N
N

N

HAL

open science

Coherence of string rewriting systems by decreasingness

Clément Alleaume, Philippe Malbos

» To cite this version:

Clément Alleaume, Philippe Malbos. Coherence of string rewriting systems by decreasingness. 2017.

hal-01676936

HAL Id: hal-01676936
https://hal.science/hal-01676936

Preprint submitted on 6 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01676936
https://hal.archives-ouvertes.fr

COHERENCE OF STRING REWRITING SYSTEMS
BY DECREASINGNESS

CLEMENT ALLEAUME — PHILIPPE MALBOS

Abstract — Squier introduced a homotopical method in order to describe all the relations amongst
rewriting reductions of a confluent and terminating string rewriting system. From a string rewriting
system he constructed a 2-dimensional combinatorial complex whose 2-cells are generated by rela-
tions induced by the rewriting rules. When the rewriting system is confluent and terminating, the
homotopy of this complex can be characterized in term of confluence diagrams induced by the criti-
cal branchings of the rewriting system. Such a construction is now used to solve coherence problems
for monoids using confluent and terminating string rewriting systems.

In this article, we show how to weaken the termination hypothesis in the description of all the
relations amongst rewriting reductions. Our construction uses the decreasingness method introduced
by van Oostrom. We introduce the notion of decreasing two-dimensional polygraph and we give
sufficient conditions for a decreasing polygraph to be extended in a coherent way. In particular, we
show how a confluent and quasi-terminating polygraph can be extended into a coherent presentation.

Keywords - string rewriting systems, coherence, termination, decreasingness.

1. INTRODUCTION

At the end of the eighties, using a homological argument, Squier showed that there are finitely presented
monoids with a decidable word problem that cannot be presented by a finite convergent (i.e., confluent
and terminating) string rewriting system, [[15}[16]. He linked the existence of a finite convergent presen-
tation for a finitely presented monoid to a homological property by showing that the critical branchings
of a convergent string rewriting system generate the module of the 2-homological syzygies of the pre-
sentation. A purely combinatorial approach is then presented in [[17] to the question of whether or not a
finitely presented monoid admits a finite convergent presentation. The existence of such a presentation
is linked to a finiteness condition of finitely presented monoids, called finite derivation type, that extends
the properties of being finitely generated and finitely presented.

Beyond the questions of decidability of the word problem and of the existence of finite convergent
presentations, the graph-theoretical tools associated to convergent presentations of monoids developped
in [17] were applied to question of coherence problems for monoids (e.g., Artin monoids [4] or plactic
monoids [8]) and monoidal categories [S)]. In particular, one of the problems is to compute a coherent
presentation of a monoid presented by a string rewriting system. Such a presentation extends the gen-
erators and the rules by homotopy generators taking into account all the relations amongst the rewriting
sequences. A method is given in [17] to solve this problem from a convergent string rewriting sys-
tem. However, in some situations it is difficult to get both confluence and termination on a finite set of
generators and a finite set of rules.
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In this article, using decreasingness methods from [18], we show how to weaken the termination
hypothesis in the construction of coherent presentations. As an application we show how to extend a
confluent and quasi-terminating string rewriting system into a coherent presentation.

Squier’s two-dimensional complex. To a string rewriting system X, on an alphabet £; Squier, Otto and
Kobayashi associated in [17] a 2-dimensional cellular complex S(X), defined independently by Kilibarda
[10] and Pride [[14]. The complex S(X) has only one 0-cell, its 1-cells are the strings in the free monoid L}
generated by the alphabet £ and its 2-cells are induced by the rewriting rules & : u = v in X; and the
set X, of their inverses &~ : v = u. That is, there is a 2-cell in S(Z) between each pair of strings with
shape wuw’ and wvw' such that £, 1 £ contains the relation u = v. This 2-dimensional complex is
extended with 3-cells, called Peiffer confluences, filling all the 2-spheres of the following form

wow’uy myviw’ oow”

" ’
WVIW Uw

wuww/uow” M wviw/'vow”

\WH1W'V2W/’ /

wuw’ aow wogw'vow”

where & : u; = vy and &, : up = vy are in X u X; and w, w’ and w” are strings in . The
Peiffer confluences make homotopic the 2-cells corresponding to the application of rewriting steps on
non-overlapping strings.

A homotopy basis of the complex S(X) is defined as a set X3 of additional 3-cells that makes S(X)
aspherical, that is any 2-dimensional sphere can be “filled up” by the 3-cells of X3. The presentation X
is called of finite derivation type (FDT) if it is finite and it admits a finite homotopy basis. The FDT
property is an invariant property for finitely presented monoids, that is, if X and Y are two finite string
rewriting systems that present the same monoid, then X has FDT if and only if Y has FDT, [[17].

Squier’s completion. Given a convergent string rewriting system X, the set made of one 3-cell filling
a confluence diagram induced by each critical branching forms a homotopy basis of S(X), [17]. Such
a set of 3-cells is called a family of generating confluences of . In others words, any diagram defined
by two parallel rewriting sequences can be filled up by confluence diagrams induced by the critical
branchings and by the Peiffer confluences. This result corresponds to a homotopical version of Newman’s
Lemma, [13]]. In particular, when the presentation is finite, it has finitely many critical branchings, hence
a finite family of generating confluences. This is a way to prove that finite convergent presentations have
FDT, [17].

Squier’s completion without termination. The above result starts from a convergent presentation and
the construction of homotopy bases is made by Noetherian induction. In some situations, it is difficult to
get both confluence and termination without adding new generators, as in the case of plactic monoids [8]]
or Artin monoids [4]. Moreover, the addition of new generators implies as much new relations and
thus new potentially non confluent critical branchings. For instance, the Artin monoid on the symmetric
group S; is the monoid of braids on three strands B;r generated by two elements s and t and one relation
sts = tst. Kapur and Narendran proved that this monoid does not admit a finite convergent presentation
with only two generators, [9]. Note that a finite convergent presentation can be obtained by Knuth-
Bendix completion on the presentation with three generators s, t, a and the two rules sts = tst and
st = a, where a is a redundant generator.
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Coherence for quasi-terminating polygraphs. In this article, we weaken the termination hypothesis
and we give a construction of homotopy bases for decreasing and quasi-terminating string rewriting
systems. The notion of quasi-termination weakens termination in the sense that if there is an infinite
rewriting sequence it must contain infinitely many occurrences of the same 1-cell. In that case, Noethe-
rian induction cannot be used to construct a coherent presentation. For this reason we proceed by using
a well-founded labelling on the rewriting system, called the labelling to the quasi-normal form. For
example, the monoid B;r admits the following confluent and quasi-terminating presentation

(s,t|sts = tst, tst = sts).

We obtain a homotopy basis of the monoid B;r containing five 3-cells. This presentation can be homo-
topically reduced to obtain an empty homotopy basis.

Summary of results. In this work, we use the categorical description of string rewriting systems by
2-polygraphs, that are recalled in Section 2. We introduce the notion of decreasing 2-polygraph from
the corresponding one introduced by van Oostrom for abstract rewriting systems in [[18]. We will use
van Oostrom’s decreasingness techniques to prove our main result. However, decreasingness for string
rewriting systems needs to take into account the structure of rewriting on strings. In particular, we
introduce the notion of Peiffer decreasingness in order to take into account the confluence diagrams
induced by application of rewriting steps on non-overlapping strings and the notion of compatibility
with contexts for taking into account the contexts of the rules.

In Section 3, we extend Squier’s completion known on convergent 2-polygraphs to decreasing 2-
polygraphs. We define a Squier’s decreasing completion of a decreasing 2-polygraph X as an extension
of X by the globular extension of loops, containing one 3-cell for each equivalence class of elementary 2-
loop and the globular extension of generating decreasing confluences, containing a decreasing confluence
diagram for each critical branching of X.

Our main result states that a strictly decreasing 2-polygraph whose labelling is compatible with
contexts and Peiffer decreasing can be extended into a coherent presentation, Theorem As a
consequence of this result, we show how to compute a coherent presentation from a confluent and quasi-
terminating 2-polygraph. Finally, we show how our construction generalizes the one given in [17] for
convergent rewriting systems and we deduce some homological and homotopical consequences.

2. DECREASING POLYGRAPHS

In this section, we recall categorical notions used in this work to describe string rewriting systems and
relations between rewriting sequences. We refer the reader to [7] for a deeper presentation of these
notions. Then we introduce decreasing 2-polygraphs from the corresponding notion for abstract rewriting
systems introduced by van Oostrom in [[18]].

2.1. Two-dimensional polygraphs and extended presentations
2.1.1. Two-dimensional polygraphs. A 1-polygraph L is a directed graph made of a set of O-cells L,

a set of 1-cells X7 and source and target maps so,to : £1 — Zo. We denote by X7 the free category
generated by Xq. A globular extension of the free category X7 is a set L, equipped with two maps
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s1,t1 1 X3 — Xj such that, for every « in Z;, the pair (s1(ot), t1(x)) is a 1-sphere in the category L7,
that is, sosi(a) = spti(x) and tos; () = tot1(e). A 2-polygraph is a triple & = (Xy, X1, X;), where
(X0, Z1) is a 1-polygraph and X is a globular extension of X, whose elements are called the 2-cells
of the 2-polygraph. A presentation of a category C is a 2-polygraph such that the quotient of the free
category X} by the congruence generated by X, is isomorphic to C. Note that a monoid being a category
with a single object, is presented in the same way by a 2-polygraph with only one O-cell.

2.1.2. Free 2-categories. Recall that a 2-category (resp. (2, 1)-category) C is a category enriched in
category (resp. groupoid). Equivalently, a (2, 1)-category is a 2-category in which all 2-cells are in-
vertible for the T-composition. We denote by €, the set of 2-cells of C and the 0-composition (resp.
1-composition) of two 2-cells f and g in € is denoted by f x¢ g, or by fg (resp. f x; g) . We will denote
by s; (resp. t;) the i-source map (resp. i-target map) defined on T-cells and 2-cells of a 2-category. A
2-sphere in C is a pair (f, g) of 2-cells of € such that s1(f) = s1(g) and t1(f) = t1(g).

Given a 2-polygraph L, we will denote by X7 the free 2-category generated by X and by ZZT the free
(2, 1)-category generated by X, that is the free 2-category generated by X in which all the 2-cells are
invertible.

2.1.3. Rewriting sequences. A rewriting step with respect to a 2-polygraph X is a 2-cell of L] of the
form u@v where u and v are 1-cells in £ and @ is a 2-cell of £;. We denote L, the set of rewriting
steps of X. A rewriting sequence with respect to X is a finite or infinite sequence fo - f1 - ... - fi- -+,
where the f; are rewriting steps such that t;(f;) = sj(fi;1) forall i = 0. A 1-cell u rewrites into a
1-cell v if there is a rewriting sequence fy - ... - fy such that s1(fp) = wand t;(fn) = v.

For any rewriting sequence fy-f7-...-f;, from u to v there is a corresponding 2-cell foxq f1x7...x1
in the 2-category X3 with source sq(fp) = u and target t1(f,) = v. Conversely, any 2-cell f in the
2-category L3 can be decomposed as a composite fo *7 ... x7 f of rewriting steps. Note that, this
decomposition is unique up to Peiffer relations.

The length of a finite rewriting sequence f is the number, denoted by £(f), of rewriting steps occurring
in the sequence. Given two 1-cells u and v such that u can be reduced to v, the distance from u to v,
denoted by d(u,V), is the length of the shortest rewriting sequence from u to v.

2.1.4. Support of a 2-cell. Let  be a 2-polygraph. Any 2-cell f in I} can be written as a 1-composite
of finitely many rewriting steps wj @1v1, ..., W@y Vk, where the u; and v; are 1-cells in 7 and @; is a
2-cell in £,. We define the support of the 2-cell f as the multiset, denoted by Supp(f), consisting of the
2-cells @; occurring in this decomposition. The support is well-defined because any decomposition of f
in XJ into a 1-composite of rewriting steps involves the same rewriting steps. Note also that any such a
decomposition is finite and thus the support of a 2-cell is a finite multiset. As a consequence, the multiset
inclusion is a well-founded order on supports, allowing us to prove some properties by induction on the
support of 2-cells.

2.1.5. Branchings. A (finite) branching of a 2-polygraph L is a pair (f,g) of (finite) rewriting se-
quences of X with a common source u = s1(f) = s7(g). Such a branching will be denoted by
(fyg) : w = (t;1(f), t1(g)). A confluence of a 2-polygraph L is a pair (f’;g’) of rewriting sequences
of £ with a common target v = t;(f’) = t;(g’). Such a confluence will be denoted by (f’,g’) :

(t1(f), t1(g)) = v.
A branching (f, g) is local (resp. aspherical) if f and g are in L, (resp. f = g). A Peiffer branching
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of X is a local branching (fv,1g) with source uv where u, v are composable 1-cells and f, g are in Zgp.
An overlapping branching of L is a local branching that is not aspherical or Peiffer. An overlapping
branching is called a critical branching if it is minimal for the order E on local branchings generated by
(f,g) = (wfw’,wgw’), for any local branching (f, g) composable with T-cells w and w’ in X7.

2.1.6. Termination and quasi-termination. A 2-polygraph I is ferminating if it has no infinite rewrit-
ing sequence, that is there is no sequence (i )nen of 1-cells such that for each n in N, there is a rewriting
step from uy, to un41. In that case, every T-cell u of I has at least one normal form 1i, that is, there is
no rewriting step with source .

Following [2], we say that a 2-polygraph L is quasi-terminating if for each sequence (un)nen of
1-cells such that for each n in N there is a rewriting step from u, to u,;, the sequence (un)nen
contains an infinite number of occurrences of the same 1-cell.

Let X be a 2-polygraph. A 1-cell u of X7 is called a quasi-normal form if for any rewriting step
with source u leading to a 1-cell v, there exists a rewriting sequence from v to u. A quasi-normal form
of a 1-cell u is a quasi-normal form 1 such that there exists a rewriting sequence from u to . If X is
quasi-terminating, any 1-cell u of £} admits a quasi-normal form. Note that, this quasi-normal form is
neither irreducible nor unique in general.

2.1.7. Example. Let us consider the 2-polygraph defined by the following 2-graph

i

d——b
‘s N

The 1-cell d has two quasi-normal forms which are a and b. The 1-cell c¢ is not a quasi-normal form
because there is a rewriting step from c to a and a cannot be rewritten into c.

2.1.8. Confluence and convergence. A 2-polygraph X is confluent (resp. locally confluent) if
every branching (resp. local branching) (f,g) of X can be completed by a confluence
(f'yg’) : (t1(f),t1(g)) = v. We say that X is convergent (resp. quasi-convergent) if it is conflu-
ent and it terminates (resp. quasi-terminates).

2.1.9. Example. The 2-polygraph £(BJ) = {s,t | o : sts = tst, p : tst = sts) presents the
monoid B;. This polygraph is not terminating but it is quasi-terminating. It has four critical branchings
(act, sB), (Bs, ta), (ats, stee) and (PBst, tsPB). These four branchings are confluent as follows

ot o2 =Pt Bs . sts? <« Ps ots s tstls < Pts Bst . sts?t « Pst

\ 5 / tsts tsts ststs s’)c_sts tstst t?_tst
s°ts

P . %tzst/t[s s$ st?st %{3 t% ts’ts %oc

2.1.10. Extended presentations. Let X be a 2-polygraph. A globular extension of the (2, 1)-category ZZT
is a set I' together with two maps s, t; : ' — ZZT satisfying the globular relations s1s; = sit; and
t1sy = tyty. Two 2-cells f and g in ZZT are equal with respect to T, and we denote f =r g, if f and g are
equal in the quotient 2-category ZZT /T of the 2-category ZZT by the congruence on 2-cells generated by I'.
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Relations between rewriting sequences can be described using the notion of extended presentation.
Recall from [6] that a (3, 1)-polygraph is a pair (X, X3) made of a 2-polygraph X and a globular exten-
sion X3 of the free (2,1)-category X,, that is a set together with two maps
Sy, t) 1 X3 — ZZT satisfying the globular relations s1s; = sit; and t1s; = tit;. We will denote
by L] the free (3, 1)-category generated by the (3, 1)-polygraph (£, £3). An extended presentation of a
category C is a (3, 1)-polygraph whose underlying 2-polygraph is a presentation of C.

2.1.11. Coherent presentations. A coherent presentation of a category C is an extended presenta-
tion (%, X3), such that the globular extension L3 is a homotopy basis of the (2, T)-category £J. That
is, for every 2-sphere (f, g) of L], there exists a 3-cell from f to g in the free (3, 1)-category generated
by the (3, 1)-polygraph (Z,, X3).

2.2. Rewriting loops

In this part, & denotes a 2-polygraph.

2.2.1. Equivalent loops. A 2-loop in the 2-category X} is a 2-cell f of Z3 such that s1(f) = t;(f). Two
2-loops f and g in X3 are equivalent if there exist a decomposition f = fy xj ... %y f,,, where f; is a
rewriting step of X for any 1 < 1 < p, and a circular permutation ¢ such that g = 1) *1 ... %7 fo(p) -
This defines an equivalence relation on 2-cells of Z3. We will denote by £(f) the equivalence class of a
2-loop f in X3 for this relation.

2.2.2. Lemma. For any equivalent 2-loops f and g in L3, there exist 2-cells h and k of ZI such that
f=hxg*xk

Proof. Let us decompose f into a sequence f = f1 %7 ... x7 f, of rewriting steps and let o be a circular
permutation such that g = fg(1) *1 ... %1 f5(p). Let i be the integer such that o(i) = 1. Let k be the
2-cell (1) *1 ... *1 fgi—1). Let h = k™ be the inverse of k for the 1-composition. Then, we have
f=hx gk L]

2.2.3. Minimal and elementary loops. We say that a 2-loop f in L is

i) minimal with respect to 1-composition, if any decomposition f = g x; h %1 k in X5 with h a 2-loop
implies that h is either an identity or equal to f,

ii) minimal by context, if there is no decomposition f = ugv, where u and v are nonidentity 1-cells
in 7 and g is aloop in 3.

A 2-loop f in L3 is elementary if it is minimal both with respect to 1-composition and by context. As
an immediate consequence of these definitions, any 2-loop f minimal for 1-composition can be written
f = ugv, where g is an elementary loop and u, v are 1-cells in 7.

2.2.4. Lemma. Let f be a nonidentity 2-loop in L5. Then, there exists a decomposition f = f1x1 f'x1
in L3, where ' is a 2-loop minimal with respect to 1-composition and f1, T, are 2-cells such that f1 *1
is a 2-loop.
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Proof. Let f be a nonidentity 2-loop in 5. The proof is by induction on the support Supp(f). If the
2-loop f is minimal for 1-composition, we can write f = 1g, () *1 f *1 1, (r). If T is not minimal for 1-
composition, there exists a decomposition f = g *; h *; k, where h is a 2-loop that is neither an identity
nor equal to f. Hence, Supp(h) is strictly included in Supp(f) that proves the decomposition. O

2.2.5. Globular extensions of loops. We will denote by £(X) the set of equivalence classes of elemen-
tary 2-loops of £5. A loop extension of L is a globular extension of the (2, 1)-category £, made of a
family of 3-cells Ay : & = 1, («) indexed by exactly one o for each equivalence class in £(Z).

2.2.6. Lemma. Let L(X) be a loop extension of L. For any 2-loop f in L3, there exists a 3-cell from f
to 15, () in the free (3, 1)-category L(Z)T generated by the (3,1)-polygraph (£, L(Z)).

Proof. Let us fix a loop extension £(X). Let f be 2-loop in Z. We proceed by induction on the sup-
port Supp(f).

Step 1. Suppose that f is elementary. By definition of £(X), the equivalence class £(f) contains an
elementary 2-loop e such that £(X) contains a 3-cell A from e to T, (). The 2-loop e being equivalent
to f, by Lemma there exist two 2-cells h and k of ZZT such that f = h %; e x; k. Thus, the 3-cell
hxj Aex1kin £(Z)' goes from f to hxy k. By construction the 2-cell hx; k is equal 1, (5. In this way
we construct a 3-cell in £(Z) T from f to 1, ).

Step 2. Suppose that f is minimal with respect to 1-composition. Then, there is a decomposition
f = ugv, where u and v are 1-cells in £} and g is an elementary 2-loop in £5. By Step 1, there
exists a 3-cell Ag from g to T, (4) in L(Z)T. Thus uAgvisa 3-cell in £(X)" from f to 1 (f)-

Step 3. Suppose that f is a nonidentity 2-loop. By Lemma the 2-loop f can be written as f1x1f’x1;
where f’ is a 2-loop minimal for 1-composition and f; and f, are 2-cells such that f; *; f; is a 2-loop.
By Step 2, there exists a 3-cell A in £(Z)T from f’ to Ts, (f1)- Hence, the T-composite 1 *1 A x7 f3 is
a 3-cell from f to f1 »; 2 in £(Z)T. The support of f; 1 f; being strictly included in the support of f,
this proves the lemma by induction on the support of f. O

2.3. Labelled polygraphs

2.3.1. Labelled 2-polygraphs. A well-founded labelled 2-polygraph is a data (£, W, <,1) made of a
2-polygraph X, a set W, a well-founded order < on W and a map 1 : Lsp —> W. The map 1 is called
a well-founded labelling of L and associates to a rewriting step f a label P (f).

Given a rewriting sequence f = f; - ... - fi, we denote by LW (f) = {W(f1),..., P (fy)} the set of
labels of rewriting steps in f. Note that two distinct rewriting sequences f and g can correspond to a same
2-cell in the free 2-category £% despite L'V (f) and L (g) being distinct.

2.3.2. Labelling to the quasi-normal form. Consider a quasi-convergent 2-polygraph X. By quasi-
termination, any 1-cell u admits a quasi-normal form, not unique in general. For every 1-cell uin X7,
let us fix a quasi-normal form 1. Note that by confluence hypothesis, any two congruent 1-cells of
L7 have the same quasi-normal form. This defines a quasi-normal form map s : L7 — Xj sending a
1-cell w on W. The labelling to the quasi-normal form, labelling QNF for short, associates to the map s
the labelling YF : £, —> N defined by

—_——

PYAF(F) = d(t1 (), 11 (F)),
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for any rewriting step f of X.

2.3.3. Lexicographic maximum measure, [18, Definition 3.1]. Let (X, W, <,1{) be a well-founded
labelled 2-polygraph. Let w = wy ... wn and W’ = wj ... w/ be T-cells in the free monoid W* with
w; and wj’ in W. We denote by w™) the 1-cell W1 ... Wy such that for every 0 < k < n, the 1-cell wy
is defined by

o 1 ifwk<wj’forsome1<j<m,
Wi = .
wy  otherwise.

Following [18] Definition 3.1], we consider the measure | - | from the free monoid W* to the set of
multisets over W and defined as follows:

i) for every iin W, the multiset [i| is the singleton {i},
ii) for every iin W and every 1-cell w in W*, we have |[iw| = |i| u [w®)].

The measure | - | is extended to the set of finite rewriting sequences of Z by setting, for every rewriting
sequence f7 - ... - fn, with fj labelled by k; for all i,

If1 oo ful = [k1... knl,

were Kj ... Kn is a product in the monoid W*. Finally, the measure | - | is extended to the set of finite
branchings (f, g) of Z, by setting
[(fy9)l = [f] v gl.
Recall from [18, Lemma 3.2], that for every 1-cells wq, wy in W*, we have [wiw;| = |wq|u |w§W
As a consequence, for any rewriting sequences f and g of X the following relation holds

f-gl = f u g,

1)|

where |g(")| is defined by
190 = ki),

withf = fy-...-fyand g = g7 - ...  gm and f; labelled by 1; and g; labelled by k;.
2.4. Decreasing two-dimensional polygraphs

Let us recall in the context of 2-polygraph the notion of decreasingness from [[18], Definition 3.3].

2.4.1. Decreasing 2-polygraph. Let (X,1) be a well-founded labelled 2-polygraph. A local branching
(f, g) of X is decreasing (resp. strictly decreasing) if there is a confluence diagram of the following form

f
f —t
n /
J 9 (resp. 9 f ).
hy T
9 / f” hz
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and such that the following properties hold
i) k < U(f), for all k in LW (f'),
ii) k <(g), forall kin LW (g"),
iii) f” is an identity or a rewriting step labelled by {(f),
iv) g” is an identity or a rewriting step labelled by V(g),
v) k < () ork < P(g), for all kin LW (hy) u LW (hy).

Such a diagram is then called a decreasing confluence diagram (resp. strictly decreasing confluence
diagram) of the branching (f, g).

A 2-polygraph X is decreasing (resp. strictly decreasing) if there exists a well-founded labelling
(W, <,1) of £ making all its local branching decreasing (resp. strictly decreasing).

As in the case of abstract rewriting systems, [18, Corollary 3.9.], we prove that any decreasing 2-
polygraph is confluent.

2.4.2. Strictly decreasing branching. We extend the notion of strict decreasingness on local branch-
ings to branchings as follows. A branching (f, g) is strictly decreasing is there is a confluence diagram
(f-f',g-g’) such that the two following properties hold

i) for each k/ in L (f’), we have k’ < k for any k in L' (f),
ii) foreach 1’ in L (g’), we have 1’ < 1 for any Lin L"(qg).

2.4.3. Decreasingness from quasi-termination. Any quasi-convergent 2-polygraph XL is strictly de-
creasing with respect to any quasi-normal form labelling PNF. Indeed, for any local branching
u = (v,w) there exists a quasi-normal form 1 and a confluence (f’,g’) : (v,w) = U. The rewrit-
ing sequences ' and g’ can be chosen of minimal length, thus making this confluence diagram strictly
decreasing with respect the labelling pNF,

2.4.4. Decreasingness of Peiffer branchings. For a Peiffer branching (fv,ug) : uv = (u’v,uv’) of
a 2-polygraph Z, the confluence (u'g, fv’) : (W'vyuv’) = u'v’ is called the Peiffer confluence of the
branching (fv,ug). In a decreasing 2-polygraph (Z,1) every Peiffer branching can be completed into a
decreasing confluence diagram. However, the confluence diagram obtained with the Peiffer confluence
is not always decreasing as in the case of the following example.

2.4.5. Example. As shown in a labelling QNF makes every Peiffer branching decreasing. But,
it does not necessarily makes the Peiffer confluences decreasing. In particular, it is not the case when
the source uv of the Peiffer confluence is already the chosen quasi-normal form. For instance, consider
the quasi-convergent 2-polygraph £ = {(a,b } x:a= b, :b= a). Foreach l-cel uof X¥, we
setii = a' asa quasi-normal form. Let us now consider the following Peiffer diagram:

/> \
\éba b



2. Decreasing polygraphs

This Peiffer diagram is not decreasing with respect to YF. Indeed, we have pNF (xa) = YN (ax) =
Tand YNF(ob) = PANF(ba) = 2. However, this Peiffer branching is decreasing by using the following
confluence (af, Ba): (ab,ba) = a?, since P™F(ap) = YAF(Ba) = 0.

2.4.6. Peiffer decreasingness. A decreasing (resp. strictly decreasing) 2-polygraph (Z,) is Peiffer
decreasing with respect to a globular extension I' of the (2, 1)-category ZzT if, for any Peiffer branching
(fv,ug) : uw = (u'v,uv’), there exists a decreasing (resp. strictly decreasing) confluence diagram
(fv-fug-g'):

f/
7
fv ry—4g
uv\ 1. "
uv uv u
9 uv,</
9/

such that u’g 1 (fv')™ =r f' %1 (¢’)".

2.4.7. Example. Any 2-polygraph L such that any non trivial local branching (f, g) is confluent using
two rewriting steps f' : t;(f) = v and g’ : t1(g) = v is Peiffer decreasing. Indeed, a labelling such that
all rewriting steps have the same label makes any local branching (f, g) decreasing. Moreover, with such
a labelling, any Peiffer confluence is decreasing. In particular, the 2-polygraph Z(B;) is decreasing for
a singleton labelling.

2.4.8. Compatibility with contexts. Let (X, 1) be a well-founded labelled 2-polygraph. The labelling {»
is compatible with contexts if for any decreasing (resp. strictly decreasing) confluence diagram
(f-f’,g-g’), where (f, g) is a local branching, and for any composable 1-cells u; and u in L7, the
following confluence diagram is decreasing (resp. strictly decreasing):

l
wifu wfu
uivuy
\ /
wuiuuy wu up
uygiup 7 Wiwuz 19w

Note that a labelling QNF is not compatible with contexts in general.

2.4.9. xp-compatibility. A well-founded labelling (W, 1, <) is *o-compatible if for any rewriting steps f
and g such that P (f) < P(g), we have P(uifuy) < P(ujguy) for any composable 1-cells u; and u;
in 7. Note that the *o-compatibility does not implies the compatibility with contexts. Indeed, if (f, g)
is a local branching that can be completed into a diagram

£yt
(1/:> Nd
%C:{

10



2.4. Decreasing two-dimensional polygraphs

where f’ and g’ are rewriting steps such that P (f) = (') and P(g) = P(g’), then the confluence
diagram is decreasing. Even, if the labelling (W, <) is *o-compatible, we do not necessarily have
P (ufv) = P(uf'v) and p(ugv) = P(ug’v) for any 1-cells u and v. Thus, the following diagram is not
decreasing in general:

ufv by u\f’v

uav udv

ugv— uev ﬁ

If 1 is a xo-compatible labelling, for any strictly decreasing diagram (f - f', g - g’), where (f, g) is a
local branching, we have YpNF (1 f'uy) < YF(wgfuy) and pAF (uyg'uz) < WAF (1 guy) for every
composable 1-cells 1y and u,. As a consequence, any *g-compatible labelling on a strictly decreasing
2-polygraph is compatible with contexts.

2.4.10. Example. Consider the 2-polygraph ¥ defined in m The labelling QNF defined using the
quasi-normal forms of the form i = ‘™)

following equality

is compatible with contexts. This is a consequence of the

PYAF (g fuy) = d(ug, a @) £ POF(F) + d(uy, at2))

for any rewriting step f and 1-cells u; and u;.

If we consider an other labelling QNF of the 2-polygraph X associated to quasi-normal forms of the
form it = a'™ for any T-cell u such that €(u) # 3 and i = b3 for any 1-cell w such that (1) = 3.
Then the confluence diagram (ax - af, xa - Ba) is decreasing with YNF(ao) = PNF(xa) = 1
and YPF(aB) = YW™NF(Ba) = 0. However, the confluence diagram (baw - bap,baa - ba) is
not decreasing with PIF(baax) = Y™NF(baa) = 1 and YNF(baB) = PA™F(bRa) = 2. Asa
consequence this labelling QNF is not compatible with contexts.

2.4.11. Example. Consider the 2-polygraph ):(B;r ) given in We define a QNF labelling pNF
on (BJ) by associating to each T-cell u of £(BJ )} the quasi-normal form 1 defined as follows. Setting
Ny = max{n | u = (sts)™v holds in BJ }, we define U = (sts)Nvv. The maximality of Ny, ensures
the unicity of such a quasi-normal form. Indeed, let us consider the following convergent presentation of
the monoid By :

Y = <s,t,a | sts = a, tst = a,sa = at,ta = as>.

Suppose that a 1-cell u of £(BJ )} has two distinct quasi-normal forms (sts)N*v and (sts)™Nuw. Those
two 1-cells have respectively aMN+v and aNvw as normal forms with respect to Y. Indeed, there is no
occurrence of a in v and w, and the 1-cells sts and tst cannot divide v and w by maximality of N,,. By
unicity of the normal forms in a convergent 2-polygraph, the 1-cells aNvv and a™+w are not equal in the
monoid B; , hence they are not the normal forms of a same 1-cell in Y. Thus, the 1-cells (sts)Nwv and
(sts)Muw are not the quasi-normal forms of a same 1-cell in (B )%, which contradicts our assumption.

The labelling defined in this way is *o-compatible. Indeed, for any rewriting steps f and g of Z(B;r )
such that PNF(g) < YPYAF(f) and for any composable T-cells u; and wu,;, we have
PYAF (1 fuy) < YAF(uy guy). Hence, the labelling pNF is compatible with contexts.

11



2. Decreasing polygraphs

2.4.12. Multiset order. Given a well-founded set of labels (W, <), we consider the partial order <1
on the multisets over W defined in [3} [18] as follows. For any multisets M and N over W, we set
M < N if there exist multisets X, Y and Z such that:

) M=ZuUX,N=ZuYandY is not empty,
ii) for every iin W such that X(i) # 0, there exists j in W such that Y(j) # O and i < j.

The order <y, is well-founded because < is. We call <,y the symmetric closure of <.
Let us mention a particular case of [18, Lemma 3.6.], that will be used in the proof of our main result.

2.4.13. Lemma. Let X be a decreasing 2-polygraph. For every diagram in L of the following form
f2
i @
/:> N\
g¥, !

7

g

where f1 is a non empty rewriting sequences, f; and g1 are rewriting sequence and the confluence
diagram (fy - f{, g1 - g1) is strictly decreasing, the inequality |(f],2)| <muw |(g1, f1 - f2)| holds.

2.4.14. Proposition. Let (£,1) be a well-founded labelled 2-polygraph. Then L is strictly decreasing
if and only if any branching of ¥ is strictly decreasing.

Proof. One implication is obvious. Let us assume that X is strictly decreasing and let (f, g) be a branch-
ing of . We prove by induction on |(f, g)| that (f, g) is strictly decreasing. If f or g is an empty rewriting
sequence, the strict decreasingness of (f, g) is trivial. Else, we can write

f/
N
e
& 7
g\

such that the confluence diagram (f; - f”, gy - g”) is strictly decreasing. By Lemma [2.4.13] we have
[(f's £)] <muwt |(f1, g)|. Thus, we have |(f’, f”)| <mw |(f, g)| and we can use the induction hypothesis
to construct a strictly decreasing confluence diagram (f’ - k1, f” - k;). By using again Lemma|2.4.13| we

12



3. Coherence by decreasingness

have |(g” - k2, 9")| <muw |(f, g)|- Thus, by applying again the induction hypothesis, we have a diagram

X 9/
g1 1

where the diagram (f - k; - 11, g - 1) is strictly decreasing. O

3. COHERENCE BY DECREASINGNESS

In this section, we extend to decreasing 2-polygraphs the notion of Squier’s completion known for con-
vergent 2-polygraphs. We give sufficient conditions on the labelling of a decreasing 2-polygraph making
the Squier’s decreasing completion a coherent presentation. In particular, we show how to extend a
quasi-convergent 2-polygraph into a coherent presentation.

3.1. Squier’s decreasing completion

Squier’s completion provides a way to extend a convergent 2-polygraph into a coherent presentation, see
(7, 117]).

3.1.1. Squier’s completion. A family of generating confluences of a 2-polygraph L is a globular exten-
sion of the (2, 1)-category ZZT that contains exactly one 3-cell of the following form

/

Xj
J

Now—"

g9

for each critical branching (f, g) of Z. If £ is confluent, it always admits such a family A Squier’s comple-
tion of a convergent 2-polygraph X is a (3, 1)-polygraph that extends X by a chosen family of generating
confluences. Any Squier’s completion of a convergent 2-polygraph X is a coherent presentation of the
category presented by X, [17], see also [7]].

3.1.2. Generating decreasing confluences. Let (X,1) be a decreasing 2-polygraph. A family of gener-
ating decreasing confluences of L with respect to \ is a globular extension of the (2, 1)-category ZZT that
contains, for every critical branching (f, g) : w = (v, w) of L, exactly one 3-cell lelj g of the following

13



3. Coherence by decreasingness

form
f f/
Y
DIPN
f

Wy

9

and where the confluence diagram (f - f/, g - g’) is decreasing with respect to 1. Any decreasing 2-
polygraph admits such a family of generating decreasing confluences. Indeed, any critical branching is
local and thus confluent by decreasingness hypothesis. However, note that such a family is not unique in
general.

For a strictly decreasing 2-polygraph X, we define in the same way a family of generating strictly
decreasing confluences of L, but where the confluence diagrams are strictly decreasing with respect

to ).

3.1.3. Squier’s decreasing completion. Let (Z,1) be a decreasing 2-polygraph. A Squier’s decreasing
completion of L with respect to 1 is a (3, 1)-polygraph that extends the 2-polygraph £ by a globular
extension
O(Z, ) U £(Z)

where O(XZ,1) is a chosen family of generating decreasing confluences with respect to { and £(X) is a
loop extension of X defined i 1n If (£,1) is a strictly decreasing 2-polygraph, a strictly decreasing
Squier’s completion is a Squier’s decreasmg completion, whose the generating decreasing confluences
are required strict.

3.1.4. Lemma. Let (I,1) be a strictly decreasing 2-polygraph. Let 8*4(Z,\p) be a strictly decreasing
Squier’s completion of X. Suppose that \ is compatible with contexts and that (£,\) is Peiffer decreas-
ing with respect to the extension 8%4(Z,\). Then, for any 2-sphere (f, g) in L3, there exists a 3-cell from
f to g in the (3,1)-category 84(Z, ) T.

Proof. We proceed in two steps.

Step 1. We prove that, for every local branching (f,g) : u = (v,w) of L, there exists a confluence
(f',g") : (vyw) = u/ of Zand a3-cell A : fx f' = g+ g’ in 8¢(Z, )T such that the confluence
diagram (f - ', g - g’) is strictly decreasing.

In the case of an aspherical branching, we can choose f’ and g’ to be identity 2-cells, A to be an
identity 3-cell and the confluence diagram (f, ) is trivially strictly decreasing.

Suppose that (f, g) is a Peiffer branching (f1vy,u1g1) : wyvi = (uyvi,u;vy). By hypothesis, the
Peiffer confluence (fivy - u{ gi,uigj - f1v1’ ) is equivalent to a strictly decreasing confluence diagram
(fiv1 - f{, w191 - g7). Hence, there exists a 3-cell A : fivy 1 f] = ujgq *1 gf in the (3, 1)-category
ST

If (f, g) is an overlapping branchlng, we have (f, g) = (Whw’,wkw’) with (h, k) a critical branch-
ing. We consider the 3-cell th hx h/ = kx; k' of O(Z,) corresponding to the strict generating
decreasing confluence of the critical branchlng (h k) with respect to the labelhng 1, or its inverse. Let
us define the 2-cells f" = wh/w’ and g’ = wk’w’ and the 3-cell A = th’kw . The labelling 1 being
compatible with contexts, the confluence diagram corresponding to the 3-cell A is strictly decreasing.

Step 2. Let (f, g) be a 2-sphere in £3. This 2-sphere defines a branching with source s1(f) = s1(g). The
2-polygraph X being strictly decreasing, we prove the lemma by well-founded induction on the measure

14



3.1. Squier’s decreasing completion

|(f, g)| of the branching (f, g). If f or g is an identity 2-cell, say g = 1, the 2-cell f is a 2-loop. By Lemma
there exists a 3-cell E : f = 1 (4 in the (3, 1)-category L(Z)T. Else, we have decompositions
f =11 x;f2and g = g1 7 g2 in L3 where (f1,g1) is a local branching. Note that f, or g, can be equal
to an identity 2-cell. The local branching (f1, g1) is confluent by decreasingness. Moreover, by Step 1,
there exists a 3-cell A : f1 7 f| = g7 %1 g} in the (3, 1)-category $°4(Z,)T, where the confluence

diagram (fy - f{, g1 - g7) is strictly decreasing.

The branchings (f{, f2) is confluent by decreasingness. Moreover, the 2-polygraph X being strictly
decreasing, by Lemma [2.4.14] there exist rewriting sequences h and k as indicated in the following

diagram:
2

T N
/7

g/
7 C\

g2

/}/¢$m*\y V4
|+ >

/\

such that the confluence diagrams (f] - h, f; - k) is strictly decreasing.

Consider the multiset order <1 associated to the order <. The confluence diagram (f7 - f{, gr- g{)
being strictly decreasing, for any k in L (f{) and any 1in L'(g]), we have k < {(f;) and 1 < ¥(gs).

Thus [fy - f{| = |f1| and

g1 - 7| = |g1]. This implies the following equality
[(f1,91)[ = [(f, 9).
The confluence diagram (f] - h, f; - k) being strictly decreasing, by the same argument, we have
|(f1 -y f2 - k)| = |(f], f2).
Moreover, by Lemma[2.4.13] we have |(f], f2)| <muw |(f, g1)|. It follows that

|(f1/ 'h>f2 k)| <mul |(f)g)|

By induction hypothesis, we deduce that there exists a 3-cell B : f; 1 k = ] 1 hin 8s4(Z, )T,

Finally, let us prove that there exists a 3-cell C : g * h = gz *1 kin 84(Z,) . We have
(97 -1y g2 - K)| = |gi] U [N9D] U |ga| L (K92,
On the other hand, we have
(1, 9)] = Il o lgl = If] v lg1] v g5

Furthermore, there exists a multiset R, possibly empty, such that |g,| = \gég‘)| u R. Hence

(g7 -hyg2- k)| = g9 UX and |(f,g)| = |gi¢"| LY.

15



3. Coherence by decreasingness

where X = |g/| u [hW91)| UR U [k(92)| and Y = |f] U |g7|. Moreover, we check that for every i in W
such that X(1) # 0, there exists j in W such that Y(j) # 0 and i < j. Hence, we have

‘(91/ ~h, g2 k)’ <mul ’(f»9)|-

The existence of the 3-cell C follows by induction hypothesis. In this way, we have constructed a 3-cell
in 8%4(Z,1) " from f to g obtained by composition of the 3-cells A, B and C. O

3.1.5. Example. The 2-polygraph Z(B+) given in is strictly decreasing for the labelling QNF
PANF defined in m It has four confluent critical branchlngs Thus, a strictly decreasing Squier’s
completion of the 2-polygraph Z(B*) is given by the following 3-cells:

tst sts tstzs Bts
QNF
stst m [35 stst tsts Bs too tsts ststs D(th sta Ststs
2‘cs \tzst/ﬁf \ ZS <p
Bst stszt tt=L B
tstst m Bst, tsﬁ tstst sts M sts
tsp ts’ts tsa Tsts

.LbQ F L')QNF IbQNF . . .
where D B D Bs,toc D s st @nd Dﬁ st tse Are the generating decreasing confluences and Eox, p is an

elementary 2-loop of X. Each of these confluences is decreasing because:
P (at) = PP (s) =1 and PIF(Bt) = PP (ser) = 0,
YT (Bs) =0, YT (ta) =2 and HAF(tB) = 1,y (Bs) = 0,
YOF (cts) = pPF(sta) = 1 and YO (Bts) = YA (stp) = 0,
PY®F(Bst) =0, pAF(tsp) =2 and P™F(tsa) = 1, PpDF(Bst) = 0.

3.2. Coherence by decreasingness

The following theorem is the main result of this article.

3.2.1. Theorem. Let (Z,1) be a strictly decreasing 2-polygraph. Let §%¢(Z,1p) be a strictly decreasing
Squier’s completion of Z. If ) is compatible with contexts and (X,\) is Peiffer decreasing with respect
to the extension $4(Z,\D), then 8%4(Z,\p) is a coherent presentation of the category presented by L.

Proof. Let (f, g) be a 2-sphere of the (2, 1)-category £, . By definition of £], the 2-cell f x; g~ can be
decomposed into a zigzag

1 f; fr—2 fr—

i

g1 92 gi-2 gi—1
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3.2. Coherence by decreasingness

where the 2-cells fo, ..., fx and go,..., gy are 2-cells of the 2-category £3. Note that some of those
2-cells can be identities. By confluence of the 2-polygraph Z, there exist families of 2-spheres of I3

with same T-target, forall 2 <1 <k —1and 2 < j < 1 — 1. Note that some of these 2-spheres can be

trivial. Then the 2-sphere (f, g) can be filled up by these 2-spheres as follows:
\
%

g1 92

By Lemma [3.1.4} these 2-spheres can be filled up by 3-cells of the (3, 1)-category 8§5¢(Z, ). Finally,
the composition of these 3-cells gives a 3-cell of 85¢(Z, )" from f to g. O

Strict decreasingness is a required condition in Theorem [3.2.1]as shown by the following example.

3.2.2. Example. Consider the 2-polygraph £ without 2-loop and containing two families (fji)i)jeN’ij:o
and (9})i,j€N,"Lj:O of 2-cells satisfying the following conditions:

i) the sequences (9 )nen, (5 )nens (9% )nen and (93 )nen are infinite rewriting paths,
ii) for any odd integer n, we have t1(f}) = t1(gy}) and t1 (%) = t1(g2),
i) for any even integer n, we have t;(f}) = t;(f2) and t;(g}) = t1(g%),

as indicated in the following diagram

ow
0

17



3. Coherence by decreasingness

and such that the only critical branchings of ¥ are of one of the following forms:
(3, g8), (f2,¢%), forn even, and (f°, %), (¢°,g), for n odd.

Let us consider the globular extension I' of the free (2, 1)-polygraph £ , defined by the following infinite
family of 2-spheres:

(15 1 5, fx fRy) and (g8 %1 g5t g0 %1 g4y)  fornodd,

and
(fg =1 fo* ! g8 «198™") and  (f% %) 13,1, 90 *1 9% ,¢) formn even.

The globular extension I' contains one generating confluence for each critical branching of £. However,
we cannot define a 3-cell in the free (3, 1)-category generated by (,T) with 2-source 3 +; f{ and
2-target 98 *1 g?. As a consequence, I" does not form a homotopy basis of the (2, 1)-category ZZT. In fact,
we note that the 2-polygraph X is not strictly decreasing, because no labelling of X is well-founded, but
decreasing with the singleton labelling.

Following[2.4.3] any quasi-convergent 2-polygraph X is strictly decreasing with respect to any quasi-
normal form labelling pF. The following result is a consequence of Theorem

3.2.3. Corollary. Let X be a quasi-convergent 2-polygraph and let )Y be a quasi-normal form la-
belling of . Let 8°4(Z,WF) be a strictly decreasing Squier’s completion of L. If the labelling N is
compatible with contexts and (Z,pY) is Peiffer decreasing with respect to the extension 8% (Z, pF),
then 854(Z, PF) is a coherent presentation of the category presented by L.

3.2.4. Example. By Theorem the five 3-cells given in form a homotopy basis of the
2-polygraph £(BJ ). Indeed, the 2-polygraph (B ) is strictly decreasing for the labelling QNF defined
in Example This labelling being compatible with contexts, the only remaining point concerns
the Peiffer confluences. Let us show that any Peiffer confluence is equivalent to a decreasing confluence
diagram. Consider a Peiffer branching (fv,ug) : uv = (u'v,uv’) of Z(B7) and its Peiffer confluence

(u'g, V') : (W'vyuw’) = u'v’”
/>u V=
!/
xu\)

By definition of £(BJ), there exist rewriting steps f' : u/ = wand g’ : v/ = v. It follows that this
Peiffer confluence is equivalent with respect to £(Z(B7)) to each of the following Peiffer confluence:

(fv' -ug’,u'g’ - f'v), (u'g- V' f'v-ug), (ug’ - fv, fv'-u'g’).

The equivalences are proved by the following diagrams:

/
u'v w'g fv uv uv N uv %
u'g'\ / % X)u\)/g v’ u’v’ u'g’
u'v
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3.3. Finiteness homotopical and homological conditions by decreasingness

Finally, in each family of such four Peiffer confluences, one of them is decreasing with respect to the
labelling pNF,

3.2.5. Decreasingness from termination. Given a confluent and terminating 2-polygraph X, any
T-cell u of X3 has a unique normal form denoted by U. We define the labelling to the normal form
YN T, — IF by setting for each rewriting step f, YNF(f) = t;(f). We choose on £} the order
induced by the rewrite relation defined by X,. This labelling is compatible with contexts and makes
the 2-polygraph L strictly decreasing and Peiffer decreasing. Moreover, X being terminating it does not
have loop and in particular the decreasing Squier completion coincides with the Squier completion. In
this way, the Squier coherence theorem obtained for convergent string rewriting systems in [17] is a
consequence of Theorem [3.2.1}

3.2.6. Corollary ([17, Theorem 5.2]). Let X be a convergent 2-polygraph. Any Squier’s comple-
tion 8(X) of L is a coherent presentation of the category presented by L.

3.3. Finiteness homotopical and homological conditions by decreasingness

3.3.1. Finite derivation type. A 2-polygraph X has finite derivation type, FDT for short, if the free
(2,1)-category ZZT has a finite homotopy basis, see [7, Section 4]. Squier proved that this property is
invariant for finite string rewriting systems: if £ and Y are two finite 2-polygraphs, then X has FDT if
and only if ¥ has FDT. As a consequence, the property can be defined on finitely presented monoids: a
finitely presented monoid has FDT if it has a presentation by a 2-polygraph that has FDT.

For a convergent 2-polygraph X, its is well known that a family of generating confluences forms a
homotopy basis of ZZT. A finite convergent 2-polygraph having a finite number of critical branchings,
then it has FDT. However, a finite decreasing 2-polygraph can have an infinite decreasing Squier’s com-
pletion. Indeed, the set of decreasing confluences is always finite for a finite 2-polygraph but the set of
elementary 2-loops may be infinite. As a consequence of Theorem 3.2.1| we can formulate the following
result.

3.3.2. Proposition. Let (X,) be a strictly decreasing and quasi-convergent 2-polygraph such that the
labelling D is compatible with contexts and Peiffer decreasing. If L has a finite set of 2-cells and a finite
set of elementary 2-loops, then it has finite derivation type.

3.3.3. Example. Let us consider the 2-polygraph £ with only one O-cell, £; = {a,b,c,d,d’} and
¥, = {ab = a,ac = da,da = d’a,d’a = ac}. This 2-polygraph presents a monoid which has
not FDT, see [12] Section 5]. Moreover, it has only one elementary 2-loop up to equivalence and a finite
number of critical branchings. As a consequence, there is no well-founded labelling compatible with
contexts making the 2-polygraph L strictly decreasing and Peiffer decreasing.

3.3.4. Finite homological type FP; by decreasingness. As a final remark, let us mention another ap-
plication to computation of low-dimensional homological properties of monoids. Let M be a monoid
and X be a coherent presentation of M. Following [[7, Proposition 5.3.2.], there is a partial resolution

ZM[53] s, ZM[5,] A, ZM[54] oM &z o
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of left-modules over the free ring ZM over M, where Z denotes the trivial ZM-module and ZM[Z;]
denotes the free ZM-module generated by X;. The morphisms of ZM-modules are defined by e(u) = 1,
for any uin M, and d;, d, and d3 are defined on the generators by

dix)=x—1, () =[si()] = [ti(e)],  d3(A) = [s2(A)] = [t2(A)],

forany x in L1, o in £; and A in X3 , and with the bracket notations of [[7, Section 5].

In particular, by Theorem if (X,1) is a strictly decreasing 2-polygraph such that 1\ is compati-
ble with contexts and Peiffer decreasing, the coherent presentation given by the strictly decreasing Squier
completion 85¢(Z,1p) induces such a partial resolution. If moreover £ has a finite set of 2-cells and a
finite set of elementary 2-loops, then it has finite homological type FP3. We expect that our construc-
tion can be extended in higher-dimension of homology producing infinite lenght resolutions for monoids
presented by quasi-convergent presentations, and thus weakening the termination hypothesis required in
construction of such resolutions as in [[1} [L1]].

3.3.5. Example. Following Example , the monoid B;r , admits a coherent presentation with two
DII)QNF Dll’QNF ‘LI)QNF

1-cells s and t, two 2-cells o : sts = tstand 3 : tst = sts and the five 3-cells D, ps> Dps.ta Dats st

D}I;SE isB’ Eqp. Using the homotopical reduction procedure introduced in [4} 2.3.1.] with a collapsible

part made of the 3-cell Ey g, we can reduce this coherent presentation to a coherent presentation of
the monoid B;r with the same k-cells for k < 2 and with no 3-cells. Hence, we obtain the following
resolution

d d
0 — ZM[a, B] — ZM[s,t] — ZM -5 Z — 0.

We deduce the homology of the monoid B; with integral coefficients: H,(M,Z) = Z forn < 2 and
Hy,(M,Z) = 0, forn > 3.
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