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A hierarchical model for the computation of enhanced permeation 1 

properties of porous materials due to micro-cracks  2 

by 3 
 4 

Fadi Khaddour1, David Grégoire2, and Gilles Pijaudier-Cabot3, A.M. ASCE 5 
 6 

ABSTRACT: This paper presents a model capable to provide estimates of the apparent 7 

permeability directly from the pore size distribution and from the properties of the fluid to be 8 

considered. The model is based on a hierarchical assembly of capillaries with decreasing diameter, 9 

generated randomly. The technique yields a porous network, which mimics the pore space 10 

measured experimentally by mercury intrusion. The intrinsic permeability and the evolution of the 11 

apparent permeability with mean pressure are provided by equating Darcy’s law and a combination 12 

of Poiseuille’s and Knudsen’s laws. Comparisons with experimental data on mortar specimens 13 

show that the model provides the intrinsic permeability and its evolution when the material is 14 

subjected to mechanical loads. For a given pore size distribution, the evolution of the apparent 15 

permeability is also provided and test data with several types of gases compare quite well with the 16 

model. 17 
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 19 

INTRODUCTION  20 

The relationship between the microstructure of cement, mortar and rocks and their permeation 21 

properties is a problem that has been addressed in many instances. Hydrocarbon production is a first 22 

example in which permeation properties have direct practical consequences. In most cases, the data 23 

available result from the extraction of cores during the exploration phase, and the permeability of 24 

the rock is related to its porosity. In the case of cementitious materials, what is at stake is not only 25 

the initial permeation properties of the material but also their evolution upon increasing, sustained 26 

or thermal loads. Because of micro-cracking, the permeability of the material increases (see e.g. 27 

Choinska et al. 2007). This increase is of great importance in the long-term assessment of tightness 28 

of vessels and waste containment facilities (see e.g. Jason et al. 2007).  29 

In the literature, one may distinguish typically several approaches for estimating the permeability of 30 

a porous material. 31 

In the first one, permeation properties are computed from pore network models. This approach 32 

allows a rather fine modelling at the pore scale in networks that are either generated randomly, e.g. 33 

on the basis of a pore size distribution using a discrete element approach (Li et al., 2016) or a lattice 34 

based model (Grassl, 2009), or taken from scanning electron microscope (SEM) images of mortar 35 

(see e.g. Wong et al. 2012, Sun et al. 2011, 2013). Finite element or discrete element calculations 36 

can be coupled with Lattice-Boltzman calculations that solve the Stoke’s problem in the pore 37 

network at the subscale or extracted from digital image analysis. It allows very accurate 38 

descriptions of the flow in the pore network coupled with the applied loads (White et al. 2006).  39 

Because the analysis is performed at the pore scale, multiphase flow and wettability considerations 40 

can be included in such models, allowing for estimates of relative permeability (see e.g. the review 41 

papers by Blunt, 2001 and Blunt et al., 2002). On the other hand, these very powerful techniques are 42 

quite computationally demanding, aside from the fact that each new state of micro-cracking in the 43 

material requires the consideration of a new pore network model. 44 
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The second type of approach relies on continuum based up-scaling and homogenisation theories. 45 

Berndt and Sevostianov (2012) discuss several micromechanical models in which the effective 46 

permeability of a heterogeneous material is derived from Darcy’s law at the lower scale (Darcy, 47 

1856). It results into formulas where the porosity appears in the evaluation of the effective 48 

permeability of the porous material explicitly (see also Dormieux et al. 2006). Because these 49 

approaches do not represent the exact distribution of pores in the material (it is rather idealised 50 

through some concentration factors), they fail at capturing the effect of increasing micro-crack 51 

density on permeability as connectivity and tortuosity issues may arise. Extended models have been 52 

proposed for this purpose, e.g. by Chunsheng et al. (2011), based on specific micro-crack 53 

configuration (parallel cracks) and Monte-Carlo simulations. A more recent approach has been 54 

proposed by Timothy and Meschke (2016), in which the permeability is derived from cascade 55 

micromechanics, but the choice of the cascade number that controls connectivity properties is a 56 

pending issue. 57 

The third type of approach is widely used in engineering applications and relies on analytical 58 

formulas where the input is the characterisation of the pore size distribution. Pioneering works by 59 

(Kozeny, 1927) related the permeability to the porosity, the tortuosity and an average pore size. 60 

Later on, Katz and Thompson (1986) predicted the permeability from the electrical conductivity of 61 

a porous material through a critical pores radius. Brown et al. (1991) provided a review of such 62 

approaches that may for instance be based on probabilistic descriptions of the interconnection 63 

between pores (Childs and Collis-George (1950), on percolation theory, or on combinations of both 64 

(Guegen and Dienes, 1989)). More recently, several studies appeared in which the pore size 65 

distribution has been modeled, e.g. with a bimodal (Aït-Mokhtar et al. 2002) or multimodal 66 

distribution (Amiri et al. 2005), and then entered into some capillary bundle model. A model for the 67 

calculation of the intrinsic permeability derived directly from the experimental pore size distribution 68 

(PSD), without any idealization has been also proposed (Khaddour et al. 2015).  69 



  4 

In this paper, which is an extended and upgraded version of the conference paper by Khaddour et al. 70 

(2014), we are going to follow this type of approach, mainly because our final intend is to 71 

implement such a description into very large scale computations where at each point, the 72 

permeation properties are expected to change with micro-cracking due to applied loads. Hence, our 73 

aim is to devise a fast estimation technique that will be repeated a large number of times during a 74 

single calculation. In the present contribution, we will not reach this stage and we will stay at the 75 

level of the estimation of the permeation properties as a first step towards this final objective. The 76 

essential element from which the permeation properties are going to be estimated is the PSD. The 77 

present approach should be seen as follow up of models aimed at describing the influence of 78 

damage on the pore size distribution of mortar or rocks (Arson and Pereira, 2013) in order to 79 

provide a consistent hydro-mechanical framework to the context described above. The experimental 80 

data provided may also serve validating these relationships, although providing or validating such is 81 

outside the scope of this paper. 82 

Mercury intrusion porosimetry (MIP) is going to be used for the determination of the PSD for 83 

various states of micro-cracking. It is well known that MIP has strong biases, e.g. for the 84 

characterisation of small pores (see Diamond, 2000). Furthermore, it cannot reach occluded 85 

porosity, but in our case such a porosity does not participate to permeation. MIP should be seen 86 

here as an indicator of connectivity and permeation capacity of the pore system, and not as an 87 

accurate characterisation technique for the determination of the complete pore network of the 88 

material.  89 

The model presented in this paper is an extension of earlier works (Khaddour et al., 2015) and relies 90 

on a hierarchical capillary bundle description of the pore network, which mimics the porous space 91 

measured experimentally with MIP. In the literature, analyses are usually restricted to the intrinsic 92 

permeability of the material and the evolution of the apparent permeability with respect to the 93 

pressure gradient and to the nature of the fluid considered are left aside (see e.g. the review paper by 94 

Hoseini et al. (2009) on the effect of stress on permeability). By apparent permeability, we mean the 95 
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value of the permeability defined in the Darcy’s sense, although it is not a material property. Here, 96 

we aim at a model capable to provide estimates of the apparent permeability as a function of the 97 

(compressible) fluid mean pressure, directly from the pore size distribution and from the properties 98 

of the fluid to be considered. The intrinsic permeability and the evolution of the apparent 99 

permeability with mean pressure are provided by combining Darcy’s law which represents the flow 100 

in the porous media at the macro-scale and a combination of Poiseuille’s (Poiseuille, 1840) and 101 

Knudsen’s laws (Steckelmacher, 1986, Ziarani and Aguilera, 2012), which capture viscous flow and 102 

pore walls – fluid interaction at the micro-scale respectively. Knudsen’s effect was found to be non 103 

negligible for pores of relatively large diameters (Kast and Hohenthanner, 2000) especially for tight 104 

rocks (Rahmanian et al., 2013) and mortar. It has been shown also that for typical gases, the 105 

contributions of laminar flow and of Knudsen diffusion are of the same order for pores of diameter 106 

in the range of a few hundred of nanometers (Khaddour et al., 2015). 107 

This paper is organized as follows: in the second section, the construction of a random assembly of 108 

capillaries from a given pore size distribution is described. Then, the basic equations and solution 109 

techniques for computing fluid flow in such capillaries are discussed. The fourth section presents 110 

experimental works in which intrinsic and apparent nitrogen permeability evolutions upon damage 111 

have been obtained on mortar specimens. At each stage of damage, the PSD of the specimen is 112 

characterised. Comparisons between these experimental results and those obtained from the 113 

hierarchical model are discussed in the last section. Additional comparisons on the prediction of 114 

permeation properties for different gases are also provided.  115 

HIERARCHICAL CAPILLARY BUNDLE  116 

We consider here the porous structure of mortar in a very simplified way: it consists in straight 117 

cylindrical pores of different lengths and various diameters. Assuming that the porous space has 118 

been characterized by its pore size distribution, we may relate, for each pore size, the pore length to 119 

the pore volume fraction. 120 
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The simple assembly consists in distributing all the pores within the material in parallel and in a 121 

regular manner. The pore volume is divided into a set of capillary fibers of constant diameter and of 122 

length equal to the cubic root of the total porous volume for each diameter, times the tortuosity. 123 

Such an assembly is presented in Fig. 1 and permeability predictions based on such a parallel 124 

assembly of pores have been discussed by (Khaddour et al., 2015) and additional fitting parameters 125 

were required in order to achieve adequate results.  126 

We adopt here a different approach where pores of different diameters are randomly connected to 127 

each other, under the condition that in the direction of the fluid flow, a given pore may only be 128 

connected to a smaller one. This hierarchical assumption is consistent with the technique 129 

implemented for obtaining the PSD, based on mercury intrusion porosimetry. The aim is to devise a 130 

model where the fitting parameters introduced in the simple assembly discussed by Khaddour et al. 131 

(2015) are avoided. Note that the model is based upon a fully connected pore space. Hence, the 132 

prediction of a percolation threshold that may be observed upon growing porosity is not possible.  133 

In the present approach and in Khaddour et al. (2015) as well, the isotropy of the pore structure is 134 

assumed, providing as an outcome the same permeability in all directions (or an average 135 

permeability). This is a limitation embedded in the mercury intrusion technique used for obtaining 136 

the PSD. Therefore, the proposed model is mainly applicable to cases where anisotropy of the pore 137 

network (and of the permeability) is small. In the case of cementitious materials, the model applies 138 

on samples that have not been loaded, or on samples that have been loaded, with small micro-139 

cracking, prior to the peak load in uniaxial compression typically. The comparisons that will be 140 

presented in the final section of this paper shall comply with such a restriction. It should be noted 141 

that serviceability analyses of nuclear reactor vessels for instance (see Jason et al. 2007) are 142 

conducted under the same assumption as it is considered that through-cracks are not expected. In 143 

the case of sedimentary rocks where transverse isotropy of the microstructure and of permeability 144 

should be expected, It might be envisioned to assign weighting factors corresponding to the 145 

directionality of the microstructure but such a possibility has not been considered in the present 146 
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paper and it is left for future considerations. For cases where extensive damage due to micro-147 

cracking or localised cracking are observed, directionality effects on the permeability may be 148 

handled more easily by accounting on the crack aperture directly, e.g. through standard Poiseuille 149 

models (see Miehe and Mauthe, 2016, Pijaudier-Cabot et al. 2009, Chen et al. 2014). 150 

The PSD is discretised into a finite set of pore diameters, 𝑖 = 1,2,…𝑁. Let Vt be the total porous 151 

volume, which may be organized according to the PSD into a series of volumes 𝑉!" of mean 152 

diameter 𝑑!. We may now relate, for each pore size, the total pore length 𝐿! to the pore diameter 𝑑! 153 

and to the pore volume fraction 𝑉!" assuming that pores are cylindrical: 154 

 155 

 𝐿! =
!.!!"
!.!!

!            (1) 156 

 157 

This total pore length is then cut into small segments of random length ∆Li (see Figure 2.a) 158 

comprised between 0 and the average pore length defined below. Their assembly is performed from 159 

larger pores to smaller pores. Each pore segment either creates a new assembling site, on which 160 

subsequent segment will be connected to form a single capillary, or is connected to an existing one 161 

of larger or equal diameter on an existing assembling site (Figure 2.b). We then define the average 162 

pore length 𝐿!  and a critical length 𝐿! as  163 

 164 

𝐿! =  𝑉!
!  , 𝐿! = 𝑇. 𝐿!  T = tortuosity        (2) 165 

 166 
Throughout this study, the tortuosity will be taken equal to 1. In our description, large pores are the 167 

most important factor on permeability and therefore, the influence of the tortuosity is diminished. 168 

This assumption is also made fore the sake of simplicity. Assigning a specific tortuosity on each 169 

class of pore diameters would be possible, at the price of additional model parameters that would be 170 

very delicate to characterise. Finally, one should keep in mind that orders of magnitude are often 171 

sought for in predictions of permeability in view of its experimental and spatial variability. Thus 172 
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setting the tortuosity to 1 still provides a suitable estimate that ought to be considered as a local 173 

quantity resulting from an averaged PSD. 174 

As soon as the sum of all pore segment lengths reaches the critical length on one capillary fiber, 175 

further segments cannot be added anymore.  176 

The random function, which decides if the current pore segment dealt with is connected to an 177 

existing capillary (or assembling site) or creates a new one, is: 178 

 179 

 𝑓 𝑥 = exp − (!!!)
!

if 𝑥 > 𝐵, and f x = 1 if 𝑥 ≤ 𝐵      (3) 180 

 181 

𝑓 𝑥  is the probability that a new segment may create a new assembling site and subsequently a 182 

new capillary fiber. x is the index of the current pore segment dealt with i.e. the number of the pore 183 

segment comprised between 0 and the total number segments to be dealt with considering all the 184 

pore diameters, 𝐴 is a parameter controlling the starting diameter when the new pore segments have 185 

almost no chance to create a new site (capillary) and 𝐵 is a parameter controlling the starting 186 

diameter when the new pore segments have a chance to be connected to existing sites. If the index x 187 

is lower than B, the current pore increment is forced to create a new site (𝑓 𝑥 = 1). 188 

When the hierarchical capillary bundle is generated, the fact that a pore segment is connected to an 189 

existing capillary (or assembling site) or creates a new one is critical in achieving a good estimate 190 

of the permeability. This reflects on the technique that is implemented in order to obtain the PSD 191 

and on the evolution of the PSD upon micro-cracking. 192 

During mercury intrusion porosimetry, two different phases of intrusion are performed. Firstly, 193 

mercury is introduced at low pressure (from 0 MPa to 0.2 MPa). Then, mercury is introduced at 194 

high pressure (from 0.2 MPa to 200 MPa). The smaller the pores, the higher the pressure needed to 195 

introduce mercury inside the porous medium. Unfortunately, the data obtained at low pressure are 196 

very noisy and very large pores are not well characterised. These large pores drive the permeability 197 

and it can be very problematic in order to predict the permeability accurately. Usually, the solution 198 



  9 

consists in removing the low-pressure information in the analysis. Figure 3.a presents a typical PSD 199 

obtained on the mortar used in the present study. We can see the result from the low pressure 200 

intrusion (above 5 𝜇𝑚) and the one from the high pressure intrusion (below 5 𝜇𝑚) and two peaks 201 

are observed. Upon damage, e.g. due to mechanical loads, newly created pores (open cracks) of 202 

large aperture might contribute significantly to the permeability. Therefore, there is a need to keep 203 

the low-pressure information to predict the evolution of permeability upon damage and we have 204 

implemented a specific filtering of the low-pressure information in connection with the function 205 

defined in Eq. (3). Newly created cracks are most certainly not cylindrical but they are assumed as 206 

such in our approach and in the interpretation of MIP results too. In both cases, we deal with flow 207 

into newly formed pores, whatever their shape and it is important that assumptions be the same in 208 

each case. In this way, there is no bias between the characterisation of the PSD and the permeability 209 

analysis, although the models are a rough approximation of actual pore shapes. 210 

In order to keep the low pressure information, and therefore to account for large pores, we 211 

implement a procedure aimed at minimizing their impact on the overall permeability by making 212 

sure that capillaries of large diameter have little chance to percolate. In such a way the inaccuracies 213 

encountered during the low pressure intrusion have little effect on the overall estimation of 214 

permeability: let us consider the pores of size corresponding to the low-pressure measurements 215 

only. These pores are discretized randomly into segments of equal size. We now count the number 216 

of segment corresponding to these pore sizes. Figure 3b shows this number for several random 217 

realizations. We observe that the first 10000 segments correspond to the average number of pores 218 

segments whose diameter is large enough to be intruded during MIP at low pressure and therefore 219 

we force them to create a new assembly site instead of being connected to each other. Consequently 220 

pores of such sizes cannot percolate throughout the material and they cannot provide a dramatic 221 

overestimation of the overall permeability. Their contributions to the PSD, however, still exists in 222 

the hierarchical assembly, these 10000 segments are located at the entry of capillaries, the rest that 223 

occurs in the random generation may or may not be connected to them according to the probability 224 
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function in Eq. (3). The limit of 10000 segments depends on the specific material considered. 225 

Hence, it is set for a given material and its PSD. For the same material, and upon micro-cracking, 226 

this limit is not changed, allowing for capturing the influence of subsequent micro-cracks on the 227 

capillary generation and on the calculation of the permeability.  228 

Accordingly, the parameter B in Eq.(3) is chosen in such a way that the first 10000 low-pressure 229 

pore segments are forced to create a new site (𝑓 𝑥 = 1). Upon damage, if meaningful information 230 

appear in the low-pressure part of the PSD, the number of increments at low-pressure will increase 231 

and then they will be taken into account automatically when x>B. 232 

In the generation process, the permeability is calculated each time a capillary has reached the 233 

critical length. The contribution of this capillary to the permeability is added to the contributions of 234 

previous ones. When this contribution is less than a given percentage of the total permeability, the 235 

random process is stopped. The number of segment already assembled is 𝑁!"" and the rest of the 236 

pore segments are assembled into capillaries of constant diameter in order to save computer time 237 

(small pore sizes lead to a huge amount of pore segments to assemble). Their contribution is also 238 

taken into account in the global permeability.  239 

The parameter A in Eq. (3) controls the decay of function 𝑓 𝑥 . In particular, A controls the 240 

segment number above which new segments have almost no chance (say a few percent) to create a 241 

new capillary and should be connected to existing ones. Its influence on the calculation of the 242 

permeability is small if this segment number is above 𝑁!!! because new segments will be connected 243 

to each other anyway to form capillaries of constant diameter. The parameter A has been chosen 244 

equal to 1000 to ensure that this condition is met. 245 

CALCULATION OF THE PERMEABILITY 246 

The objective is now to compute the intrinsic and the apparent permeability from a given assembly 247 

of capillary fibers. The apparent permeability is obtained by equating Darcy’s law, which represents 248 

the flow at the macro-scale, and Poiseuille’s and Knudsen’s laws, which represent the flow at the 249 
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micro-scale. This approach has already been detailed by (Khaddour et al., 2015) for a deterministic 250 

assembly of parallel pores of constant diameter. The model assumes that permeation properties are 251 

isotropic, which means that capillary bundles are randomly oriented in the porous material. As 252 

discussed in the previous section, the assumption of isotropy is a restriction of the present model. 253 

The fluid fluxes computed in this section shall be divided by three in order to compute the 254 

directional permeability and to account for isotropy, which means that the fluid flow equally in the 255 

three directions of space. Under the same assumption, we are going to extend this calculation to the 256 

case of capillaries composed of segments of decreasing diameters. 257 

 258 

 Flow in a pore of constant diameter 259 

Let us consider a cylindrical pore of diameter 𝑑!. The fluid flux (i.e. volume of fluid per unit time) 260 

passing through the pore of length 𝐿! is calculated according to Poiseuille’s law: 261 

 262 

 𝑄!! =
!
!

!
!"#  

!!
!

!
!!!!!!!

!! !! 
          (4) 263 

 264 

where (𝑃!,𝑃!) are the upstream and downstream pressure respectively, 𝑄!! is the volume of fluid 265 

estimated at the outlet pressure and 𝜇 is the fluid dynamic viscosity. This classical expression relies 266 

on the assumption of laminar flow. 267 

At the same time, the flow of a gas in the pore may be influenced by the pore walls. An indicator 268 

for such an interaction is the Knudsen number 𝑁!!" defined for each pore of diameter  𝑑! by: 269 

 270 

  𝑁!!" =
!
!!
= !

!!

 ! !
 ! ! !!

! !!" !! 
         (5) 271 

 272 

where (𝜆, 𝑑!, 𝑃!) are the average free path, the molecule diameter and the average pressure of the 273 

considered gas respectively, and (𝑁!") is the Avogadro’s number. When the Knudsen number is 274 
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greater than one, the interaction between the walls of the pore and the gas, at the molecular level, 275 

are dominant and the fluid flow is quite different from Poiseuille’s flow. The volume of fluid per 276 

unit time passing in the pore is (Steckelmacher, 1986): 277 

 278 

 𝑄!"! = !
!"  

!!
!

 !!
(! ! !
!  !

) ∆! 
 !! 

              (6) 279 

 280 

where  ∆𝑃 = 𝑃! − 𝑃! is the difference between the upstream and downstream pressures. In the 281 

transition regime defined as (0.01 < 𝑁!!" < 1) the flow rate 𝑄!"!!  through a pore (𝑖) due to a pressure 282 

gradient ∆𝑃 is given as the sum of the viscous flow (Eq. 4) and the Knudsen’s flow (Eq. 6): 283 

 284 

 𝑄!"!! = 𝑄!"! + 𝑄!"! ,    𝑄!"!! = ! !!
!

 !!

!
!"# !  

+ !
!"  !!  

(! ! !
!  !

) ( !
   !!

)  ∆! !!
 !! 

     (7) 285 

 286 

where 𝑃! is the average pressure (𝑃! + 𝑃!)/2.  287 

 288 

Flow in a capillary with segments of decreasing diameter 289 

In order to be applied to the present hierarchical model, the flow rate for the case of a capillary 290 

made of segments of pores with decreasing diameter needs to be calculated. A typical capillary of 291 

this type is shown in Fig. 4. Mass conservation requires that: 292 

 293 

𝑃!𝛿𝑄! =
! !!!

 !!

!
!"# !  

+ !
!"  !!  

! ! !
!  !

 !
   !!!

 ∆𝑃! 𝑃!! = ⋯  =294 

! !!
!

 !!

!
!"# !  

+ !
!"  !!  

! ! !
!  !

 !
   !!"

 ∆𝑃!  𝑃!" = ⋯ 295 

= ! !!
!

!!

!
!"# !  

+ !
!"  !!  

(! ! !
!  !

) ( !
   !!"

)  ∆𝑃!  𝑃!"        (8) 296 

 297 
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where ∆𝑃! ,𝑃!" are the difference between the upstream and downstream pressures and the average 298 

pressure in segment j respectively. Because the sum of the difference of square pressures is equal to 299 

the overall difference of the square pressures for the entire capillary, we have also: 300 

 301 

 ∆𝑃! 𝑃!! +⋯+ ∆𝑃!  𝑃!"!! +⋯+ ∆𝑃!  𝑃!" = ∆𝑃 𝑃!      (9) 302 

 303 

Combining the two above equations, one obtains: 304 

 305 

 𝛿𝑄! =
!

!
! !!

!

 !!
!

!"# !  !
!

!"  !!  
! ! !
!  !  !

   !!"

!
!!!

∆! !!
 !! 

       (10) 306 

 307 

This expression gives the flow rate as a function of the upstream and downstream pressures applied 308 

to the capillary, but also as a function of the mean pressures in each segment, which are unknown. 309 

These unknown are solved iteratively. Given the mean pressure distribution at step (𝐼 − 1), the flow 310 

rate in each pore segment is computed according to Eq. (8). We obtain for each segment a flow rate 311 

𝛿𝑄!!!. Because the pressure distribution is not correct (and conservation of mass is not satisfied), 312 

this flow rate does not satisfy Eq. (10). A new value of the difference at the inlet and outlet of each 313 

segment can be computed according to this equation: 314 

 315 

  ∆𝑃!! =
!"!!! !!  

 !!

!
! !!

!

 !!

!
!"# !  !

!
!"  !!  

! ! !
!  !  !

   !!"
!!!

!
!!!        (11) 316 

 317 

and the new distribution of pressure in each segment of the capillary at step I can be computed. The 318 

calculation starts with a linear distribution of pressure over the capillary and stops when the error 319 

defined as: 320 

 321 
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 𝜀! = !"!!!"!!!

!"!!!

!
           (12) 322 

 323 

𝜀! is less than a given threshold (10!!"). Figure 5 shows the result of such a calculation in the case 324 

of a capillary made of three segments of equal length subjected to a difference of pressure of 0.3 325 

MPa. In this case, the iterative scheme converges very rapidly (12 iterations), the logarithm of the 326 

error being a nearly linear function decreasing with the number of iterations. In the case of 327 

Poiseuille flow, the pressure distribution should be linear. Because of Knudsen effect, the pressure 328 

increases in the capillary.  329 

 330 

Permeability of the hierarchical capillary bundle 331 

For a given random assembly of capillary fibers, the transport properties are obtained by adding the 332 

𝑁! contributions of each capillary: 333 

 334 

 𝑄!"! = 𝛿𝑄!
!!
!!! = ∆! !!

 !! 
 !

!
! !!

!

 !!
!

!"# !  !
!

!"  !!  
! ! !
!  !  !

   !!"

!(!)
!!!

!!
!!!      (13) 335 

 336 

 where 𝑚 𝑖  is equal to 1 for capillaries of constant diameter and then 𝐿! = 𝐿!. At the macro-scale, 337 

the flow rate through the porous medium is described by Darcy’s law:	338 

 339 

 𝑄!! =
!!
!
𝑆 ∆! !!
!! !! 

           (14) 340 

 341 

where S is the apparent cross section of the material through which gas flows. Comparison between 342 

Eq (13) and Eq (14) provides the expression of the apparent permeability 𝐾!: 343 

 344 
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 346 

This expression may appear rather complex, but the dependence on the average pressure is quite 347 

similar to that in Klinkenberg’s expression (1941) of the permeability to gas in a porous material. 348 

The apparent permeability depends on the inverse of the pressure distribution because Poiseuille’s 349 

flow is a function of the square of the pressure whereas Knudsen flow is linearly dependent on the 350 

pressure. The intrinsic permeability 𝐾!" is obtained by considering an infinite average pressure:  351 

 352 

 𝐾!" =
! !! 

 !
 !

!
! !!

!

 !!
!

!"# !  

!(!)
!!!

!!
!!!          (16) 353 

 354 

and it depends on the contribution of Poiseuille’s flow only. Recall that the permeability calculated 355 

account for an isotropic flux. Hence, it needs to be divided by three in order to compare with the 356 

directional permeability obtained next experimentally. We are now are going to describe the 357 

experiments carried out in order to evaluate the capabilities of the above model. 358 

EXPERIMENTS 359 

Specimens and testing description 360 

Experiments have been performed on mortars specimens with a water/cement ratio of 0.7 and a 361 

maximum aggregate diameter of 3mm. The composition is reported in Table 1. Mortar was cast in 362 

aluminum moulds (dimensions: 40x60x400 in mm). Cylindrical holes were moulded by adding 363 

metallic bars of diameter 6.5mm in the mould. Finally, a core drill was used to extract a cylindrical 364 

hollow specimen (outer diameter=24.5mm; inner diameter=6.5mm; height=40 mm). Note that top 365 

and bottom surfaces were rectified using an accurate cutting machine. Finally, the samples were 366 

cured in a ventilated oven at 80°C at constant humidity during 48 hours. 367 
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The testing apparatus consists in a conventional electro-mechanical testing machine (Zwick Proline 368 

Z20, maximal force: 20kN) coupled with a nitrogen permeameter in order to measure in-situ the 369 

radial permeability under loading (Fig. 6). This set-up is similar to the one implemented by 370 

Choinska et al. (2007), but the specimens are much smaller so that they can fit in the mercury 371 

intrusion machine.  372 

The tests are displacement controlled in order to avoid post-peak unstable regime. Figure 7 presents 373 

a typical measurement cycle. A small preload is first applied to seal the upper and lower faces of the 374 

specimen so that leakage occurs on the outer circular surface only. The initial permeability is then 375 

measured and a given compressive load is applied. Permeability under load and after unloading is 376 

measured. Several cycles are performed on different specimens made of the same material in order 377 

to describe different states of increasing damage in mortar. 378 

After complete unloading, the middle part of each sample (15mm over 40mm) is cut and further 379 

used in order to characterize the PSD by mercury intrusion. The same sample cannot be 380 

characterized in term of PSD and then loaded again. Nevertheless, the reproducibility of the PSD 381 

measurements as well as of the mechanical response of different samples has been checked. Each 382 

PSD is obtained as an average of measurements on 3 different specimens. 383 

 384 

Experimental measurements 385 

Damage D is defined as the relative reduction of the modulus of elasticity upon unloading-386 

reloading: 387 

 388 

 𝜎 = 𝐸 𝜀 = 1− 𝐷 𝐸! 𝜀  ,       𝐷 = 1− ( !
!!
)        (17) 389 

 390 

where (𝜎, 𝜀,𝐷,𝐸,𝐸!) are respectively the uniaxial stress and strain, the damage parameter and the 391 

current and initial elastic moduli. 392 
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The apparent permeability is measured by applying a pressure gradient and measuring the gas flow 393 

through the sample (Scheidegger, 1974): 394 

 395 

 𝐾! =  
!! !  !! !" (!!!!

)

! ! (!!
!!!!!)

           (18) 396 

 397 

Here, nitrogen is used. 𝑄!  is the gas volumetric flow, (ℎ,𝑅!,𝑅!) are the sample height, outer and 398 

inner diameters respectively and (𝑃! ,𝑃!) are the gas upstream and downstream pressure 399 

respectively. Typically 𝑃! is the atmospheric pressure and four to five values of the upstream 400 

pressure (ranging from 0 to 0.4 MPa) are considered. In order to obtain the intrinsic permeability 401 

experimentally, Klinkenberg’s formula is implemented: 402 

 403 

 𝐾! =  𝐾!" (1+ !
!!
)           (19) 404 

 405 

where 𝛽 is the Klinkenberg’s coefficient, 𝐾!" is the intrinsic permeability and 𝑃! is the mean 406 

pressure. 𝛽 and 𝐾!" are obtained from the linear regression of the curve giving the apparent 407 

permeability as a function of the inverse of the mean pressure. 408 

The PSD measurements are performed by mercury intrusion (Micromeritics–AutoPore IV). The 409 

analysis is based on the Washburn equation with the assumption that the pores are cylindrical and 410 

connected from the larger pores to the smaller ones. Only the porosity accessible from the outer 411 

surface is taken into account. Bottle neck effects are limited by performing two intrusion cycles.  412 

 413 

Experimental results 414 

Table 2 presents the mechanical properties of the mortar tested under compression. Figure 8 shows 415 

a typical mechanical response of the specimens for different loading-unloading cycles and Figure 9 416 

shows the evolution of damage computed according to Eq. (17). On the horizontal axis, the stress 417 
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has been normalized by the peak stress. Figure 10 shows the evolution of pore size distribution of 418 

samples subjected to different mechanical damage (from 0 to 12%). As damage increases, a slight 419 

increase of the PSD is observed between 1,000nm and 3,000nm. Moreover new porosity is created 420 

around 10,000nm. This new porosity leads to the increase of the intrinsic permeability by two 421 

orders of magnitude. This figure illustrates also the necessity to record low-pressure signals during 422 

mercury intrusion. Indeed, as damage develops, micro-cracks form pores with aperture in the range 423 

of the measurement of mercury intrusion under low pressure. These pores are major contributors to 424 

the increase of permeability and ought to be taken into account in the model.  425 

The evolution of the intrinsic permeability and Klinkenberg coefficient upon damage are very 426 

similar to those obtained by Choinska et al. (2007) on concrete. They will be compared in the next 427 

section against the model results. 428 

COMPARISON BETWEEN EXPERIMENTAL RESULTS AND MODEL 429 
PREDICTIONS 430 

Figure 11(a) presents the comparison between the measured and computed intrinsic permeability 431 

evolution upon damage from 0% to 12%. The computed values are derived from an average of at 432 

least 5 hierarchical capillary bundles generated for each average PSD with different random seeds. 433 

They are in good agreement with the experimental ones. Note that no tortuosity parameter has been 434 

introduced in the model (tortuosity equals 1). Introducing a tortuosity in the model would not, 435 

however, change drastically the predictions, e.g. by an order of magnitude.  436 

The predicted values are compared to the measurements of the permeability obtained under load. 437 

The PSD measurements, which are the only input of the model, are performed after unloading but it 438 

seems that the mercury intrusion may have reopened micro-cracks that were closed upon unloading. 439 

In these conditions, the porous network characterized by mercury intrusion may be closer to the 440 

under-load one than to the unload one. 441 
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Figure 11(b) shows the evolution of the Klinkerberg’s coefficient upon damage. Comparisons 442 

between the experimental and theoretical results are plotted. Once again the agreement is rather 443 

good whatever the damage state and the predicted values are closer to the under-load ones.  444 

The model provides rather good predictions in term of apparent permeability to nitrogen. We have 445 

also tested its predictability for other gases. Because their molecular diameter and average free path 446 

are different compared to nitrogen, Knudsen’s effect will be different too, yielding (along with 447 

variations of the viscosity) different evolution of the apparent permeability with pressure. For an 448 

undamaged sample, Figure 12 shows the evolution of the apparent permeability to different gases 449 

(CO2, CH4, N2, H2) estimated by the model. Table 3 shows the various parameters that enter for 450 

each gas in the model. We observe that the responses of CO2, CH4 and N2 are similar whereas the 451 

helium response is different. Since the helium mean free path is greater than the nitrogen one, 452 

Knudsen effect is higher for helium and then the slope of the apparent permeability vs. mean 453 

pressure curve is also higher compared to the other gases.  454 

Figure 13 shows the comparison between the apparent permeabilities to nitrogen and helium 455 

measured experimentally and computed according to the present model. We observe a good 456 

agreement between the experimental and predicted values, both on the intrinsic permeability and on 457 

the Klinkenberg’s coefficient. It is important to notice that when performing the comparisons, no 458 

specific model parameter is set to predict the apparent permeability with the proposed model upon a 459 

change of the nature of the gas.  460 

CONCLUSIONS 461 

A semi-analytical model aimed at computing the apparent permeability of a porous material to gas 462 

has been presented. The model uses the pore size distribution of the material as an input, including 463 

the low-pressure information obtained from mercury intrusion technique.  464 

The porous network is generated according to a hierarchical scheme in which pore segments are 465 

assembled hierarchically, from large diameters of pores to small ones. Within each capillary pore, 466 

fluid flow is described at the micro-scale by a combination of Poiseuille’s Flow and Knudsen’s 467 
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(diffusion) flow. The outcome at the macroscopic scale results into a Klinkerberg-type of apparent 468 

permeability, within a Darcy-type equation. The sensitivity of the permeability to the mean pressure 469 

is recovered. 470 

The model has been compared with experiments on cylindrical hollow mortar specimens subjected 471 

to uniaxial compression and radial permeation. In the case of permeability to nitrogen, the intrinsic 472 

permeability increases and the Klinkerberg’s coefficient are found to decrease experimentally upon 473 

damage. The theoretical model captures these trends very consistently. In addition, the same model 474 

is also capable of predicting the permeability of the material to different gas, without any 475 

adjustment of the model parameters. 476 
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Table1. Mortar composition. 
____________________________________________ 
Ingredient    Water       Cement       Sand       W/C ratio ______________________________________________ 
Quantity 
 (kg/m3) 243      412           1651         0.7 _____________________________________________ 
 
 
Table2. Mechanical properties of mortar. 
 ____________________________________________ 
Modulus of            Resistance to                   Strain at peak     
Young (GPa)         compression (Mpa)              (%) ______________________________________________ 
20                           29                                      0.21 _____________________________________________ 
 
 
Table 3. Physical parameters for each gas obtained from NIST database 
(http://webbook.nist.gov/chemistry/) 
 

Type of gas N2 He CO2 CH4 
Molar mass 

(kg/mol) 0.0280134 0.0040026 0.0440095 0.0160425 

Viscosity (Pa.s) 0.0000174 0.0000199 0.00001469 0.000011026 
Molecular 

diameter (A°) 3,64 2,6 3,3 3,8 

 
  



 

 
Figure 1.Model of parallel assembly of pores 

	
	

 
(a). Discretization of pores                      (b). Random assembly 

 
 

Figure 2. Random network assembly of pores 
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Figure 3. Method of eliminating of the noise at low pressure for an undamaged sample a) pore 
size distribution corresponding to the low and high pressures b) statistical study of the low 
frequency for 100 random times  
 



	
Figure 4. : Capillary made of segments with decreasing diameter 

 
 

	
	
Figure 5. Distribution of pressure in a capillary made of three segments with decreasing 
diameter at the initial iterative scheme and after convergence. 
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Figure 6. Schematic description of the mechanical and permeability tests 
 
 
 
 

 
Figure 7. Load vs time curve 
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Figure 8. Typical stress-strain curve of a mortar sample 

	
	

 
Figure 9. Damage-stress/stress at peak curve of the specimens 

	



	
	

 
 

Figure 10. Evolution of pore size distribution upon damage 

	
	
 



	

														 	
 
Figure 11. Comparison between the intrinsic permeability measured and predicted (a); 
comparison between the Klinkenberg’s coefficient measured and predicts (b). 

	
	
	
	

1.3. PARTIAL SATURATION CHAPTER 1. NUMERICAL MODELING

(a) Intrinsic permeability (b) Klinkenberg coe�cient

Figure 1.4: Comparison with experimental data

1.3 Partial saturation

1.3.1 Additional assumptions

Partial saturation means multi-phase flow. As we don’t explicitly resolve a fluid flow simulation,
extending this model to partially saturated porous media meant making a few additional
assumptions :

• sample is dry at the start and condensation occurs according to Kelvin’s law [1.5], meaning
that pores will saturate sequentially from the smaller to the larger ones,

• liquid and gas relative permeabilities are the ratios of liquid and gas permeabilities to
intrinsic permeability [1.6],

• Each capillary has three possible states : it can be fully liquid saturated, fully gas saturated
or partially saturated with both phases.

psat. = p0.e
≠2“vm

rRT (1.5)

Kg = krg.Kin

Kl = krl.Kin

(1.6)

The reference phenomenological law in this field is that of Van Genuchten, which gives the
liquid and gas relative permeabilities for any saturation value [1.7], as a function of a couple of
parameters that are usually fitted on experimental data. This law being widely used and its
general validity vouched for by the community, we decided it would be our main comparison
element. With the express goal of cross-proofing data, a concrete sample from the MACENA
project – which was used by Hatem Kallel for permeability measurements at di�erent saturation
levels in his thesis – was characterized through MIP, to feed it into our model and compare
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Figure 12. Evolution of the apparent permeability for several gases (CO2, CH4, N2, He) 
 

 
 

Figure 13. Comparison between the model and the experimental results of apparent 
permeabilities for N2 and He. 


