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#¥LM2S - UPMC/ENSAM/ENS Cachan-UPRESA CNRS 8007, 8 rue du Capitaine Scott 75015 PARIS

In order to forecast the phenomenon of
delamination in multi-layered beam, it is proposed to
extend to large transformations the multiparticle
models developed for the linear theory of multi-
layered plates : the advantage of such a model is to
introduce as variables, stresses and transformations
defined at each interface. In the first part, we sum up
the steps that lead to different linear models. The
second part deals with the extension of the method to
finite transformations of one model : a systematic
method to build a simple model of composite beam
in large rotation is developed.

1. Linear multiparticle models .

The different steps to build multiparticle models for

multi-layered plates in linear theory are given .

Step 1 Approximation per layer of the components
of the cauchy stress tensor

The thickness of a layer iisnoted ¢’ = 4" —h~ =2k .

The components of the Cauchy stress tensor, ¢, are
expanded per layer, on a base of Legendre’s
polynomials depending on z (direction of the

stacking) and on the layer i:{q,’ (Z)}/}:l where the
degree relatively to z of ¢/ (z) is1for z € [hf,hf J:
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The only departure hypothesis concerning these
expansions is the degree relative to z of the in-plane
components of ¢ : the three dimensional equilibrium
equations then impose the degree of the other

components. The key point is that the coefficients
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of these expansions of ¢, denoted ¢“”, are
imposed to be dependant of different variables
having a maximum physical meaning: the
generalized stresses. This approach allows us to
introduce standard generalized stresses of the plates’
theories, but also to introduce stresses defined on the
lower and the upper face of each layer and
respecting continuity conditions at the N-1
interfaces. The generalized stresses will be the new
unknowns of the simplified two dimensional
problem . They are written in the following with the

in-plane super- vector ¥ = {Z'j (x, y)}

Step2 Conjugate strains and displacements
The former approximations are introduced in
the Hellinger-Reissner functional:

J(u,6)= I— w(6)dQ2 + Ic :Vu dQ - Itd.u ds
[¥] 2 =8

7(u,s)
where t* is the prescribed force on the boundary and
w'is the complementary stress potential. The
integration along z is operated in 7' (u,c): the
cofactors of the generalized stresses are then

exhibited and define the generalized strains that
derived from generalized displacements : Thus,

T(u,c””” ) = f((l)g , Eg) where ®* are equivalence
classes of displacements defined by ¢“” and J .
Step3 Generalized equilibrium equations

Writing the stationarity of T with respect to DOF,
equilibrium equations and boundary conditions of

the simplified problem (written in X8 ) are obtained.
Step4 Generalized constitutive law

The layers studied are made of elastic linear
materials whose stiffness tensor is A . The

expression of ¢ is introduce in w° giving
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constitutive equations are then obtained writing the
stationarity of J ((I)g , Bt )with respectto X¥,

2. Adaptation to large transformations

A total Lagrangian description of the plane
deformations of the beam is used. Variables depend
on the two reference coordinates X and Z.

Stepl Mixed Principle

A convenient mixed formulation in S (2™ Piola-
Kirchhoff stress tensor) is used:
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The linear models use both the duality between
gand ; = I_('I.;-'u;_' '..,e'-,,) , and the linearity between
2
¢ and u in order to exhibit kinematics conjugate to
a stress approximation. Here, there is duality
between the Green-Lagrange strain tensor € and S



but there is no more linecarity between e and the
transformation ¢@. The main idea is to both

approximate @, and S by polynomial expansions in
q, (Z ) where Z is the reference coordinate
associated to the direction of the stacking in €2,,.

Step2 approximation of kinematics
We introduce in the polynomial expansion of ¢ on

layer 1, 1its values on lower and upper
interface: (pif = q)(X 5 h,.t )
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The generalized kinematics is denoted
@g{.r}=F,tp”fw"Jﬂnd o =g
dX

A simple model is obtained by approximating all the
fields involved in J ((p,S) by polynomials of degree
one in Z. The gradient F = V@™” is calculated and
then approximated as :

F =(F°) g, +(F') ¢ (2)
where (Fk );:0,1 are functions of ®% and ®¥'.

Step3 Approximations of the stresses
Using the same argument, we assume :

5 =(5°) gy +6') (2
Step4 Integration along 7,
Using the properties of Legendre’s polynomials

{q,’ (Z )}, the integration along Z of J ((p,S) leads to
sfom.s)= o 07 ).(51)
For the study of the beam, the field of unknown

kinematical variables is @®: three data per layer.
The field of unknown stresses’ variables is defined

by the six components per layer of (Sk)i with

k =0or 1. The stationarity of J can be written to

obtain the simplified equations of the problem.
Step5 Definition of the physical generalized forces

The aim is to link those six components of (Sk )i to
six generalized forces per layer (grouped in the
super-vector X®) whose physical meanings are
clear, in order to rewrite J as J (q)g,zg). The
generalized forces per layer we define are: normal

forces N', shearing forces ', shearing and

wrenching forces at interfaces ©'",v'",7"",v"" so

that ; X8 :[Ni,Qi,ri_,rj + vl “.V'; "] They
can be deﬁned by both P (1rst Piola-Kirchhoff stress
tensor) and directions given by @f as follow:

t' is the unit vector parallel to al ,and n' the unit
¢ ¢) is the unit
vector parallel to ¢ ((pf"), and n"" (n""’) the
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vector orthogonal to t'.

unit vector orthogonal to t ) For a section

Ze [h._ ht ] of the beam initially orientated by E,

we define the generalized forces N’ and Q' as:
hy

fo t'dz= [PE,dZ=N'"t'+0n

¢, (X i [h,-’ bt D i

For an elementary section initially orientated by E,,

we define 7" and v " as follow:
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(t" and v’ are defined in the same manner).

Step6 Introduction of %, in J((I)g ,(I)g',(SO)' ,(S1 )’)
The approximation at degree one in Z of
P =F“".S7 | gives a linear dependence between

the six components of (Sk>' and six generalized

forces per layer Jcan then be rewritten as

F(®s,x¢).
The stationarity of the functional J ((I)g ,Eg) with

respect to ¢ and X¥ gives equilibrium equations,
boundary conditions and constitutive equations

written with ®% and X¢. The model of beam with
large plane deformations proposed leads to a two
dimensional non linear problem where physical
stresses at interfaces are introduced as variables .
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