N
N

N

HAL

open science

Shelah-Stupp’s iteration and Muchnik’s iteration
Didier Caucal, Teodor Knapik

» To cite this version:

Didier Caucal, Teodor Knapik. Shelah-Stupp’s iteration and Muchnik’s iteration. Fundamenta Infor-
maticae, 2018, 159 (4), pp.327-359. 10.3233/F1-2018-1667 . hal-01676771v2

HAL Id: hal-01676771
https://hal.science/hal-01676771v2
Submitted on 16 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01676771v2
https://hal.archives-ouvertes.fr

Shelah-Stupp’s iteration and Muchnik’s iteration

Didier Caucal®’ and Teodor Knapik?3

ILIGM-CNRS, Université Paris-Est, caucal@univ-mlv.fr
2ISEA, Université de la Nouvelle Calédonie, knapik@univ-nc.nc
3IMSc, Chennai

February 16, 2018

Abstract

In the early seventies, Shelah proposed a model-theoretic construction, nowadays called
"iteration". This construction is an infinite replication in a tree-like manner where every
vertex possesses its own copy of the original structure. Stupp proved that the decidabil-
ity of the monadic second-order (MSO) theory is transferred from the original structure
onto the iterated one. In its extended version discovered by Muchnik and introduced
by Semenov, the iteration became popular in computer science logic thanks to a paper
by Walukiewicz. Compared to the basic iteration, Muchnik’s iteration has an additional
unary predicate which, in every copy, marks the vertex that is the clone of the possessor of
the copy. A widely spread belief that this extension is crucial is formally confirmed in the
paper. Two hierarchies of relational structures generated from finite structures by MSO
interpretations and either Shelah-Stupp’s iteration or Muchnik’s iteration are compared.
It turns out that the two hierarchies coincide at level 1. Every level of the latter hierarchy
is closed under Shelah-Stupp’s interation. In particular, the former hierarchy collapses at

level 1.
Keywords: infinite-state systems, structure-building operations, Shelah-Stupp’s itera-

tion, Muchnik’s iteration.

1 Introduction

Monadic second-order (MSO) logic is a restriction of second-order logic which generalises a
number of temporal and program logics. Since many relevant properties can be expressed in
MSO logic [1], looking for structures with decidable MSO theories has been an active research
area. Its foundations have been laid by Biichi [2] (weak MSO) and independently by Trakhten-
brot [3] and Elgot [4] who in 1957-1962 established the decidability of the MSO theory of one
successor over IN and then by Rabin who in 1969 [5] established the decidability of the MSO
theory of the infinite complete binary tree.

In 1975 Shelah [6] proposed a generalisation of Rabin’s result where an infinite tree-like
structure is built as output from any input structure and Stupp [7] proved that this con-
struction, which we shall call Shelah-Stupp’s iteration or the basic iteration, preserves the
decidability of MSO theories. This result has been an important step in the development of
MSO-compatible operations, viz., the transformations of structures that preserve decidability
of its MSO theories. Other prominent MSO-compatible operations are generalised unions of
Shelah [6] and MSO transductions of Courcelle [8] together with their restricted versions that

are MSO interpretations. In 1979 Muchnik (Andrei Albertovich) introduced an extension of
the basic iteration with a unary predicate and proved its MSO compatibility. Muchnik’s un-
published proof is sketched in an invited lecture by Semenov [9]. Finally, the missing full proof
has been written by Walukiewicz [10].

On top of above-mentioned Rabin’s work, Muller and Shupp obtained several important
results. In particular, they proved that transition graphs of pushdown automata have decidable
MSO theories [11]. As established in [12], those graphs are precisely the simple graphs of finite
degree among HR-equational hypergraphs of Courcelle [13] which belong to an even larger class
of VR-equational hypergraphs [14] that also have decidable MSO theories. The latter class is
closed under MSO-transductions as it is established by Barthelmann in [15] where he also
shows that VR-equational graphs coincide up to isomorphism with prefix-recognisable graphs
introduced by the first author [16].

Because isolated examples of graphs with a decidable MSO theory have been known since the
end of sixties [17, 18, 19], it has been suggested that combining Shelah-Stupp’s or Muchnik’s iter-
ation with MSO interpretations would lead to a larger family of structures with decidable MSO
theories [20]. In [21] Courcelle and Walukiewicz prove that the unfolding is MSO-compatible.
It is therefore suggested to seek for new classes of structures with decidable MSO theories by
combining the unfolding and MSO interpretations. The first such class with an independent
characterisation appears from [22, 23| as being the class of ranked infinite trees formerly in-
troduced (with no relation to MSO theories) by Englefriet and Schmidt [24] and later studied
by Damm [25] who have established that these form an infinite and strict hierarchy. Finally,
a more general hierarchy is built [26] through the unfolding which allows one to climb up the
hierarchy and through a restricted form of MSO interpretations which yields, from the trees of
a given level, a variety of graphs of the same level. However, besides isolated examples, an even
larger hierarchy may be obtained via MSO interpretation from the hierarchy of trees considered
in [27, 28].

The MSO-compatible operations play an essential role in establishing the decidability of
MSO theories. Both the unfolding and Muchnik’s iteration allow one to climb up the hierarchy
of [26] and have been used in many proofs. It has been observed by several authors that the
unfolding is MSO-interpretable within Muchnik’s iteration. Shelah-Stupp’s iteration is also
very useful when one needs an arbitrary number of copies of the original structure. It only
differs from Muchnik’s iteration by the lack of a unary predicated often called «clone». There
is a widely spread belief that this unary predicate plays a crucial role in the expressive power
of Muchnik’s iteration. In the present paper we closely examine this belief which is further
confirmed by the main result.

Inspired by the hierarchy of graphs introduced by the first author [26], we consider an
analogous hierarchy of (directed) hypergraphs or relational structures. Within this hierarchy
one climbs from level n to level n + 1 via Muchnik’s iteration and expands on a given level
using MSO interpretation, starting from level 0 which consists of finite relational structures.
We also consider a similarly defined hierarchy where instead of Muchnik’s iteration, one uses
Shelah-Stupp’s iteration. We show that the two hierarchies coincide at level 1 but not beyond.
Whereas the first hierarchy is strict, we show that the second hierarchy collapses at level 1.

In order to show the collapse, we need first an insight into level 1. After some reminders
on MSO logic in Sect. 2 and definitions of the two hierarchies in Sect. 3, we review suffix-
regular expressions and we show that these characterise the structures of level 1. Suffix-regular
expressions extend regular expressions and may be considered as standard syntactic description
of structures at this level. We then focus in Sect. 4 on the main result which says that, except
level 0, every level of the first hierarchy is closed under Shelah-Stupp’s iteration. This is
established by induction. The induction basis follows from our syntactic characterisation of

level 1. For the induction step, we consider a structure of level n, with n > 2, on which
Shelah-Stupp’s iteration is applied. As any level n structure is obtained from a structure of
level n—1 through Muchnik’s iteration and MSO interpretation, the essential part of the proof
consists in pushing the application of Shelah-Stupp’s iteration down to level n — 1 so that it
is applied before Muchnik’s iteration. This is possible by performing several additional MSO
interpretations. Since the latter do not affect the level of the resulting structure, while Shelah-
Stupp’s iteration applies on level n—1, we may use induction hypothesis to close the proof. The
collapse of Shelah-Stupp’s iteration entails, inter alia, the impossibility of defining the unfolding
by combining that iteration with MSO interpretations.

2 Monadic second-order logic

Iteration in the restricted or general version is an MSO-compatible operation that acts on
relational structures. We are therefore interested in MSO logic over such structures. These are
(directed) hypergraphs or, if there is no relation of arity greater than 2, (directed) graphs. Two
choices are possible for the latter. One may define a 2-sorted structure with a set of vertices, a
set of edges and the incidence relation. One may also define (labelled) edges as relation on the
set of vertices. The two definitions lead often to different results (see e.g. [8]). For relational
structures considered here as directed hypergraphs, we adopt the simpler, namely the second
view.

Let ¥ be a ranked signature where each relation symbol a € ¥ has its arity a(a) € IN. A
relational structure 2 over X, also called Y-structure, is a set of hyperedges. Each hyperedge
has its label in a € 3. A hyperedge a(5) € A with 5 = (51, ..., Sa(a)) links its vertices sq, ..., Sa(a)
which need not to be all pairwise distinct. A hyperedge of arity 2 is an edge and instead of
a(s,s'), we write s — 5. We write (a) for the set of hyperedges of 2 labelled by a € ¥ and
Vi for the set of vertices of 2:

VQ[= U {317-'-7504(@)} .
a(s1,+,50(a)) €A

The reader may observe that according to the above definition no relational structure may
have isolated vertices. To overcome this drawback, it is enough to add to the signature a
distinguished unary predicate symbol, say p, for labelling isolated vertices.

A path s “>¢ in A from s € Vi to t € Vg, labelled by a word w over a set of symbols from ¥

of arity 2 and possibly 1, is defined inductively by

s->t, if s=t,
s-“>t, if ¢(s) and s -“>t,

bu . . b u
s--->t, if there exists r € Vy s.t. s = r and r-->t

The syntax of MSO logic over relational structures is defined like for first-order (FO)
logic but has, in addition to FO variables written in lower-case x,vy, z,2', z1, ..., set variables
XY, Z, X" X,... written in capitals. Beyond the usual atomic FO formulae a(Z) for a € ¥,
there are membership formulae x € X each of which involve one FO variable and one MSO
variable. More general formulae are constructed in the standard way using connectives and
quantifiers which may be FO e.g. Va, 3z or MSO e.g. VX,3X. Note that the equality symbol
is unnecessary since the identity relation is MSO definable:

r=y <= VX (reXeoyeX).

3

In formulae, we shall sometimes use true, where
true & Vz x=x .

The semantics of MSO logic is defined like for FO, except that set variables range over
subsets of the structure. A relational structure 2 satisfies 3X p(X) if there exists a subset V
of Vi such that (2, V) E ¢(X), viz. ¢(X) holds in 2 when X is interpreted as subset V.

A well known fact already mentioned in the introduction is that reachability is not FO-
definable. More generally, except in particular cases, one cannot define in FO a transitive
closure of an FO-definable relation. On the other hand, for any MSO formula ¢(z,y), the
following formula Tr,(z,y) defines the reflexive-transitive closure of the binary relation defined

by ¢(z,y):
Try(z,y) e VX((Q;EX/\V:U’Vy’((m’eX/\go(:r',y’)) :>y’eX)) :>yeX) :

Using the latter, for any regular expression £ over a set of symbols of arity 2, one may write
an MSO formula pathg(z,y) suitable for graphs saying that there is a path from one vertex
to another labelled by word in the regular language denoted by £. The formula is defined
inductively according to the structure of &:

path,(z,y) —true,
path, (z.y) T >y,
path,.(x,y) r(z)ax =y, for a unary symbol r

path& (l’, y) v pathgz(x, y)>
Jz (pathgl(x, z) A pathg, (2, y))7
Trpathg (Ia y)

path51+52 (x7 y)
pathg,¢, (7,y)
pathé’* ({['7 y)

(IR

The reader may consult [8] for more examples of MSO-definable relations or properties.

An MSO interpretation is a structure-building operation that defines a {2-structure 8 within
a given X-structure 2 by means of MSO formulae over . Formally, an MSO interpretation h
is given as a definition scheme which is a tuple (0, (6y)peq) Where 0 is an MSO formula with one
free FO variable and each 6, is an MSO formula with «(b) free FO variables. Then B = h(2l)
is defined as follows:

Vg
B(b)

{deVa|(A,d)Eo(x)}
(0(d) | (A,d) E 6,(T)) for each be Q.

We also say that 8, defines the relation b within 2. More generally, an n-ary relation g is MSO-
definable within a structure 2, if there exists an MSO formula 6(7) with n free FO variables T
such that o= {d| (A,d) = 6(Z)}.

Example 1

Consider an infinite complete binary tree Ty 1y as a structure over a signature I' := {0, 1} with
a(0) = a(1) =2 where 0 (resp. 1) is the left (resp. right) successor relation. We interpret within
T(0,1y a graph over Q := {a,b,c} which is a sort of ladder:

b b b

o

o

o
04Q>0

An interpretation is given by the definition scheme (§(x),8.(x,vy),0(x,v),0.(x,y)) where

(z) = 3Ir (ﬁEI z(z Srves r) A patho*(ﬁl)(r,x)),
bu(ry) = w >y,
Op(x,y) <= Tz T2 (21 5 29 A 21 LN YA 2o 5N),
Oc(w,y) = ==y

Observe that 0,(x,y),0,(x,y),0.(x,y) are FO and that 6(x) which is MSO selects the nodes
of the leftmost branch of the tree as well as the immediate right successors of the nodes of this
branch.

3 Iteration hierarchy

We introduce in this section a hierarchy of relational structures which is built using iteration
and MSO interpretations. We also review level-n pushdown automata since these are closely
related to the hierarchy. Finally we study level-1 structures. We show that the two iterations
lead to the same level-1 class of structures. We also give an algebraic characterisation of level-1
concrete structures following prefix-recognisable graphs introduced in [16]. By concrete, we
mean that the elements of the structure are encoded as words over a finite alphabet.

3.1 Shelah-Stupp’s iteration and Muchnik’s iteration
We now recall the definition of the iteration introduced by Shelah and the extension by Muchnik.

Definition 2 (Iteration)
Given a relational structure 2 over ¥ and a new binary relation symbol f ¢ ¥, the basic (or
Shelah-Stupp’s) iteration of A, written 2!, is the following relational structure over ¥ u {f}:

A = {a(wsy,. .., WSaw) |a €S Awe Vg Aa(st, ..., Sa)) €A}

u{wst|weVJ/\seVm} .

Muchnik’s iteration of A is defined like the basic iteration At extended with a unary predicate
&eXu{p}:
AL = Ao {&(wss) |weVy nseVy) .

The iteration may be understood as an operation which builds a structure made of a countable
number of copies of the original structure. The vertices of each copy are encoded by words over
the alphabet that is precisely the set of the vertices of the original structure. Within a given
copy all encoding words have the same length and differ only by the last letter that indicates the
original vertex. Every vertex possesses its own private copy of the original structure. Within
each copy, the common prefix of words encoding vertices is precisely the encoding of the vertex
in another copy (or in the original) that «owns» the copy. Walukiewicz [10] made popular the
name of «son» for the relation

{(w,ws) |weVy nseVy}

which may be represented by edges from a vertex to all vertices of the private copy of the
original structure owned by the vertex. Instead of «son» we use an arbitrary symbol to label
this relation, mostly § or $. Similarly we use an arbitrary label, mostly &, for the vertices

bt

of the form wss with w € Vy instead of the popular name «clone». Note that there is only
one so marked vertex in each copy which is precisely the image of the «owner» ws under an
isomorphism f(wt) = wst where t € Vy. The marked vertex wss is a sort of exact copy of the
owner ws.

Example 3
We consider a graph & with 3 vertices {0,1,2} and 3 edges with labels in {a,b} depicted as

follows:
N4

Muchnik’s iteration &% of the above graph is an infinite structure, a portion of each is depicted

below. o 5
ﬂ /A% M
AN H
2 1)

(0] 2

&00 5 0 10 5 2 2 2 22&
N NN N
ﬁ tt o1 |j i %&1 21
&000 5 002 I
020 022§
NG N
021
010 012

The basic iteration &' of & is depicted similarly. It only lacks &-labels.

3.2 The hierarchy

In [26] a hierarchy of infinite graphs is defined in terms of two graph operations: the unfolding
and the inverse regular mapping. In [29], Carayol and Wohrle show that this hierarchy can
be alternatively defined in terms of Muchnik’s iteration and MSO-interpretation. By allowing
symbols of arity higher than 2, the latter definition is extended to arbitrary relational structures.

Definition 4 (Iteration hierarchy)
For every n € IN we define a family fon, of relational structures (or hypergraphs) of level n as

follows
‘horo is the family of finite relational structures,

horner = {f(ABE) [A € Ror, A f is an MSO interpretation}.

Example 5
The ladder from Example 1, say £, is in hov. The next construction shows that the following
triangle on the left

RN b
. a #\/c N, |c c c
\\ ° ° >0 >0
b “ a
e« " o - ® ® °
A b /a b
/
QTL\Q e — e
® < b ® < b ° ® < P ® - °
v b+ b // b
. a e c 4! c\ , |c
o — e — k\o
[P b P b P b ° ° °
A b A b
(2 C C C
° ° >0
a a

belongs to how. Indeed, this triangle may be interpreted within £#% (depicted on the right
with the triangle superimposed on it) via the scheme

(6($), Qa(l’,y), Qb(x7y)7 Qc(‘rv y))

where
6(z) = Jy(-3z (ziyvyizvyﬁz)/\ﬂz (Tra, (y, 2) A pathy.(z,2))),
O,(x,y) <= Hz(&(z)/\xiz/\yiz),
eb(may) = i) Y,
O.(z,y) <= ﬁﬂz(xizvxgz)/\ﬁﬂz(yizvygz)

A 3z (path gy (2, 7) A pathy(2,9)) .

On a simplified picture of £#% we only represent copies possessing vertices selected by 6(x)
and relevant #-labelled edges, namely those with &-labelled target (label & omitted). In
the original ladder £, 6(x) selects the unique vertex with no outgoing edges as “input” for
the reflexive-transitive closure collecting vertices of an a*-labelled path (cf. Trg, (y,z)) of the
resulting graph. From this collection, vertices accessible by b*-labelled paths are selected.

New edges z—y correspond to the pattern depicted on the right. Although these T
edges involve both relevant and irrelevant copies, the latter are eliminated as only ./
the vertices reachable from the unique sink of £ by new a*b*-labelled paths are

"
selected for the resulting structure by 6. :

ey

b

Every new edge x—y goes from the sink of a copy to the sink of its owner but similarly to new
a-labelled edges, only relevant copies will be finally concerned due to selection by §.

3.3 Level-n pushdown automata

In [29], Carayol and Wohrle show that, up to an e-closure,! the hierarchy of graphs of [26],
may be characterised via transition graphs of level-n pushdown automata (n-pda for short). A

In a transition graph of an automaton or machine, e-labelled edges correspond to silent moves. An e-closure
consist in replacing, for each letter a of the input alphabet, every path x -—-<=->y by an edge z RN .

1-pda, is a standard pushdown automaton. Instead of a usual pushdown store (pds for short),
a 2-pda has a level-2 pds, each element of which is a usual (level-1) pds. Within a level-2 pds,
the topmost level-1 pds may be accessed by means of standard pushdown operations but in
addition it may be removed or duplicated. An n-pda is obtained by generalising this idea to
any level n.

Formally, level-n (resp. non empty level-n) pds, written I'? (resp. I'?) over I' is defined by

ro = T, o = T,
L= (T T = (Dh

Note that if V € T'? then V/» c T+, If uw e T* and s € T'#7! then u-s € I'¥ stands for the pds u
with s added on top of it. The set of level-n pds operations, written Ops,,, consists of

topy: T > T, topy(uss) = 5,
top_,: ['? > Ikl top_,(uss) = top;_p(s), for 1<k <mn,
popy: I'} = T, popy(u-s) = u,
pop_j: 't — T, pop_(ws) = wpop;_4(s), forl<k<n,
pushy: I — I'7?, pushy(u-s) = (u5):s for n>1,
push_,: I'" - T'?, push_,(u:s) = w-push;_.(s), for2<k<n,
push: ' - I't, push.(u) = wc, for cel,
push: I'" - I') push,(u-s) = w-push_.(s), for 2<n and cel'.2

An n-pda P is a tuple (@Q,%,T,qo,¢, A, f), where @ is a finite set of states, ¥ is the input
alphabet, I' is the pds alphabet, gy € @) is the initial state, ¢ € ['? is the initial pds, f € @ is
the final state and A € I'x @ x (X ue) x Ops,, x @ is the set of transition rules of the form
(¢,p) L, (op,q) with ceT, pe @, be X u{e}, opeOps, and ¢ € Q.

The transition graph s of P is a subset of (I x Q) x (X u{e}) x (I'? x Q) defined by

G = {(5,p) > (0p(5),9) | (top,_,(s),p) > (op,q) € A} .

A word w € ¥* is accepted by P and belongs to its language, written .2 (P), if it labels a path
in By from (¢,qo) to (s, f) for some s €I

ZL(P) = {w eX | 3sel? (1,q0) —§;>(s,f)} :

Note that in an unconventional way pds operations are indexed here by negative integers
saying how deeply in the nesting level, starting from level n, the operation applies. In such a
way we do not need to care about the exact level of pds operations. It just has to be strictly
greater than the absolute value of the indexing integer.

Example 6
Consider a 2-pda Puyr = ({0,1,2,3, f},{a,b},{L,a,b},0,[L][L], A, f) accepting the square lan-
guage on {a,b}, L, = {ww | we {a,b}*}. The set of transition rules A is

(1,0) = (push,,0), (a,0) = (push,,0), (b,0) = (push,,0),

(1,0) = (pushy,0), (a,0) = (push,,0), (b,0) > (push,,0),
(J_,O) i) (pOP_l,f), (a70) i’ (pUSh—hl)a (b,O) i (pUSh—171)>
(1,2) = (pop_1,3), (a,1) = (popy,2), (b,1) = (popy, 2),
(J-73) i) (p0p07f)7 (a72) i) (pUSh—hl)v (b>2) i (pUSh—1>1)>
(a,3) = (pop_1,3), (b,3) > (pop_y,3).

2Note that the name push, is overloaded.

The automaton pushes the letters as these are read on top of the topmost pds. Then it guesses
the middle of the word and performs a sequence of e-transitions which alternatively copy the
topmost pds and pop its topmost letter. When 1 is detected, P, pops the whole topmost pds
and starts reading the input again. The letter read has to agree with the letter on the top of
the topmost pds whereas, the whole topmost pds is popped. When 1 is detected, Psqr switches
to its final state.

Here is a path in &g, accepting abbabb where each configuration is written as a sequence of
level-1 pds enclosed in brackets and followed by the current state.

[L][L]0 S 2][m]oi[[Lab]o 2 [L J[Labb]o = [1][Labb][Labb]1

= [1][Labb][Lab]2 <> [L][Labb][Lab][Lab]l <> |L][Labb][iab][La]

5 [L][Labb][Lab][La b][la]l 5L][Labb][iab][a][L]2 5 |L][Labb][Lab][La]3
> [L][Labb][Lab]3 2> [1][1abb]3 = [1]3 5 [1]f

We shall use pds operations for proving several essential lemmas in the sequel.

3.4 Suffix-recognisable structures and level 1

By definition, level 0 of the iteration hierarchy corresponds to all finite structures. In the case
of graphs, the level-1 of the iteration hierarchy consist, up to graph isomorphism, of prefix-
recognisable (resp. suffix-recognisable) graphs defined as follows in [16]:

A = UL(U = Vi)W
(resp. A = Zlm(Uiﬁ>%))

for some m € IN and some U;, V;, W; € Reg(T'*) that are non empty regular sets, and aq, ..., G, €
5. In the above, the operation (U; = V;)W; (resp. W;(U; = V;)) defines the edge relation for
label a; as follows:

(U; = V)W {(uw,vw) |ueU;,v e V;,weW;}
(resp. Wi(U; = V) = {(wu,wv) |ueUi,veVi,weW})

In fact, these consist of two operations, namely Cartesian product and one sided multiplication.
Because prefixes of pairs of words related by an edge form a recognisable relation, Damian
Niwinski suggested to name those graphs prefix-recognisable.

Prefix-recognisable graphs may be considered as a syntactic characterisation of the family of
graphs that are MSO-interpretable within the complete infinite binary tree [15, 30]. Although
the term prefix-recognisable became common, it turns out that suffix-recognisable graphs are
more consistent for this characterisation. Otherwise, a prefix-recognisable graph has to be
transformed into its isomorphic suffix-recognisable twin by mirroring its vertices. The choice
between prefix or suffix depends on the side of the multiplication: left for suffix and right for
prefix. If both are combined we get bifix graphs [31, 32] which do not enjoy, in general, the
decidability of their MSO theories.

The first prefix-recognisable-like characterisation of relations which are MSO-interpretable
within the complete infinite binary tree Tyo;y is done by Angluin and Hoover [33]3. Other
such characterisations are given by Lauchli and Savioz [34], Carayol and Colcombet [35], and
Blumensath [30]. The two latter papers consider, more generally, relational structures.

3More generally, the complete infinite k-ary tree is considered there.

In the next definition, we review suffix-regular expressions and suffix-recognisable relations
of arbitrary arity as defined in [35]. The latter use the generalisation of left multiplication of a
relation R ¢ (I'*)™ by a set W c I'*:

WR = {(wuy,...,wuy)|weW A(uy,...u,)eR} .

Since a relational structure is assimilated to a set of labelled hyperedges, the above operation
is extended in the usual way to relational structures:

W = {a(wuy,...,wuy) |laeXAweW Ana(ug, ... uy) €A} .

For introducing suffix-recognisable relations, we also need permutations. An n-permutation
o is a bijection of [n] into itself extended to []}-, E; in the usual way:

for (e1,...,e,) € I_IEz o(er, ... en) = (€n(1),---s€a(n)) -
i=1

We often denote a permutation o:[n] - [n], by the tuple [o71(1),...,071(n)]. For instance,
given o:[3] - [3] such that o(1) =3,0(2) = 1,0(3) = 2, we have o(a,b,c) = (¢,a,b) and we may
also write [3,1,2](a,b,c) = (¢, a,b).

Definition 7 (Suffix-regular expressions and suffix-recognisable relations)
The set of suffiz-reqular expressions on T' of arity m € IN \ {0}, written SReg,,(T'*), is the
smallest set of expressions such that

Reg(I'*) € SReg, ('),

if R,S e SReg,(I') then RuUS e SReg, (I').
if ReSReg,(I'*) and S € SReg,(T"*) then R xS e SReg,,, ('),
if W eReg(I'*) and R e SReg,(I'*) then WTR e SReg, ('),

if R eSReg, (') and o is a k-permutation then o(R) e SReg,(I'*).

The set of prefix-reqular expressions is defined likewise, except that, in the fourth case, left
multiplication WR is replaced by right multiplication RW'.

Any subset of (I'*)™ denoted by a suffix-regular (resp. prefix-regular) expression of arity m
on I' is called a suffiz-recognisable (resp. prefiz-recognisable) relation on I'* of arity m, and is
written SRec,,(I'*).

In case the encoding of elements does not matter, we simply write SXRec,, to denote the
class of m-ary suffix-recognisable relations up to isomorphism.

Here is an example of a suffix-regular expression on {0,1}* of arity 3:
[1,3,2](T* (e xe) x) .

It is easy to see that this relation is also obtained by interpreting in % ;3 the definition scheme
(0(z),0,(z,y,2)) where
d(x) = true,
0.(x,y,2) (r=2).

For the example of the ladder (see Example 1), we write expressions for each labelled relation:
0*(ex0) for a, 0*(01 x 1) for b and 0*(e x 1) for ¢. In a compact syntax of [16] which is suitable
for graphs, we have 0*(¢ > 0+& = 1 +¢ > 1).

It is stated in [35] that the family of suffix-recognisable relations on {0,1}* is precisely the
family of relations that are MSO-definable in the complete infinite binary tree Ty ;.

10

Theorem 8 An n-ary relation R < ({0,1}*)" is suffiz-recognisable, if, and only if, R is MSO-
definable in the complete infinite binary tree Ty 1.

The proof of this statement is sketched [35]. We give it a complete proof following a different
idea. For that we need to quickly review a few points about the decidability the MSO theory
of Tfp,1y also known as the decidability of the theory of two successors or S2S (see [36] for
more details). The variables occurring in an S2S formula ¢ form the set Var(y) and 1 uses
atomic formulae of the form = — yand LN y for the two successors. Under some interpretation
v:{0,1}* - 8 (Var(v)), v is satisfied by a complete infinite binary tree Ty.1y With nodes labelled

by variables of Var(1), each node w € {0, 1}* having possibly several labels forming the set v(w).
The standard decision procedure for S28S relies on the construction of a Muller tree automaton

<y, such that Tfo;} E ¢ iff @7, accepts T{/o,l}' We call it the automaton modelling 1. More
precisely 7, = (Q,@(Var(@/;)), JANA .7-") where @ is a finite set of states, A ¢ Qx& (Var(¢))xQxQ
is a transition relation, ¢ € @) is an initial state and F ¢ £(Q) is a set of accepting sets of states.
A run of 7 on T, |, produces a labelling o: {0,1}* - @ of the nodes of Ty, 13 such that o(e) = ¢

and (o(w),v(w), o(w0), o(wl)) € A for all w € {0,1}*. Such a run is accepting if, for every
infinite branch of Sfo,l}, the set of states occurring infinitely often in the branch belongs to F.
The latter condition is called Muller acceptance.

An S2S formula ¢(7) defining an n-ary relation on Ty 1y has exactly n free pairwise distinct
variables T = (z1,...,x,) which are FO variables. For .1y to be a model of o(T), every FO

variable labels exactly one node of ‘Z’{’O 1} The Muller tree automaton 7, modelling ¢(7) is
such that the relation defined by ¢(Z) in Tyo 4y is precisely

{(wi,...,wy) € ({0,1}*)" | oy €L (A,) A N v(w)n{ay,... .} =1}

i€[n]

Proof (Theorem 8)
=
Assume that R is suffix-recognisable. The claim that R is MSO-definable in Ty 1, is established
by induction on the structure of the expression denoting R.
o case R =W with W e Reg(I'*)
Then W is defined by the formula 3y (root(y) A pathy, (y,z)).

o case R =R URy with Ry, Ry € SRecy(I'*)
By induction hypothesis Ry and R, are defined by some MSO formulae ¢;(7) and (7).
Then R is defined by ¢1(T) v p2(T).
o case R =Ry xRy with Ry € SReci(I'*) and Ry € SRec;(I'*)
By induction hypothesis R1 and R, are defined by some MSO formulae ¢1(Z) and ¢5(7)
where T and 7 are tuples of pairwise distinct variables. Then R is defined by p1(Z)Ap2(7).
o case R =WS with W e Reg(I'*) and S € SRec, (')

By induction hypothesis S is defined by some MSO formula (7). Let then <7, =
(Q,@(Var(w)), A, qo, Q) be a Muller tree automaton modelling . Let £ = (Q', 0, ¢, F
be a finite deterministic and complete (word) automaton accepting W. Assuming that
QNnQ’ = @, we construct a Muller tree automaton &y s := (QUQ’, R (Var(¢)), AUA’, ¢, Q),
where

A = {(p.2.4,¢) | (9,0,9), (p.1,¢') €O} U{(f. P,p.q) | f € F A (g0, P,p,q) € A}

11

Now, the MSO formula associated to #ys, say ¢(7), defines WS within Ty 1y.

« case R =0(S) with a k-permutation o and S € SRec (I'™)

By induction hypothesis S is defined by some MSO formulae ¢(x1,...,2;). Then R is
defined by @(zoq1ys -, To))-

=
Assume that R is defined within Tyoy by an S28 formula ¢(Z) where T = (z1,...,%,) is the
tuple of (pairwise distinct) free variables of . For a tuple, ¢ = (t1,...,ts), set(t) stands for
{t;|ie[m]}. For k <m, Ay(t) denotes the set of k-arrangements of ¢:

Ap(®) ={(tsrqay, .- tray) | f:[k] = [m] injective} .

Let o, = (Q,R(Var(¢)), A, ¢, F) be a Muller tree automaton modelling (7). We denote by
7, 4 the automaton resulting from replacing in <7, its initial state ¢ by some state ¢ € Q). The
first projection is written m. An interpreting run of o7, , on Ty 1y is a labelling p:{0,1}* —
Q) x8® (Var(yp)) such that m oy is an accepting run of .27, , on ‘}Z?éol‘;. The set of all interpreting
runs of o7, , is written ir(.aZ, ;). We set free,(u) := mo(p(u)) nset(Z) for any w e {0,1}*. We say

that an interpreting run p of &7, , is consistent at with a k-arrangement t = (t1,...,t;) € Ax(T),
if the depth-first ordered tuple of all nodes w; = (wy, ..., wy) of ‘Z’{‘O 1y Tepetitions allowed, with

labels in {z1,...,2,} (i.e. free,(w;) # @ for every i € [k]) is such that,
o free,(w;) Cset(t), for all i € [k],
o free,(w) = @ for all we {0,1}* \ set(wy),
o t; efree,(w;), for all i € [k].

Since every variable of {x1,...,x,} occurs exactly once in an interpreting run p of o7, and at
most once in an interpreting run p of 7, ,, every node u of ‘I?O,l} appears [free,(u)| times in
wy. Up to such repetitions, the order of wy is the order in which nodes of set(w;) would be
visited in a depth first search of T’{‘O 1 (left branch first, nodes appearing in infix order) limited
to the depth of the deepest node carrying a label in {z1,...,z,}. For example, an interpreting

run putting variables {x,y, z, s,t} as follows
z dl
Yy 'U/Q,I I\\UB s

tu4/ \\u5
is consistent with (y, z,t,2z,s) (and with (y, z,¢,s,2)). The corresponding depth-first ordered
tuple of nodes is (ug,u1, uy, us, uz).

Claim 75 := {T’{‘O 1 | peir(,,) is consistent with ¢} is regular for every arrangement ¢ of 7.

Proof of the claim It is easy to design a Muller tree automaton .o which checks for consis-
tency. It keeps a list of labels to encounter starting at the root with ¢ and, while visiting
nodes without label in {xy,...,x,}, it nondeterministically breaks the current list into
two sublists. It remembers the first sublist for the left subtree and second sublist for
the right subtree. When % visits a node with labels in {x1,...,z,}, these must form a

factor, say (z;,x; , of the current list, say (x;,,...,x;,) for some k <m < n.

o Lljpt)

g+

12

It then remembers (xy,,...,2;,_,) for the left subtree and (zy,,,...,7,,) for the right
subtree. When the current list, say 5, matches free,(u) of the current node, say u (i.e.
free,(u) = set(s)), the whole subtree rooted at u is labelled with a designated state f.
The set of accepting sets of states realising Muller condition for o7 is {{ f }}

Now, the automaton accepting .7 is obtained as the product of automata 7, x o;. <

Let m > 1. We call a 3-split of a tuple (¢1,...,t,,) a triple

((tlw'-7tj71)7(tjutj+17~-->tj+k—1)7(tj+ka---atm)) :

such that, if £ = 0, then 7 > 2 and m > j + k (if the middle tuple has length 0, then both
remaining tuples have non-zero length). The set of all 3-splits of a tuple ¢ is written 3sp(t). We
say that an interpreting run p €ir(.a,) is consistent with a 3-split (y,Z,5) of an arrangement
of T, if there is a node u € {0,1}* such that

o free,(u) = set(Z),
o i restricted to the left subtree under u is consistent with 7,
o 1 restricted to the right subtree under u is consistent with s.

Similarly to the above claim about .7, it is easy to show that
Tgza = %o | 1 eir(H,,) is consistent with (¥,%,5)}
is regular for every 3-split (7,%,5) of an arrangement of T.

Claim For every regular set of complete binary trees .7 with node labels in some finite set,
any set of nodes L g, of trees of 7 defined by an MSO formula ¢(z), namely

Loy ={we{0,1}" [Ty € 7 A (Tho 1y w) = ()},

is a regular set of words.

Proof of the claim Let .o/ = (Q, P,A L, .7:) be the product @77 x .7, of a Muller tree automaton
/7 such that £ (/7) = .7 with a Muller tree automaton 7, modelling an MSO formula
Y (x) defining some set of nodes of trees of 7. We consider the finite (word) automaton
B =(QxP,0,1,F) on {0,1} with set of states Q) x P, transition relation

0:={((¢,P),0,(q1, 1)) | (¢, P,q1,92) e A (qu, Pr) em2(A)}u
{((q7P)> L (QZ>P2)) | (va7 Ql>Q2) eAA (Q2>P2) € Wl,Z(A)}>

set of initial states I := {(¢, P) | (v, P,q1,q2) € A} and set of final states F' defined as
follows

(¢, P)e F < xoccursin P and
there exists a path (¢, P) e (p1, P1) = (p2, P2) — (pr, Pr) - (p1, Pr)

such that |J{p;} e F .
1€[k]

It follows that .Z (%) = L. N

13

We are ready to give an inductive construction of a suffix-regular expression €, for the relation
defined by ¢(7). For y € A, (T), let 053:[n] - [n] be a permutation such that o(y) = =. For
Z € Ak(T), we define Az :={(q,),q1,q2) € A| Y nset(T) =set(z)}. The expression is given by

&p = U Oyz 8(%?)

YeAn(T)

where, for pe @ and 5 € Ay(T) with k> 1,

E(p’g) = U U Lg@,zi),pﬂ[%y,m,flz](Og(chag) x H ex 18((]2,%))

(7,%,8) €3sp(3) (a.Y,q1,92) € Az |z]

and where ¥[q,V, q1,q2](7) is a formula satisfied at every node u of a tree of ;7 , such
that u is labelled (¢,)) and ¢; (resp. ¢2) occurs in the label of u0 (resp. ul). The expression
for €(p,s) is completed with the case of zero-length tuple of variables: E(p,()) := 1 where 1
denotes the neutral element for the Cartesian product. O

The following corollary is immediate as the set of MSO-definable k-ary relations within a
given structure forms a Boolean algebra.

Corollary 9 For every k € IN, SRec,(I'*) is a Boolean algebra.

As expected, suffix-recognisable relations are components of suffix-recognisable structures.

Definition 10 (Suffix-recognisable structures)
A Y-structure 2 is suffix-recognisable if A(a) € SRec,, for each a € 3 with a(a) =m. The class
of suffix-recognisable X-structures is written SRec(X).

Theorem 8 adapted to the latter definition is stated as the following corollary.

Corollary 11 A X-structure is suffix-recognisable, if, and only if, it is MSO-interpretable in
the complete infinite binary tree Tyo 1.

Since the composition of two MSO interpretations is again an MSO interpretation [8], from
Theorem 8 we get the following corollary.

Corollary 12 The family of suffix-recognisable structures is closed under MSO-interpreta-
tions.

In order to show that level 1 of the iteration hierarchy consists, up to isomorphism, of
suffix-recognisable structures we start with the following lemma.

Lemma 13 Muchnik’s and the basic iteration of every finite structure is, up to isomorphism,
suffiz-recognisable.

Proof Let 2 be a finite structure. We set I':= Vi. Let §, & ¢ ¥. The relation corresponding to
a €Y in both 2% and 2t is a finite union

U [a(s1,. .., 5q(a)) -

a(sl,...,sa(a))em

For we have UsrI'* (e 4 5) and for & we have Uyer [*&(s5). O

14

Starting from a 2-element structure { A B
eration and even by basic iteration, we get a structure (see below) where a complete infinite
binary tree T(o 1y is readily interpreted.

e Py
Al

This leads to the following corollary.
Corollary 14

1. ﬁgﬁ = S%c,

{f(AV) | A €hovo A f is an MSO interpretation}.

2. fﬁ‘?‘l

Proof Set hgrbasic := {f(At) | A € horg A [is an MSO interpretation}. From Lemma 13 and
Corollary 12 it follows that (up to isomorphism) for; € SRec and Ror>ic ¢ SRec. Both Hory 2 SRee
and Hgrbasic o Bmcc (up to isomorphism) follow from the fact that T 1y is MSO-interpretable
within a structure that is obtained as basic or Muchnik’s iteration of a two-element structure and
the fact that every suffix-recognisable structure is MSO-interpretable within o1y (Theorem 8).
Since the composition of two MSO interpretations is again an MSO interpretation, we are done.

a

The above corollary suggests that similarly to the iteration hierarchy v, one might define the
basic iteration hierarchy, say horbasic. However, as we shall see in the next section, the latter
hierarchy collapses at level 1.

4 Closure under basic iteration

This section starts by the statement of the main theorem which is established by induction.
After showing the induction basis, the proof of the induction step is split into two lemmas.
While the proof of Lemma 16 is concise, Lemma 17 is based on a more subtle construction.
We explain this construction step by step following a simple example. Each step uses an MSO
interpretation.

Theorem 15 For any n > 1, the family of structures hov, is closed under basic iteration.

Proof Let n e IN~ {0} and 2 be a structure in hor,. The claim that A € Aor, is established
by induction on n.

e n=1

According to Corollary 14 w.l.o.g. we may assume that 2 is a suffix-recognisable structure.
By definition

AP = {a(sy ... spU1, .. S1-- - Sklaga)) | K€ INASY, ..., 55 € Vy
Aa(uy ..., Ua)) €A}

U{sl...skle...skﬂke]N/\sl,...,Sk,teVg‘})

15

In order to keep track of original vertices (words) that would be lost under concatenation,
we introduce a separator ¢ I" :

A = {a(sT. .. Tsptur, .. s1T- - TskTua@) [k € INA sy, ... s, € Vy
Aa(uy ..., Uaga)) €A}

U{slT...TskLSIT...TskTHkE]N/\sl,...,sk,teVm}

= {a(wuy, ..., wua@)) |we (Vat) ra(ur ... uqw)) €A}
U{w b wit|we (Vat) Vant e Vod

={w.a(uy ... Uaa)) |we (Vat) Aa(us ... uya)) € A}
U{w.(e 5 t) [we (Vat) At eV}

= (V)" U (Vab)Va(e 5 Vo)

Thus 2! is suffix-recognisable. Consequently A € hor,.

e n>1 (induction step)

According to the definition of the hierarchy, 2 € hov, is obtained from a structure in
‘hory,_1, say B, through Muchnik’s iteration followed by an MSO interpretation, say f:

o= f(BH)

Consider a basic iteration A% of 2 for a new binary symbol $ ¢ ¥ U {f,&}. Then 2° =
P,

We establish in subsequent lemmas that there exist MSO interpretations fs, g and h such
that

$.

(F(B¥9))" = fs(g((h(B)*)F)) (i)

Since h(B) € hor,_1, by induction hypothesis we have h(2B)% € hor,_1. Then (h(B)%)h¢ €
‘hor, and also g((h(B)%)b¥) € hor,. Finally

Fs(g((h(B)*)+%)) €For .

Equality (i) is established in two steps. First, using Lemma 16, the existence of an MSO
interpretation fg such that

F(BEE)® = fo((BH)®)
is obtained. Second, using Lemma 17, the existence of MSO interpretations g and h such

that
(BF)® = g((h(B)*)4)

is ascertained.

a

The above proof relies upon two lemmas. The first one states that basic iteration and MSO
interpretations commute, provided a slight adaptation of the latter.

Lemma 16 For every MSO interpretation f and $¢ X, there exists an MSO interpretation fg
such that, for every relational structure € over X, one has

F(€)* = f5(€%) .

16

Proof Let f be an MSO interpretation. Observe first that equality

F(€)F = £(€%)

does not hold because f may add hyperedges across distinct copies of €. Thus definition
scheme (6, (0a)qex) of f has to be adapted as follows. Each formula 0,(x1,...,%4)) needs
to be relativised w.r.t. vertices of the same copy (viz., sharing the same $-ancestor) or of the
original (viz., no $-ancestor) € within €5. Therefore 65(x1,...,2q(q)) is defined as being the
following formula:

(Ely (y 3, TN AY 3, Ta(a)) V VY (=Y 3, Ty A Ay 5, xa(a))) Ao (21, .. Ta(a)) -

Thus, the definition scheme of fg is (4, (0%)4cx)- O

The second lemma involved in the induction step of the proof of the main theorem states that
basic iteration and Muchnik’s iteration commute up to two MSO interpretations. This is the
crux and the remainder of this section aims at providing a clear presentation of a proof this
lemma.

Lemma 17 There exists MSO interpretations g and h, such that every relational structure 8
satisfies

(B€)% = g((h(B)*)*) .

The above lemma is the key lemma for the induction step of Theorem 15. As the induction step
deals with structures of level n > 1, obtained via n iterations (and MSO interpretations), we
shall adopt the following convention. We consider that the vertices of level-n structure belong
to I'" where I' is the set of vertices of the finite structure from which 2l has been obtained
through n steps. This is consistent with the definition of iteration since a level-n pds is a word
over I'"~1. Moreover, in a basic iteration € or Muchnik’s iteration €& of some € € hon,_1,

the inverse of corresponds to pop, whereas push, may be identified in €% with those edges

4, that point to &-labelled vertices. In fact, as observed in [29], the reader may notice that
all level-n pds operations are first-order definable within an n-fold Muchnik-iterated structure
provided that iterations symbols fi,...,{, are pairwise distinct. With this idea in mind, we
begin a discussion that will lead to the proof the above key lemma. In this lemma, we consider
a structure B and its iterations possibly combined with MSO interpretations: (B#%)$ and
g((h(B)%)14). At some stage, we shall also deal with a Muchnik’s iteration B¢ and a basic
iteration h(2B)%. According to our convention, the vertices of the latter structures are pds over
Vis. The vertices of (B#4)% and g((h(B)%)#¥%) are level-2 pds over Viz. Such a level-2 pds, say
v, is written [t11... 610,)[t21 .- o] .- [tk .- tky] where all ¢;; are in Vi and ¢4 ...85y, is
the topmost level-1 pds, viz. topy(v) =tg 1 ...tk and top_;(v) = tgy,.

In order to define a mapping between the vertices of (B4%)$ on one hand and, provided
MSO interpretations i and g, those of g((h(2B)%)#%) on the other hand, and establish that
this is an isomorphism, we need a way to point at a vertex. For this reason, we shall decorate
iteration labels § and $ with top_; of the target vertex according to the following definition.

Definition 18 (Eecorated label)

Given an edge u = v with £ € {f, 3}, of a doubly iterated structure, its decorated label, written
£(s), is the corresponding iteration label £ decorated with s = top_;(v) of the target v of the
edge.

17

For structures considered in the sequel, we assume that iteration edges have its labels
$(s
implicitly decorated. We write u 16, v oru 36, v in order to emphasise that s = top_;(v)

although we may still write u 4 por u v in the case the decoration does not matter.
We denote by A, the set of decorated labels of (B#%)% (B%)14 and its interpreted variants:

A = {§(s)]|seVau{S(s)|seVy} .

Before addressing the proof of the above lemma, let us consider an example of a structure
D with two vertices and no relation as well as its iterations D& D% (D&L)S (D& In
order to trim the picture, we omit labels over edges. We use colours instead: Il for §-labelled
edges and M for $-labelled edges. Moreover, &-labelled vertices are circled and its labels are
omitted.

As the example is developed, we explain the construction, the proof of Lemma 17 is based
upon.

This construction will end, up to isomorphism, with iteration (D#%)$ depicted above, starting
from iteration (D%)#% depicted as follows.

18

More precisely a structure isomorphic to (D#%)% shall be interpreted within (D%)% through
three steps. While addressing the construction of this interpretation, we wish to point out two
noticeable substructures of (D#4)$ and of (D%)#¥ that are isomorphic. The first one, depicted
on Fig. 1, is a substructure ®; of (D#%)% obtained by forgetting every $-labelled edge, when
the target of which is also the target of a f-labelled edge. Thus, every vertex v of substructure
D; has outgoing $-labelled edges exactly to every vertex of the «topmost» copy of ® within
v’s private copy of D#&. Analogously, we may associate to every structure B and its double
iteration (BH%)3, a substructure B;. A useful fact that may be generalised from the example
of ®; is that for each word x € A* over the set of decorated labels A, a path in a structure like
®, labelled by & is unique from a given vertex u. Moreover, every vertex of ®; is accessible
from ® via a path with label in A*.

Lemma 19 Let B, be the substructure obtained from (B44)¥ by forgetting every $-labelled
edge, the target of which is also the target of a {j-labelled edge.

1. For every word k € A* and each vertex u € Vig,, there is a unique path in By starting at u
and labelled by k.

2. Each vertex of 9B, is accessible from B via a path with label in A*.

Proof

1. We show that there is exactly one edge in B; with a given source and decorated label.

Consider an edge of *B; with source u € Vs, and decorated label A € A. We know that

u = [t171 . t17l1][t271 A t2752] . [th . thk]’ for some ti,j € V% .

19

Figure 1: Substructre ©,

o Case A = {(s) for some s € Vig.

This case occurs if, and only if, u 16, v, where
V= [t171 Ce tLll][tQ,l Ce t2,lg] Ce [tk,l Cen tk,lks] .

o Case A =5(s) for some s € V.

. . . 5(s)
This case occurs if, and only if, © —> v, where

V= [t171 Ce tl,ll][tll Ce tgh] . [tk,l e tk’lk][s] .

This is because every $-labelled edge from u to a vertex of the form

[tl,l . tLll][tQ?l ce t2712] . [tk,l .. .thk][Sg . SnS],

with n € IN, that would also have $(s) as decorated does not exist anymore in 8,
since it has been removed in the construction of B; from (B#%)3.

2. Let v ="[ty1...try)[t21---tas] - [tra---try] be a vertex of By. By induction on the
length of v, |v|:= Y5, I;, we show that there exists a vertex u € Vs and a word o € {}, $}*
such that v -Z> v, viz., there exists a o-labelled path from u to v.

20

o Case |v| = 1.
Then v € Vg and v->v.

o case |v|>1

— Subcase [, = 1.
Then v = [tl,l e tl,l1][t2,1 .. .tgh] ce [tk—l,l A tk—l,lk_l][tk,l] and there is a vertex

v = [tia .t [t2a - tags] [tke1 - - te-1g,_, | such that of LA Indeed, v
has no ingoing f-labelled edges. Consequently its ingoing $-labelled edge has
not been removed. Now [v'| < |[v] and, by induction hypothesis, there is a vertex

e Vo and a word o' € {}, 5}* such that u-">v". Hence u-T25 .

— Subcase [, > 1.
Then v =[t11...t15] [t21---tosy]-- [tk .- -tk] and there is a vertex

UI = [tl,l Ce tl,ll][tZ,l Ce t2,12:| e [tk,l e tkvlk—l]

such that v > v. Now [v'| < |v| and, by induction hypothesis, there is a vertex
u € Vig and a word o’ € {f, $}* such that u-"»v'. Hence u .

a

After defining the substructure ®; of (D#%)$ we shall define a structure ®, which is a
substructure of (D%)#4. This is the second among the two noticeable substructures mentioned
earlier between which the isomorphism is straightforward to establish. This isomorphism is
helpful in building an isomorphism between (D#%)$ and the structure that we are going to
interpret within (D%)8% through three steps. After the first two steps, we will obtain D,.

The first step towards D consists in eliminating useless f-labelled edges. We only keep such
edges from every vertex to a copy of the original structure, here ®, possessing an &-marked
vertex. The result is similar to ©; where every vertex has outgoing f-labelled edges to its own
copy of ® with &-marked clone of the vertex (by definition of D#%). However, such useless
f-labelled edges requires an extra care because the equivalence relation saying that two vertices
belong to the same copy is not MSO-definable, except in a particular case where the Gaifman
graph of the original structure is connected. In order to deal with the general case, we need to
add auxiliary o-labelled edges (not depicted in subsequent figures), where ¢ ¢ YU {f, 3} is a new
label, between every ordered pair of vertices of the original structure ® via an interpretation h
defined in a usual way:

5(x) = true
O.(z,y) <= true
0,(z) = a(T) foraed .

Thus in the example, instead of (D%)#%, the construction really starts from (h(D)%)t4. After
selecting appropriate f-labelled edges, o-labelled edges may be forgotten. In the example, this
leads to the following structure g; ((h(D)%)#4):

21

The interpretation for g; is obvious:

d(x) = true
Oy(z,y) = b yndz(&(z) Ay > 2) (4.1)
0,(7) <= a(T) for a e X u{&,$} .

At the second step, we restrict the structure to the substructure induced by vertices that
are accessible from the original structure via a {}, $}*-labelled path by means of interpretation
g2'

§(z) = Jy(root(y) A path{n7$}*(y,x))
0,(T) = a(7) for ae X u {},&, 3}

In the example, this leads to the following structure Dy = go(g1((h(D)%)#¥)), depicted in
Fig. 2, which is the second substructure we are looking for.

Like for ®, it may be generalised from the example of D, that for each word x € A* over
the set of decorated labels A, a path in a structure like ©5 labelled by & is unique from a given
vertex u.

Lemma 20 Let B, := g2(g1((h(B)*)44)) where g1 and gy are the MSO interpretations defined
so far. Then the following holds.

1. For every word k € A* and each vertex u € Vig,, there is a unique path in By starting at u

and labelled by k.

2. Fach vertex of Bo is accessible from B via a path with label in A*.

Proof

22

Figure 2: Substructre ®q

1. We show that there is exactly one edge in B, with a given source and decorated label.

Consider an edge of B, with source u € Vig, and decorated label A €¢ A. We know that
u = [tl,l R tl’ll][tQ’l C t2,52] . [th . tk,lk]7 for some tm' € V% .
« case A = f(s) for some s e Vi

We claim that this case occurs if, and only if, u 1), v, where

V= [t171 Ce tLll][tQJ e t2752] e [tkﬂ Ce tk‘,lk][tk,l ce thk_lS] .

Indeed, f-labelled edges of B, form a subset of the second-level iteration edges of
(B5)h& and are precisely the f-labelled edges of g1 ((h(2B)%)4%). According to the
definition scheme of g; (see Equation (4.1)), all f-labelled edges sharing the same
source u target the vertices of the same copy of B, say B’, within a given copy of
B3, The latter copy of B® has exactly one &-labelled vertex, say v’, and this vertex
is in B’. According to the definition of Muchnik’s iteration, we have

v = [t171 . tLll][tQ’l ce t27l2] e [th e tk,lk][tk,l . tk,lk]

i.e. topy(v') = topy(popy(v’)). Now, within the same copy of B, vertices only differ
by its top_;. Thus

V= [t171 ce tl,ll][tQ,l e tgh] N [tk71 N tk:,lk][tk,l N thk_lS]

23

because v and v’ are both in 8B’ whereas top_,(v) corresponds to the decorated label
of u), v.

o case A =5$(s) for some s € Vg

$(s
This case occurs if, and only if, u 26, v, where
V= [tl,l RN tl,h][tll R t2,l2] ce [tk71 A tk,lks] .

2. Immediate from the definition scheme of gs.

As the example has been developed, two structures have been distinguished:
« ®; which is a substructure of (D#%)$ (see Fig 1),
« D, which is a substructure of (D%)#¥ (see Fig 2).

The reader may notice that ®; and ©, are isomorphic. This fact is generalised in the following
lemma.

Lemma 21 Let B, be a substructure obtained from (B44)% by forgetting every $-labelled edge,
the target of which is also the target of a f-labelled edge. Let By := go(g1((h(B)%)14)) where
g1 and gs are the MSO interpretations defined so far. Then B, = Bs.

Proof Putting together the two statements of Lemma 19, we conclude that there is a bijection
between Vig, and Vi x A*. Similarly, from Lemma 20, we get a bijection between Vig x A* and
Vis,. Putting together these bijections, we obtain a bijection u: Vg, — Vig, defined by

p(vy) =vy <= JueVy IneA* (u —£—+v1/\u-5—>vg) (i)
1 2
for all vy € Vig, and vy € Vi,. We establish that this bijection is in fact an isomorphism of
relational structures u:B; — Bs.

« We have u % v < pu(u) %L) p(v) and u %%> v < p(u) %;> p(v), for all u,v € Vig,. This

follows directly from the definition (i) of u via A*-labelled paths.

e We claim a(ﬁ) € %1 = a(lu(ﬁ)) € %2 for each a €Y and every 7 e Vgl(ll)
Indeed, a(v) € By,

iff all vertices of T = (v1,...,v4(q)) are in the same copy of B and a(3) € B, where 5 =
(81, -+, 5a(a)) With s; = top_;(v;), for i € [a(a)], viz., there is an original hyperedge
a(3) corresponding to the copy a(?),

3

iff all vertices of v have the same ancestor for f (resp. $), say u, and a(5) € B

iff u % v; (resp. u %Slk v;) for i € [a(a)] and a(35) € B
1 1
iff () % w(v;) (resp. p(uw) % w(v;)) for i€ [a(a)] and a(3) € B
iff all vertices of ;(v) have the same ancestor for { (resp. $), say p(u), and a(s) € B

iff all vertices of p(v) = (p(v1),. .., (Va(a))) are in the same copy of B and a(3) € B,
where 5 = (s1,..., Sa(a)) With s; = top_; (u(v;)), for i € [a(a)],

24

iff a(pu(v)) € Bs.
o We claim &(v) € B; < &(u(v)) € By for every v e Vi, .
= Assume &(v) € B;. Then
v=[ti1.. .t)[ten - tos] [te - thp,SS]

for some ¢; ; € Vig with ¢ € [k],j € [[;] and some s € Vi, and there exists

= [tl,l Ce tl,ll][tll .. .t2’12] Ce [tk,l e tk,lks]

such that u 16, v. There are 3 disjoint cases.

B
1. u has neither {- nor $-ancestor, viz., u = [s], whereas k = 1 and [, = 0. Then
p(u) = u. In By, u has an outgoing f(s)-labelled edge with target [s][s]. Thus
pu(v) = [s][s] which is, for the second level iteration, the clone of [s]. Hence

&(p(v)) € Ba.

2. u has a f-ancestor, say w. Then w —n;—)» u —n;—s)» v and p(w) ——» p(u) — i),
1 1
p(v) as already established. Consequently top_ (u(u)) = top_l(u(v)) =5 and
topy (1)) = s1...5p8, viz., p(u) = &[s1. .. sps] for some € € (Vig)2 and sq,...,5, €

Vig. According to the definition scheme of g; (see Equation (4.1)), all j-labelled
edges in B, sharing the same source u target the vertices of the same copy of
B, say B’, within a given copy of B%. The latter copy of B® has exactly one
&-labelled vertex. This vertex is in 28’ and, according to the definition of Much-
nik’s iteration, it is precisely &:[s;...s,5][s1...5p5]. Obviously, it is the only
vertex in B’ such that its top_; is s. Thus p(v) = &[s1...5,5][s1...5,5] and
&(p(v)) € Bs.

3. u has a $-ancestor, say w. This means that k > 1 but I, = 0. We have therefore

[tl,l e tl,h][tll e t2712:| . [tkfl,l .. 'tkflylk—1]7
u = [t171 N t17l1][t2,1 N tgb] Ce [tk—l,l NN tk_le_l][S],
[tl,l ce tl,ll][tll . tgh] e [tks—l,l .. .tk_l,lk_l][ss] .

Then w % u % v and ,u(w) u() —> ﬂ;) p(v) as already established.

Consequently top_; (u(u)) = top_;(u(v)) = s and we conclude similarly to Case 2.
< Assume &(u(v)) € By. Then

,u(v) = [tl,l . tLll][tQ’l R t27l2] Ce [th Ce thkS] [tk,l . ~tk,lk3]
for some ¢; ; € Vg with ¢ € [k],j € [[;] and some s € Vi, and there exists
/JJ(U) = [tl,l . -tl,ll][tQ,l . t2,l2] Ce [th Ce tk,lks]

such that p(u) % p(v). There are three disjoint cases.
1

1. p(w) has neither - nor $-ancestor, viz., u(u) = [s], whereas k = 0. Then p(u) =
w. In By, u has an outgoing f(s)-labelled edge. Its target is therefore [ss]. Thus
v = [ss] which is the clone of [s]. Hence &(v) € B;.

25

2. p(u) has a f-ancestor, say p(w). Then p(w) ﬁ;) p(w) ﬁ;) p(v) and w ﬂ;%)»
2 2

1

U % v as already established. Consequently top_;(u) = top_;(v) = s and

1
topy(u) = [S1...8,8], Viz., u =& [s1...5,s] for some £ € (Vig)2 and s1,..., s, € Vig.
Now v = &[5y ... s,s5], because u ﬂ—;i v. Hence &(v) € B;.
1

N S(s s S(s
3. u(u) has a $-ancestor, say p(w). Then p(w) ;) () rt;) wu(v) and w %
2 1

U % v as already established. Consequently top_;(u) = top_;(v) = s and we
1

conclude like in the latter case.
O

According to the above lemma ®; and ®5 are isomorphic. Remember that ©; is a sub-
structure obtained from (D#%)$ by forgetting every $-labelled edge, the target of which is
also the target of a f-labelled edge. Thus, from ©; we obtain (D)% by putting back the
forgotten edges. We put a S-labelled edge from a vertex x to a vertex y, whenever there is

a ${*-labelled path from x to y or we keep an existing edge x LA y. This is defined by the
following interpretation gs:

d(x) <= true

Os(x,y) = pathg;(z,y)
0,(7) <= a(T) for a e XU {}, &}

But since ®; = D5, we have
(@u’&)$ = 93(D1) = g3(D3) = 93(92(91((h(@)$)u’&))) .

Thus interpretation gz is the third and the final step in building from (D%)#% a structure
isomorphic to (D#%)%. The constructions developed around this example are generalised in a
straightforward way. These generalisations let us complete the pending proof of Lemma 17.

Proof (Lemma 17) Let 9B, be a substructure obtained from (B#%)3% by forgetting every $-
labelled edge, the target of which is also the target of a §-labelled edge. We have

(BH)® = g3(By)

since interpretation gz adds formerly forgotten $-labelled edges.
Let By = g2 (g1 ((R(B)%)#4)). According to Lemma 21

%15%2.

Hence
(BH)® = g3(B1) = g3(B2) = g3(g2(91 ((A(B)%)H))) .
Therefore, there exist MSO interpretations g := g3 o g» 0 g1 and h, such that

(B)* = g((h(B)*))
a

By closing the proof of Lemma 17 we have just established the main result of this paper,
namely Theorem 15. This theorem states that every level of the iteration hierarchy of relational
structures is closed under basic iteration.

26

5 Final remarks

From the proof of the main result we may wish to extract a «normal form» for building a
relational structure of level n from a finite structure by combining MSO-interpretations with
n or n — 1 Muchnik’s iterations and 0 or more of basic iterations. In this normal form all
basic iterations are pushed onto level 1 except, possibly one basic iteration applied at level 0.
The induction basis shows how the former may be eliminated in a representation of level 1
structures as suffix-recognisable structures. However, instead of this concrete representation,
one may wish a more abstract representation where a level 1 structure is obtained by MSO-
interpretation from the infinite complete binary tree. This raises the question how to eliminate
basic iterations using an MSO-interpretation.

Although the hierarchy based on Shelah-Stupp’s iteration collapses at level 1, one may
wonder if within level 1, one may define a finer strict hierarchy where one climbs up from one
layer to the next layer via basic iteration. If so one may expect that such a layer structuring is
transferred to every level of Muchnik’s iteration.

Acknowledgements

We wish to thank anonymous referees for their help in improving the paper via numerous
remarks they provided us.

References

[1] Courcelle B. The Expression of Graph Properties and Graph Transformations in Monadic
Second—Order Logic. In: Rozenberg G (ed.), Handbook of Graph Grammars and Com-
puting by Graph Transformation, volume 1, pp. 313-400. World Scientific, 1997.

[2] Biichi JR. On a decision method in restricted second order arithmetic. In: Logic, Method-
ology and Philosophy of Science (Proc. 1960 Internat. Congr). Stanford University Press,
1962 pp. 1-11.

[3] Trakhtenbrot B. Finite automata and the logic of monadic predicates. Doklady Akademii
Nauk SSSR, 1961. 140:326-329.

[4] Elgot CC. Decision Problems for Finite Automata Design and Related Arithmetics. Trans-
actions of the American Mathematical Society, 1961. 98:21-52.

[5] Rabin MO. Decidability of Second-order Theories and Automata on Infinite Trees. Trans-
actions of the American Mathematical Society, 1969. 141:1-35.

[6] Shelah S. The Monadic Theory of Order. Annals of Mathematics, 1975. 102:379-419.

[7] Stupp J. The Lattice Model is Recursive in the Original Model. The Hebrew University,
1975.

[8] Courcelle B, Engelfriet J. Graph structure and Monadic Second-Order Logic, a Language
Theoretic Approach. Cambridge University Press, 2012.

[9] Semenov AL. Decidability of Monadic Theories. In: Chytil M, Koubek V (eds.), Mathe-
matical Foundations of Computer Science, LNCS 176. Springer, Praha, 1984 pp. 162-175.

27

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[25]

[26]

Walukiewicz I. Monadic second—order logic on tree-like structures. Theoretical Computer
Science, 2002. 275(1-2):311-346. doi:10.1016/50304-3975(01)00185-2.

Muller DE, Schupp PE. The Theory of Ends, Pushdown Automata and Second—order
Logic. Theoretical Computer Science, 1985. 37:51-75.

Caucal D. On the Regular Structure of Prefix Rewriting. Theoretical Computer Science,
1992. 106:61-86.

Courcelle B. The Monadic Second—order Logic of Graphs, II: Infinite Graphs of Bounded
Width. Mathematical System Theory, 1989. 21:187-221.

Courcelle B. The Monadic Second—order Logic of Graphs, VII: Graphs as Relational
Structures. Theoretical Computer Science, 1992. 101:3-33.

Barthelmann K. On Equational Simple Graphs. Technical Report 9/97, Johannes Guten-
berg Universitat, Mainz, 1998.

Caucal D. On Infinite Transition Graphs Having a Decidable Monadic Second-order
Theory. Theoretical Computer Science, 2003. 290(1):79-115. doi:10.1016/S0304-
3975(01)00089-5.

Siefkes D. Decidable Extensions of Monadic Second-order Successor Arithmetics.
Mannheim: Bibilogr. Inst., 1969 pp. 341-472.

Elgot CC, Rabin MO. Decidability and Undecidability of Extensions of the Second—order
Theory of Successor. Journal of Symbolic Logic, 1966. 31:169-181.

Thomas W. The Theory of Successor with an Extra Predicate. Mathematische Annalen,
1978. 237:121-132.

Caucal D. Sur des graphes infinis réguliers. Habilitation, Université de Rennes I, 1998.

Courcelle B, Walukiewicz I. Monadic Second-Order Logic, Graph Coverings and Unfold-
ings of Transition Systems. Annals of Pure and Applied Logic, 1998. 92:35-62.

Knapik T, Niwinski D, Urzyczyn P. Deciding Monadic Theories of Hyperalgebraic Trees.
In: Abramsky S (ed.), 5th International Conference on Typed Lambda Calculi and Ap-
plications, LNCS 2044. Krakéw, 2001 pp. 253-267. doi:10.1007/3-540-45413-6_ 21.

Knapik T, Niwinski D, Urzyczyn P. Higher-Order Pushdown Trees are Easy. In: Nielsen
M, Engberg U (eds.), FoSSaCS, LNCS 2303. Grenoble, 2002 pp. 205-222. doi:10.1007/3-
540-45931-6__15.

Engelfriet J, Schmidt EM. 10 and OI. I. Journal of Computer and System Sciences, 1977.
15:328-353.

Damm W. The [0— and Ol-hierarchies. Theoretical Computer Science, 1982. 20(2):95—
208.

Caucal D. On Infinite Terms Having a Decidable Monadic Theory. In: Diks K, Rytter W
(eds.), MFCS 2002, LNCS 2420. Springer, Warsaw, 2002 pp. 165-176. doi:10.1007/3-540-
45687-2_13.

28

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Knapik T, Niwinski D, Urzyczyn P, Walukiewicz I. Unsafe Grammars and Panic Automata.
In: Caires L, Italiano GF, Monteiro L, Palamidessi C, Yung M (eds.), ICALP, LNCS 3580.
Lisbon, 2005 pp. 1450-1461.

Ong CL. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In:
LICS. 2006 pp. 81-90. doi:10.1109/LICS.2006.38.

Carayol A, Wohrle S. The Caucal Hierarchy of Infinite Graphs in Terms of Logic and
Higher-Order Pushdown Automata. In: FSTTCS, volume 2914 of Lecture Notes in Com-
puter Science. 2003 pp. 112-123. doi:10.1007/978-3-540-24597-1__10.

Blumensath A. Axiomatising Tree-Interpretable Structures. Theory of Computing Systems,
2004. 37(1):3-27. doi:10.1007/s00224-003-1104-8.

Karhumaéki J, Kunc M, Okhotin A. Computing by commuting. Theor. Comput. Sci., 2006.
356(1-2):200-211. doi:10.1016/j.tcs.2006.01.051.

Altenbernd J. Reachability over word rewriting systems. Ph.D. thesis, RWTH Aachen
University, 2009.

Angluin D, Hoover DN. Regular Prefix Relations. Mathematical Systems Theory, 1984.
17(3):167-191. doi:10.1007/BF01744439.

Lauchli H, Savioz C. Monadic Second Order Definable Relations on the Binary Tree. J.
Symb. Log., 1987. 52(1):219-226. doi:10.2307/2273878.

Carayol A, Colcombet T. On Equivalent Representations of Infinite Structures. In: ICALP,
volume 2719 of Lecture Notes in Computer Science. 2003 pp. 599-610.

Weyer M. Decidability of S1S and S2S. In: Gradel E, Thomas W, Wilke T (eds.),
Automata, Logics, and Infinite Games: A Guide to Current Research, volume LNCS 2500.
2001 pp. 207-230. doi:10.1007/3-540-36387-4_ 12.

29

