to the ones of classic

GMRES, and to be much better than the conventional precondi-

tioned, especially the SOR preconditioned GMRES. For test matrix

MEG1, UCGLE method has similar speedup on the solving time per

iteration comparing with the classic GMRES when the computing

resource number is larger than 22 for CPUs and larger than 5 for

GPUs, but it can decrease significantly more than 5× iteration step

number for the convergence, thus about 5× acceleration for the

time of the whole resolution. In the end, the better performance of

UCGLE method comparing with other methods can be concluded.

5 CONCLUSION AND PERSPECTIVES
In this paper, we have presented a distributed and parallel method

UCGLE for solving large-scale non-Hermitian linear systems. This

method has been implemented with asynchronous communication

among different computation components. In the experimentation,

we observed that UCGLE method has following features: 1) it has

significant acceleration for the convergence than the conventional

preconditioners as SOR and Jacobi; 2) the spectrum of different lin-

ear systems has influence on its improvement of convergence rate;

3) it has better scalability for the very large-scale linear systems;
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4) it is able to speed up using GPUs; 5) it has the fault tolerance

mechanism facing the failure of different computation components.

We conclude that UCGLE method is a good candidate for emerg-

ing large-scale computational systems because of its asynchronous

communication scheme, its multi-level parallelism, its reusability

and fault tolerance and its potential load balancing. The coarse

grain parallelism among different computation components and

the medium/fine grain parallelism inside each component can be

flexibly mapped to large-scale distributed hierarchical platforms.

Various parameters have an impact on the convergence. Thus, an

auto-tuning is required in the future work, where the systems can

select different Krylov subspace dimensions, numbers of eigenval-

ues to be computed, degrees of Least Squares polynomial according

to different linear systems and cluster architectures.

PETSc and SLEPc are not well compatible with the Intel Xeon Phi

architectures. Additionally, other hybrid methods can be proposed

with different computing components using unite and conquer ap-

proach, but it is difficult to implement them without the knowledge

of MPI communication. YvetteML (YML) [7] is a workflow language

based on user-friendly and hierarchical system-oriented develop-

ment and execution environment, and XcalableMP (XMP) [14] is

a directive-based language extension for distributed memory sys-

tems. With YML, the user can automatically allocate the computing

units and establish the inter-communication for different tasks. It

is necessary to develop a new version of UCGLE method with this

multi-level languages YML-XMP for various architectures.
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