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Introduction

The boundary value problems for delay differential equations arise in a variety of areas of applied mathematics, physics and variational problems of control theory [START_REF] Lakmeche | Existence of positive solutions for boundary-value problems of second order delay differential equations[END_REF]. Recently, many researchers have done a great deal of research works upon boundary value problems of lower order differential equations with delay, and some interesting results were produced, see for example [1], [2] and [6]- [9]. In this work, we study the existence of positive solutions of the following nonlinear multipoint boundary value problem with delay

u ′′ (t) + λa(t)f (t, u(t -τ )) = 0, t ∈ [0, 1], u(t) = βu(η), -τ ≤ t ≤ 0, u(1) = αu(η) [1]
where 0 < τ < 1, 0 < η < 1, 0 < α < 1 η and 0 < β < 1-αη 1-η are constants, and λ is a positive real parameter. The paper is organized as follows, in section tow we give definitions and preliminaries, and in section there we give our main results.

Preliminaries

In this section we give some preliminary results.

Definition 1 u(t) is called a positive solution of (1) if u ∈ C[-τ, 1] ∩ C 2 (0, 1), u(t) ≥ 0 for t ∈ (0, 1) and satisfies (1). Lemma 1 Let β = 1-αη 1-η . Then for y ∈ C([0, T ], R), the boundary value problem u ′′ (t) + y(t) = 0, t ∈ [0, T ], [2] u(0) = βu(η), u(1) = αu(η) [3]
has a unique solution

u(t) = 1 0 G(t, s)y(s)ds [4]
where

G(t, s) = g(t, s) + β + (α -β)t (1 -αη) -β(1 -η) g(η, s) [5] and g(t, s) = s(1 -t), 0 ≤ s ≤ t ≤ 1, t(1 -s), 0 ≤ t ≤ s ≤ 1.
PROOF. -From equation (2), we have

u(t) = u(0) + u ′ (0)t - t 0 (t -s)y(s)ds := A + Bt - t 0 (t -s)y(s)ds with u(0) = A, u(η) = A + Bη - η 0 (η -s)y(s)ds and u(1) = A + B - 1 0 (1 -s)y(s)ds.
From u(0) = βu(η), we have

(1 -β)A -Bβη = -β η 0 (η -s)y(s)ds. From u(1) = αu(η), we have (1 -α)A + B(1 -αη) = 1 0 (1 -s)y(s)ds -α η 0 (η -s)y(s)ds. Therefore, A = βη (1 -αη) -β(1 -η) 1 0 (1 -s)y(s)ds - β (1 -αη) -β(1 -η) η 0 (η -s)y(s)ds and B = 1 -β (1 -αη) -β(1 -η) 1 0 (1 -s)y(s)ds - α -β (1 -αη) -β(1 -η) η 0 (η -s)y(s)ds.
From which it follows that

u(t) = βη (1 -αη) -β(1 -η) 1 0 (1 -s)y(s)ds - β (1 -αη) -β(1 -η) η 0 (η -s)y(s)ds + (1 -β)t (1 -αη) -β(1 -η) 1 0 (1 -s)y(s)ds - (α -β)t (1 -αη) -β(1 -η) η 0 (η -s)y(s)ds - t 0 (t -s)y(s)ds = - t 0 (t -s)y(s)ds + (β -α)t -β (1 -αη) -β(1 -η) η 0 (η -s)y(s)ds + (1 -β)t + βη (1 -αη) -β(1 -η) 1 0 (1 -s)y(s)ds = 1 0 g(t, s)y(s)ds + β + (α -β)t (1 -αη) -β(1 -η) 1 0 g(η, s)y(s)ds.
Then, u(t) = 1 0 G(t, s)y(s)ds. The function u presented above is the unique solution to the problem (2), (3).

Lemma 2 Let 0 < α < 1 η and 0 ≤ β < 1-αη 1-η . If y ∈ C([0, 1], [0, ∞))
, then the unique solution u of the problem (2), (3) satisfies

u(t) ≥ 0, t ∈ [0, 1]. PROOF. -We know that if u ′′ (t) = -y(t) ≤ 0 for t ∈ (0, 1), u(0) ≥ 0 and u(1) ≥ 0, then u(t) ≥ 0 for t ∈ [0, 1]. We have u(0) = -β (1 -αη) -β(1 -η) η 0 (η -s)y(s)ds + βη (1 -αη) -β(1 -η) 1 0 (1 -s)y(s)ds = β (1 -αη) -β(1 -η) [- η 0 (η -s)y(s)ds + η η 0 (1 -s)y(s)ds] + βη (1 -αη) -β(1 -η) 1 η (1 -s)y(s)ds = β (1 -αη) -β(1 -η) [ η 0 s(1 -η)y(s)ds] + βη (1 -αη) -β(1 -η) 1 η (1 -s)y(s)ds ≥ 0 and u(1) = - 1 0 (1 -s)y(s)ds + (β -α) -β (1 -αη) -β(1 -η) η 0 (η -s)y(s)ds + (1 -β) + βη (1 -αη) -β(1 -η) 1 0 (1 -s)y(s)ds = α (1 -αη) -β(1 -η) [η 1 0 (1 -s)y(s)ds + η 0 (η -s)y(s)ds] ≥ α (1 -αη) -β(1 -η) [η η 0 (1 -s)y(s)ds + η 0 (η -s)y(s)ds] = α (1 -αη) -β(1 -η) η 0 s(1 -η)y(s)ds ≥ 0. Then, u(t) ≥ 0 ∀t ∈ [0, 1].
Lemma 3 The function g has the following properties

(i) 0 ≤ g(t, s) ≤ s(1 -s) = g(s, s) ∀t, s ∈ [0, 1]. (ii) Let θ ∈ [0, 1 2 ]. Then, for t ∈ [θ, 1 -θ] and s ∈ [0, 1], we have g(t, s) ≥ min{t, 1 -t}g(s, s) ≥ θg(s, s). PROOF. -For 0 ≤ s ≤ t ≤ 1, we have 0 ≤ g(t, s) = s(1 -t) ≤ s(1 -s) = g(s, s).
And for 0 ≤ t ≤ s ≤ 1, we have

g(t, s) = t(1 -s) ≤ s(1 -s) = g(s, s).
Thus (i) holds.

If s = 0 or s = 1, we show that (ii) holds. For 0 < s ≤ t ≤ 1 and s = 1 we have

g(t, s) g(s, s) = t(1 -s) s(1 -s) = t s ≥ t ∀t ∈ [0, 1].
For 0 ≤ t ≤ s < 1 and s = 0 we have

g(t, s) g(s, s) = s(1 -t) s(1 -s) = (1 -t) (1 -s) ≥ (1 -t) ∀t ∈ [0, 1].
Then g(t, s) ≥ min{t, 1 -t}g(s, s).

Thus, there exist θ ∈]0, 1 2 ] such that

g(t, s) g(s, s) ≥ θ, ∀t ∈ [θ, 1 -θ]
Thus (ii) holds.

Lemma 4

The function G has the following properties

(i) G(t, s) ≥ 0 ∀t, s ∈ [0, 1], (ii) G(t, s) ≤ k 1 g(s, s) ∀t, s ∈ [0, 1] and k 1 = 1 + max{α, β} (1 -αη) -β(1 -η) , (iii) min θ≤t≤1-θ G(t, s) ≥ k 2 g(s, s) ∀t, s ∈ [0, 1] where θ ∈ (0, 1 2 ) and k 2 = θ 1 + β + min{(α -β)θ, (α -β)(1 -θ)} (1 -αη) -β(1 -η)
PROOF. -(i) From equation ( 5) and (i) of Lemma 3, we get

G(t, s) ≥ 0 ∀t, s ∈ [0, 1].
(ii) By equation ( 5) and (i) of Lemma 3, we have PROOF. -For any t ∈ [0, 1], by Lemma 4 we have

G(t, s) = g(t, s) + β + (α -β)t (1 -αη) -β(1 -η) g(η, s) ≤ g(s, s) + max(α, β) (1 -αη) -β(1 -η) g(s, s) = k 1 g(s, s). (iii) From (ii) of Lemma 3, for t ∈ [θ, 1 -θ] we have G(t, s) = g(t, s) + β + (α -β)t (1 -αη) -β(1 -η) g(η, s) ≥ θg(s, s) + β + min{(α -β)θ, (α -β)(1 -θ)} (1 -αη) -β(1 -η) θg(s, s) ≥ θ 1 + β + min{(α -β)θ, (α -β)(1 -θ)} (1 -αη) -β(1 -η) g(s, s) = k 2 g(s, s).
u(t) = 1 0 G(t, s)y(s)ds ≤ k 1 1 0 g(s, s)y(s)ds, thus ||u|| 1 ≤ k 1 1 0 g(s, s)y(s)ds. Moreover, from (iii) of Lemma 4 for t ∈ [θ, 1 -θ],
we have

u(t) = 1 0 G(t, s)y(s)ds ≥ k 2 1 0 g(s, s)y(s)ds ≥ k 2 k 1 ||u|| 1 . Therefore min θ≤t≤1-θ u(t) ≥ γ u 1 .
By Lemma 1, we can show that the BVP (2), (3) has a solution u = u(t) if and only if u is a solution of the operator equation u = T u, where

T u(t) =    βu(η), -τ ≤ t ≤ 0, λ 1 0 G(t, s)a(s)f (s, u(s -τ ))ds, 0 ≤ t ≤ 1.
We assume the following hypothesis :

(H 1 ) f ∈ C([0, 1] × [0, ∞); [0, ∞)), (H 2 ) a ∈ C([0, 1]; [0, ∞))
and there exists t 0 ∈ (0, 1) such that a(t 0 ) > 0, Let define,

f 0 := lim sup u→0 max t∈[0,1] f (t, u) u , f ∞ := lim sup u→∞ max t∈[0,1] f (t, u) u , M 1 := β τ 0 g(s, s)a(s)ds + 1 τ g(s, s)a(s)ds and M 2 := 1 0 g(s, s)a(s)ds.
The proof of our main results is based upon an application of the following Leray-Schauder fixed point theorem.

Theorem 2.1 ([5])

Let Ω be a convex subset of a Banach space X, 0 ∈ Ω and Φ : Ω → Ω be a completely continuous operator. Then either 1) Φ has at least one fixed point in Ω, or

2) the set {x ∈ Ω/x = µΦx, 0 < µ < 1} is unbounded.

Main results

Let X = C[-τ, 1] be a Banach space with norm ||u|| = sup{|u(t)| : -τ ≤ t ≤ 1}.

Theorem 3.1 Assume (H 1 ) and (H 2 ) hold. If f 0 < ∞, then the boundary value problem (1) has at least one positive solution.

PROOF. -Choose ǫ > 0 such that

(f 0 + ǫ)λk 1 M 1 ≤ 1. Since f 0 < ∞, then there exists constant B > 0, such that f (s, u) < (f 0 + ǫ)u for 0 < u ≤ B. Let Ω = {u /u ∈ C([-τ, 1]), u ≥ 0, u ≤ B, min θ≤t≤1-θ u(t) ≥ γ u }.
Then Ω is a convex subset of X.

For u ∈ Ω, by Lemmas 2 and 5, we know that T u(t) ≥ 0 and min

θ≤t≤1-θ (T u)(t) ≥ γ T u . Moreover, T u ≤ λk 1 1 0 g(s, s)a(s)f (s, u(s -τ ))ds ≤ λ(f 0 + ǫ)k 1 1 0 g(s, s)a(s)u(s -τ ) = λ(f 0 + ǫ)k 1 τ 0 g(s, s)a(s)βu(η)ds + 1 τ g(s, s)a(s)u(s -τ )ds ≤ λ(f 0 + ǫ)k 1 β τ 0 g(s, s)a(s)ds + 1 τ g(s, s)a(s)ds u ≤ u ≤ B. Thus, T u ≤ B. Hence, T Ω ⊂ Ω. We shall show that T is completely continuous. Suppose u n → u (n → ∞) and u n ∈ Ω ∀n ∈ N, then there exists M > 0 such that u n ≤ M. Since f is continuous on [0, 1] × [0, M ], it is uniformly continuous. Therefore, ∀ε > 0 there exists δ > 0 such that |x -y| < δ implies |f (s, x) -f (s, y)| < ǫ ∀s ∈ [0, 1], x, y ∈ [0, M ] and there exists N such that u n -u δ for n > N, so |f (s, u n (s -τ )) -f (s, u(s -τ ))| < ε, for n > N and s ∈ [0, 1]. This implies |T u n (t) -T u(t)| ≤ λk 1 1 0 g(s, s)a(s)|f (s, u n (s -τ )) -f (s, u(s -τ )|ds ≤ λǫk 1 1 0 g(s, s)a(s)ds.
Therefore T is continuous. Let D be any bounded subset of Ω, then there exists γ > 0 such that ||u|| ≤ γ for all

u ∈ D. Since f is continuous on [0, 1] × [0, γ] there exists L > 0 such that |f (t, v)| < L ∀(t, v) ∈ [0, 1] × [0, γ].
Consequently, for all u ∈ D and t ∈ [0.1] we have

|T u(t)| ≤ λk 1 1 0 g(s, s)a(s)f (s, u(s -τ ))ds ≤ λk 1 L 1 0 g(s, s)a(s)ds. Which implies the boundedness of T D. Since G is continuous on [0, 1] × [0, 1], it is uniformly continuous. Then ∀ǫ > 0 there exists δ > 0 such that |t 1 -t 2 | < δ implies that |G(t 1 , s) - G(t 2 , s)| < ǫ ∀s ∈ [0, 1]. So, if u ∈ D, |T u(t 1 ) -T u(t 2 )| ≤ λ 1 0 |G(t 1 , s) - G(t 2 , s)|a(s)f (s, u n (s -τ ))ds ≤ λLǫ 1 0 a(s)ds.
From the arbitrariness of ǫ, we get the equicontinuity of T D. The operator T is completely continuous by the mean of the Ascoli-Arzela theorem. For u ∈ Ω and u = µT u, 0 < µ < 1, we have u(t) = µT u(t) < T u(t) < B, which implies u ≤ B. So, {x ∈ Ω/x = µΦx, 0 < µ < 1} is bounded. By theorem 2.1, we deduce that operator T has at least one fixed point in Ω. Thus the boundary value problem (1) has at least one positive solution.

REMARK. -The conditions of Theorem 3.1 are weaker than those of Theorem 3.1 in [3].

Theorem 3.2 Assume (H 1 ) -(H 2 ) hold. If f ∞ < ∞ is satisfied, then the boundary value problem (1) has at least one positive solution. PROOF. -Choose ǫ > 0 such that (f ∞ + ǫ)λk 1 M 1 ≤ 1 2 . Since f ∞ < ∞, then there exists constant N > 0, such that f (s, u) < (f ∞ + ǫ)u for u > N . Let B > 0 such that B ≥ N + 1 + 2λk 1 M 2 max 0 ≤ s ≤ 1 0 ≤ u ≤ N f (s, u). Let Ω = {u/u ∈ C[-τ, 1], u ≥ 0, u ≤ B, min θ≤t≤1-θ u(t) ≥ γ u }.
Then Ω is a convex subset of X.

For u ∈ Ω, by Lemmas 2 and 5, we have T u(t) ≥ 0 and min θ≤t≤1-θ (T u)(t) ≥ γ T u .

Moreover, for u ∈ Ω, we have 

T u(t) = λ 1 0 G(t, s)a(s)f (s, u(s -τ ))ds ≤ λk 1 1 0 g(s, s)a(s) f (s, u(s -τ ))ds = λk 1 J1={s∈[0,1]/u>N } g(s, s)a(s)f (s, u(s -τ ))ds
     ≤ λ(f ∞ + ǫ)k 1 M 1 B + λk 1 M 2 max 0 ≤ s ≤ 1 0 ≤ u ≤ N f (s, u(s -τ )) ≤ B 2 + B 2 = B.
Thus, T u ≤ B. Hence, T Ω ⊂ Ω.

We can show that T : Ω → Ω is completely continuous. For u ∈ Ω and u = µT u, 0 < µ < 1, we have u(t) = µT u(t) < T u(t) < B, which implies u ≤ B. So, {x ∈ Ω/x = µΦx, 0 < µ < 1} is bounded. By theorem 2.1, we show that the operator T has at least one fixed point in Ω. Thus, the boundary value problem (1) has at least one positive solution.

REMARK. -The conditions of Theorem 3.2 are weaker than those of Theorem 3.2 in [3].

Lemma 5

 5 If y ∈ C([0, 1]) and y ≥ 0, then the unique solution u of the boundary value problem (2), (3) satisfies min θ≤t≤1-θ u(t) ≥ γ u 1 where u 1 := sup{|u(t)|; 0 ≤ t ≤ 1} and γ := k 2 k 1 .

  s ≤ 1 0 ≤ u ≤ N f (s, u(s -τ ))ds