
HAL Id: hal-01676691
https://hal.science/hal-01676691v5

Preprint submitted on 28 Mar 2018 (v5), last revised 19 Nov 2019 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adversarial examples, adversarial models and deep
learning based security

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Adversarial examples, adversarial models and deep learning based security.
2018. �hal-01676691v5�

https://hal.science/hal-01676691v5
https://hal.archives-ouvertes.fr


Adversarial examples, adversarial models and

deep learning based security

Adrien CHAN-HON-TONG
ONERA, the french aerospace lab
adrien.chan hon tong@onera.fr

March 28, 2018

Abstract

Cyber security system could benefit from the deep learning break-
through. However, there are, today, critical issues with deep learning.
The major issue is the lack of robustness of classical deep networks. This
lack of robustness allows to compute well documented adversarial exam-
ples: confusing a network with just the addition of a low amplitude per-
turbation.

Here, I show that this lack of robustness also allows adversarial model:
possibility to change the global model behaviour with just the addition of
a low amplitude perturbation to the train set. This property could be a
real security faults for continuously trained system.

Evaluation of the efficiency of adversarial model is provided on image
classification datasets.

1 Introduction

Today, it seems that deep learning (which appears in computer vision with [1]
- see[2] for a review) may lead to a major industrial revolution. Applications
already go much further than social network [3] but include autonomous driving
[4], health care [5], plagiarism detection [6] and security (e.g. [7, 8]).

However, classical deep network still exhibits a strong lack of robustness.
The typical example of this lack of robustness is that these networks admit
adversarial examples (first introduced in arxiv.org/abs/1312.6199, examples in
security context include [8, 9], see also [10, 11] adversarial examples in com-
puter vision context). For almost all input, it is possible to design a specific
imperceptible (additive) perturbation that will make the network to predict an
output opposite to that which he would have produced on the original input.

Currently, on static problem, adversarial examples are not critical because
in this case, the goal is more to generalize than to be robust. Off course,
both properties are correlated. Yet, generalizing is more a matter of affinity
between the algorithm and the targeted data distribution than a property of

1



the algorithm itself (see [12] for illustration). Generally, deep network aims to
capture a distribution which are very sparse. As the adversarial examples do
not belong to this targeted distribution, it is not too surprising/problematic
that the network may badly handle such outliers.

Now, adversarial example is a critical issue for real life application of deep
learning: indeed, if a deep network is deployed in real word, people will interact
with it. And so, the network may have to deal with a dynamic distribution
instead of a static one. And, this dynamic distribution may include hacking
attack which can take the form of adversarial examples. For artificial percep-
tion, this is a problem since [13] shows that these adversarial examples can be
produced in real physical word.

In numerical context, this is worse as nothing can prevent to design adver-
sarial attack especially since [14] breaks all proposed patches including gradient
masking and distillation both for continuous or discrete domain. As typical ex-
ample [8] highlights this issue of adversarial examples in cyber security context.
A module is designed in order to detect malwares from large app repository
(like android app). Static features are extracted from the code and dynamic
features are extracted from run into sandbox. Then, deep network is trained to
recognize normal software and malware. This network offer very high detection
performance (reaching state of the art). Yet, on modified malwares, detection
performances drop to only 66%. And, both distillation or retraining does not
highly increase robustness to adversarial examples.

Now, in this paper, I introduce a (never documented) related issue. I show
that some targeted properties can be transferred to the network during a training
on a database containing modified examples. I call this issue adversarial models
in reference to well documented adversarial examples. The two phenomenons
are illustrated in fig 1.

In other word, adversarial examples are perturbations that modify network
output during testing. While, I introduce here perturbations performed during
training that modify the global network behaviour.

The main purpose of this paper is to evaluate the amplitude of this fault.
This is done on image classification datasets: this allows to deal with very clas-
sical deep networks, and, thus, providing highly reproducible code (see achan-
hon/AdversarialModel github).

Yet, I also state that this adversarial model property should be considered
in context of cyber security. Indeed, this theoretic contribution could at least
allow:

• to insert back door in a continuous learning module

• to pervert a continuous learning module

• to falsify the observed quality of an algorithm on a public test set (this last
fault is not directly related to cyber security attack but is still somehow
a matter of truthfulness and/or security)

In the next section, I present a quick overview of mechanism allowing adver-
sarial examples. Then, I present the possibility to transfer desired property into

2



Figure 1: Illustrations of adversarial examples and adversarial model.
The light symbolise the perturbation. Adversarial example is a perturbation of

the input which leads to a output perturbation. Adversarial model is a
perturbation of the training data which leads to a model perturbation.

3



a model by hacking the training set. Three possible security faults related to this
phenomenon are presented. Then, in section 4, I present empirical experiments
evaluating the criticality of this adversarial model behaviour, before conclusion
and perspective in section 5. These experiments are not directly related to the
presented faults, but, rather designed to highlights to adversarial model.

2 Why such robustness fault

A classical deep network is a sequence of simple tensor operations done from
an input. As stressed by arxiv.org/abs/1312.6199, classical deep networks are
Lipschitz function, and so, expected to be smooth.

Let input be an input vector in RD, a simple neural network (here a multi
layer perceptron: MLP) is defined by an activation function h (let consider relu
function i.e. h (u) = max(0, u)), and, by a set of matrix (M1,M2, ...,MK) ∈
Mn1,m1

× ... × MnK ,mK
with m1 = D, nk = mk+1 and nK be the desired

output size of the network (typically mK is the number of classes - the binary
classification is a special case with mK = 2 when using a cross entropy loss but
mK = 1 with hinge loss). Then, the output of the network on an input is just

MK ĥ
(
MK−1ĥ

(
...M2ĥ (M1input)

))
with ĥ the operator applying h on each

cell of the input matrix (i.e. ∀I, J, ∀Q ∈MI,J , ĥ (Q) ∈MI,J and ∀i, j ĥ (Q)i,j =
h (Qi,j)). So, in the case nK = 1, such deep network is just a function from

RD to R. And, such network is at most
K∏
k

λk Lipschitz with λk be the operator

norm of Mk (It is trivial that h is trivially 1 Lipschitz and that composition of
Lipschitz function is Lipschitz with coefficient be lower than the product of the
sub function coeffs). Let recall that this function is even a continuous piecewise
linear function.

Now, the problem is that
K∏
k

λk could be very large for classical deep networks.

Frobenius norm of Alexnet [1] (the first deep network) is 5908006809. The one of
the 10 first layers of VGG is 7662531036 (VGG is somehow the second most clas-
sical deep network - first introduced in arxiv.org/abs/1409.1556 and at the root
of [15, 16]). Off course, these bound are well not tight. However, for Alexnet,
the maximal ratio of each layer has been measured in arxiv.org/abs/1312.6199
on IMAGENET database [17] (so including the empirical behaviour of relu).
From these measures, Alexnet can be expected to be a 792793 Lipschitz func-
tion. This is much less than 5908006809 but still very large. Such no smoothness
is very clear in computer vision but still a reality in cyber security [8].

So, these results highlight that even if a deep network is just a sequence
of simple operations, the number of parameters (and the amplitude of these
parameters) coupled with the large number of layers lead to potential very
unstable output. This is clear for computer vision deep network (like Alexnet
and VGG) but is still a reality for any deep network, even in cyber security
context [8].

4



So compare to other machine learning algorithm (e.g. support vector ma-
chine SVM [18]), deep learning may be more unstable. But, worse, compare to
others, deep learning is more derivable, so there is trivial way to exploit this
potential for instability. The easy way to generate adversarial examples is to
look into the root algorithm to train networks: the back propagation of the
gradient[19]. Back propagation allows to compute derivative according to each
weight given a loss from the last layer. But, this relies on the computation of
derivative according to each neuron. Thus, by a nature, back propagation allows
to compute derivative according to the input data itself (this can be done easily
with PYTORCH pytorch.org/ just asking the internal variable corresponding
to the input to store gradient). If these derivatives are high for a given sample,
it means that performing very little changes to on this sample will lead to very
different behaviour of the network. And, for classical deep learning network,
this is the case for almost all samples.

An other way to look this back propagation fault is that the same process
which allows to update the weights in order to process an input that can be
used to update the input in order to get a specific behaviour. Typically, one
can done gradient descent from a specific input to minimize the probability
of the truth class, eventually producing an adversarial example. This is why
adversarial examples are mainly a deep learning issue (rather than a machine
learning one, even if technically adversarial examples may also exist for other
machine learning algorithm like SVM).

As the simple mechanism to produce adversarial example is to use the inter-
nal gradient, there was a hope that keeping the gradient private and/or masking
the gradient at the first layer may protect against adversarial attack. Typically,
it is possible to add some layers at the bottom of a network behaving like the
function round (i.e. having locally a constant value around each integer from
two bound). With these layers the gradient reaching the integer input is 0,
forbidding to compute easily adversarial examples.

Yet, [14] shows that using only the pairs of input output, one can tune
a copy network to be an approximation of the targeted network. Then, it is
possible to use the gradient of the copy network to design adversarial examples
for the targeted network. This algorithm currently bypass all known defence.
Typically, in face of a network protected by a round function, the copy network
will essentially approximate the round function per the identity which is exactly
what we need to catch the masked gradient. This brief review of adversarial
examples is well documented in the literature.

Now, the question of how properties can be transferred to the model via
perturbed training has not been explored.

Let note that training on adversarial has been explored to try to reduce the
adversarial examples fault (e.g. [8]) not to create new one. And, beside it is
just training, computing adversarial examples and then training again. While,
I design specific samples for disturbing the training.

5



3 Adversarial model

3.1 Theoretic presentation

Let consider a MLP defined by (M1,M2, ...,MK) ∈ Mn1,m1
× ... × MnK ,mK

with m1 = D, nk = mk+1 and nK = 1. Let introduce the notation F (input) =

ĥ
(
MK−1ĥ

(
...M2ĥ (M1 input)

))
(I will need this non standard notation after).

Let remark that the output of the network on the input input is MLP (input) =
MKF (input) (as presented in previous section).

During the training, the matrix M1,M2, ...,MK are updated incrementally
according to the following process. Each input comes with a target value, the
weight are updated according to the proximity of MLP (input) to this target.
This proximity is measured by a derivable loss function. Forward Backward
algorithm can be used to compute the partial derivative of the loss according
to each cell of each matrix M1,M2, ...,MK (each cell is called a neuron). Then,
matrix are updated according to these derivatives.

Now, if input is transformed into input′ (with the same target value), then
instead of updating the weight according to the proximity of MLP (input) and
the target, the update will be done according to the proximity of MLP (input′)
and the target. Yet, as recalled MLP (input′)−MLP (input) can be large even
when input′ − input is small. So, by tuning the perturbation input′ − input,
the weight will be updated very differently.

Let consider the training of the last layer only (i.e. MK). Let train this
layer with SVM framework (this is easier for reasoning as the training output is
deterministic). Let x1, ..., xN be some vectors in RD and y1, ..., yN the label (-
1/+1 to simplify). Given a model w in RQ, the classical smoothed error of w on
the dataset x, y is e (w, x, y) = wTw +C

∑
n
relu

(
1− ynxTnw

)
(there is usually a

bias term b omitted for faster understanding). Let write w∗ for the model which
minimizes the smoothed error is w∗ (x, y) = arg min

w
e (w, x, y). Let recall that

if R is an orthonormal matrix (e.g. a rotation) then e (Rw,Rx, y) = e (w, x, y),
and thus, w∗ (Rx, y) = Rw∗ (x, y).

In our context, w is MK (with size nk−1), and, xtrain,n are the output of the
network just before the last layer i.e. xtrain,n = F (inputn). So the training will
lead to wtrain = w∗ ((F (input1) , ..., F (inputN )) , (target1, ...targetN )). Now,
let assume to want a specific and known model wdesired. This is crucial here
to be able to compute the desired model wdesired which traduces the desired
behaviour of the system in the weight space.

Let fix a value δ and let consider the auxiliary loss function ln which measures
the squared distance between F (input) and xtrain,n+δ(xTtrain,nwtrain)wdesired−
δ(xTtrain,nwdesired)wtrain. A critical point is to see that this network F plus ln is
just a classical regression network with a typical square loss. So, using the for-
ward backward algorithm to compute the derivative of the weight of F relatively
to a modification of F (input) is completely straightforward. So, here, the only
difference is that I use the forward backward algorithm to compute the deriva-

6



Figure 2: Scheme of adversarial model based on rotation.

tive of inputn (this can be done with a small PYTORCH script). So, from these
derivatives, I form ∇inputn and compute xhack,n = F (inputn + λn∇inputn) (for
a specific λn value).

Let note xn for xtrain,n, and let assume that derivative are that high on
inputn that one can get ln loss to be 0 with only one gradient step i.e. xhack,n =
F (inputn + λn∇inputn) = xn + δ(xTnwtrain)wdesired − δ(xTnwdesired)wtrain (of
course this is highly not probable, yet it can be accepted in first approximation).
Training on these modified vectors, this will lead to whack = w∗ (xhack, ytrain) =
w∗
(
(I + δwdesiredw

T
train − δwtrainw

T
desired)x, y

)
. But, at first order in δ, (I +

δwdesiredw
T
train − δwtrainw

T
desired) is orthonormal. So, I can write the approxi-

mation, whack = wtrain + δ(wT
trainwtrain)wdesired − δ(wT

trainwdesired)wtrain.
So, by hacking the training data, I make the hacked model to rotated to-

ward the desired model. Precisely, one can trivially show that scalar product
between whack and wdesired is higher than between wtrain and wdesired. Indeed,
this scalar product increases even more quickly as wtrain and wdesired have a low
scalar product which means that this hacking can be very efficient (this can be
see in the equality wT

hackwdesired−wT
trainwhack = δ(wT

trainwtrain)(wT
desiredwdesired)−

δ(wT
trainwdesired)2).
Off course, this demonstration mix two approximations: first, it assumes that

F (inputn + λn∇inputn) is exactly xhack,n, and then, that, (I+δwdesiredw
T
train−

δwtrainw
T
desired) is orthonormal. Yet, both approximation are somehow accept-

able in first order. So, I just give theoretic hint that small perturbation of
training data can be computed to produce a specific and desired change in the
model behaviour (see fig 2).

Now, could producing such a rotation be interesting to give the network
specific behaviour ? I give in the next subsections examples of security faults
one can create with this method.

3.2 creating a back door

Let consider a continuous trained security module. The module is put in place,
then each time the module predicts a security thread, the input is considered to
be added to the training dataset. Then with a specific regularity, the module is

7



trained on the new database.
Now, let assume one has designed an new attack (or a set of attack). There

are two way to increase the probability for the attack to bypass such module: the
first is to add a perturbation on the target attack (classical adversarial example
[8]), the second is to flood the module with modified version of previous attacks
in order to make that next training will make the module becoming particularly
bad on the desired attack. This second way is less direct, but it will work even
in context where designing adversarial versions of the new attacks is impossible
or decrease too much the efficiency of these new attacks. In this case, it is much
more relevant to create benign modified version of previous attacks to create a
back door in the model, than to create benign modified version of the new one.

In other words, the old attacks are a training set, and, the strategy is to
pollute the training set to make the resulting model ineffective on a particular
new attack or a set of attack (see fig 3).

So this is exactly the previous theoretic presentation with wdesired being the
opposite of feature vector corresponding to the new attack.

3.3 perverting a module

Let again consider a continuous trained security module. This module can be
perverted to incorrectly handle specific attacks (i.e. to create a back door). But,
this long run strategy assumes that the specific new attack is already designed
(it can be multiple new attacks).

An other attack will be to pervert this module in anticipation. Of course,
making the module becoming inefficient may be somehow detectable by the
developers of the module, while the previous back door is much more difficult
to detect. Yet, here, the interest is to have no need for a target set. And,
making the module inefficient could by a way to discard the confidence into the
module and not only to hope to make a new attack bypass it.

So, in other word, the strategy is to flood the module with modified version
of previous attacks to make the module becoming globally inefficient after the
next training. The fault corresponds to polluting the training dataset in order
to decrease global classification performance. One way is to use wdesired to be
a random vector (or the vector produced when learning on the same data with
random labelling).

3.4 evaluation policy

The last fault that may be created with this paper contribution is not directly
related to cyber security but to the confidence given to deep learning based
module.

It is well known that evaluating an algorithm is truthful only when performed
on private data [20]. Indeed, machine learning results (especially deep ones) can
be distorted even by unconscious and common bad practices like to tune few
parameters on the test set, or more generally, to use little feed back from test

8



a. Initial situation, training is performed on green/orange samples. The goal
of the hacker is to make the red sample to be classified as green.

b. Adversarial example attack: a way is to perturb the red sample to make it
to go across the boundary

c. Adversarial model attack: the other way is to flood the module (which is
trained again with a regular frequency) with modified samples, in order to

make the boundary to go across the red sample

Figure 3: Illustrations of adversarial examples and adversarial model.

9



evaluations [20]. So, one can imagine how it could be distorted by voluntary mis-
conduct. This is why the strongest academic results in deep learning are those
evaluated on guidance benchmark. In such competition like IMAGENET [17]
or MSCOCO, a leader team publishes only training data and provides a strict
evaluation process (see www.image-net.org/challenges/LSVRC/announcement-
June-2-2015 ). This way, participants can not tune too much the algorithms on
the test set, allowing a quite fair evaluation of the algorithms.

In other words, the safe way to evaluate a deep learning system should follow
these steps. First the system should be completely designed. And, then, new
data should be collected for the evaluation. Finally, the system is tested on these
new data. Now, let consider a company A who wants to buy such system to
the company B. A would collect only few samples just to illustrate the problem.
Then, B would design the system and collect very large set of samples to train
the system. Then, A would collect test samples (let say less than 5% of what
is needed to train) and evaluate the system produced by B on the test samples.
On the paper, it is relevant from business point of view and it allows a quite
safe evaluations. However, the problem is that legislation is not clear about how
such scheme would end up if the system produced by B is not sufficient on the
test set from A. This, problem is even more critic if A is a public organization
required to make public tender to buy anything.

This juridical question is not new but worth to be recall: private evaluation
is safe but raises economic issues. So, in some context, even if it is known to
be theoretically unsafe, there will be case where algorithm will be evaluated
on public dataset. Yet, one could though that these theoretic fault can be
detected by an expert reviewer. Indeed simple falsifications are very simple to
detect. Learning directly on testing data can be detected by trying to reproduce
the train/test. Adding testing samples on training dataset can be detected by
looking at the training dataset. Changing the testing data can be detected by
comparing with a copy of the testing data (which are public here).

Now, unfortunately, with this paper contribution, one can produce an unde-
tectable falsification by changing training data. Reviewing the train/test process
can not detect anything as this process is fair: falsifications have been done be-
fore by adding undetectable perturbation within the training data. Even if it is
not directly related to cyber security, this last fault highlights importance to re-
member that public evaluation is untruthful, and, should not be considered for
critical deep learning module (diagnosis, autonomous driving and/or security).

Formally, in this case wdesired = wtest i.e. the result of the training on the
public test data. Such falsification is not possible on private data as wdesired

can not be computed. But, inversely on public data, one can compute wdesired,
and so, use my adversarial model hack.

4 Experiments

To this point, I have presented two contributions of this paper:

10



adversarial examples adversarial model
pros simple way to bypass a defence work without modification of the target
cons perturbation should not decrease need to have access to training

attack efficiency + assume (e.g. flooding a continuously trained system)
that target is coded by the hacker

Table 1: Adversarial examples vs model from hacker point of view
Adversarial examples is a more direct hack. Yet, adversarial model allows a

larger set of insidious strategies. For example, flooding a continuously trained
module can make the module to block the last fashionable app (without any

control on this app), and thus, making users to disconnect the defence module.

• I have presented a theoretic presentation of how it is possible to design a
specific noise in order to bias a training in a specific desired way

• I have presented different scenarios where such property could be used in
cyber security context (some where simple adversarial examples could not
see table 1)

In this section, I present experiments on the amplitude of this adversarial
model phenomenon. Indeed, the possibility of such adversarial model is now
clear but the amplitude is in question: if the phenomenon is as perturbing that
adversarial examples than this is a real issue, otherwise, this is not.

For this experiment, I have chosen to rely on experiments in computer vi-
sion context. Thus, the experiment are not directly related to the cyber security
faults. Yet, computer vision is one of the main area of deep learning develop-
ment. So, presenting computer vision experiment allows to use the material
developed in this context.

4.1 Experimental setting

In order to provide reproducible artefact, I select a 0 parameter convex pipeline
deep pipeline. The pipeline inspired from [21] is composed of a convolutional
neural network (CNN ) trained on IMAGENET [17] used as feature extraction
plus a SVM. This way the pipeline match the theoretic part. The CNN used
is some of the first layers of a VGG. IMAGENET weights of the network are
available (for example here: github.com/jcjohnson/pytorch-vgg). The SVM im-
plementation is LIBLINEAR [22] with bias and default parameter.

Features are extracted from images by the network producing one vector
per image. Weights are IMAGENET ones and are never updated in all exper-
iments (even if gradient is eventually computed to get derivative relatively to
the input). So this feature extraction has no parameter, and is, thus, com-
pletely reproducible (only possible changes should be due to hardware setting,
PYTORCH version and/or NVIDIA driver). Then, SVM is learnt on training

11



vectors and used on testing vectors. As SVM learning is a convex problem, mul-
tiple runs should converge to the same solution. And, there is also 0 parameter
as only default parameters are used. Typically C = 1 as default parameter of
LIBLINEAR.

4.2 Datasets

For these experiment, I consider CIFAR10 and CIFAR100 datasets, two very
classical image datasets [23] (first introduce in 2009 in a technical report learning-
features-2009-TR.pdf available from www.cs.toronto.edu/ kriz/ ). Both datasets
can be downloaded (see the page cifar.html from the same website).

4.3 Accuracy gap

Here, I consider CIFAR10 and CIFAR100. First, vectors are extracted using the
CNN from original images (both from train and test set). On this honest vector
SVM reaches 75% of accuracy on CIFAR10 and 53% of accuracy on CIFAR100
(this performances are quite normal for a CNN learnt on IMAGENET and not
on CIFAR).

Then, wdesired is computed as the SVM learnt directly on the test. Here, this
is a multiclass classification problem, not just a binary one. Then, I consider
the auxiliary network consisting of the CNN + a last layer corresponding to
wdesired. Then, for each training image, I perform the forward backward with
this auxiliary network to collect the derivative corresponding to the image pixel.
Then, I update each pixel value (ranging from 0 to 255) with the sign of the
corresponding derivative. This way, I create modified training realistic image
(still integer images) with each pixel having a distance at most 1 from the
original value. This is not completely the same transformation than in the
theoretic argument. Here, the transformation of xn into x′n aims to verify
wT

desiredx
′
n = wT

desiredxn + λnyn (pseudo code is summarized in 2). This is
not just a rotation which is not possible in multi class setting, not possible with
integer images and assumes that all samples will follow the same transformation.

Learning with the original pipeline on this derived training dataset leads to
82% of accuracy on CIFAR10 and 66% of accuracy on CIFAR100!

Worse, repeating 3 times the kind of gradient descent on the pixel values,
the performances goes to 92% of accuracy on CIFAR10 and 78% of accuracy on
CIFAR100!

This accuracy gap alone shows that adversarial model is as critical as ad-
versarial examples: by allowing pixel values to be modified by at most 3, per-
formances of the pipeline are modified by more than 24%. Let remark that
78% of accuracy on CIFAR100 is a never reached accuracy. But, here, with a
small hack, the completely not adapted pipeline seems to jump to this level of
performances.

Code of this experiment (CIFAR100) is available (for research purpose only)
on the github github.com/achanhon/AdversarialModel. Code of the other ex-

12



periment can be requested but are currently not on the github to make easy the
use of the main code (all codes are close to the one provided anyway).

This implementation of adversarial model is relevant from functional point
of view as modifying only some sample allows to bias the resulting model while
the rotation based implementation assumes all the training dataset is perturbed
simultaneously. Also, the relevancy of this implementation from performance
point of view is strongly established by experimental results. Unfortunately, I
do not manage to demonstrate formally that this implementation behaves as
observed. Currently, one can prove easily that if each xn is transformed into
x′n = xn + λnynwdesired + µn with µT

nwdesired then as relu is an increasing
function, it holds that e (wdesired, x

′, y) ≤ e (wdesired, x, y) (see definition of e
in the section 3.1) because relu

(
1− ynxTnwdesired − λny2nwT

desiredwdesired

)
≤

relu
(
1− ynxTnwdesired

)
. Thus, the energy of the desired model is lower with

the new dataset than with the original. Yet, this does not prove that resulting
model after training will be closer to the desired one. The interesting point in
the rotation based implementation is that rotation lets the norm of the model in-
variant. Here, it seems this is not true. So, the perturbation breaks the previous
tradeoff between regularity wTw and data attachment sum

∑
n
relu

(
1− ynxTnw

)
.

This introduces difficulties in proving properties on the distance of the global
minimal after perturbation, and the desired model.

4.4 Adversarial model vs training on adversarial examples

Let consider again the objective to make a deep learning module globally ineffi-
cient. The use case is that one want to bypass a security module, the (long run)
strategy is to flood the module with modified samples, so next time module is
retrained on last samples it will become inefficient.

Such strategy can not trivially be implemented with classical adversarial
examples. Off course, adding strong outliers will indeed make the training
harder, and may be, break the resulting performance, but, adding lowly modified
adversarial example can even increased the performance because it will force
the classifier to be robust [8] (see fig 4) And adding inverse adversarial example
(changing the samples to make then classified even more easily by the algorithm)
may have no effect at all (it makes easier to reach the same point).

Inversely, optimizing the perturbation of the training samples with the goal
of breaking a security module is exactly a use case of adversarial model. A simple
way to implement this goal is to use the adversarial model algorithm of previous
subsection with wdesired resulting from a training with random labelling. So the
idea is to make the current model rotates toward a random one.

I evaluated both strategies on CIFAR100. Training is modified without any
knowledge from the test set either by classical adding adversarial or by biasing
the training toward a random model. Then, to evaluated the degradation,
accuracy is measured on test set.

Results are not available yet.

13



adversarialModel(CNN,wDesired,X,Y)

auxiliaryCNN = CNN::wDesired

X’ = []

for x,y in X,Y:

gradient = forwardBackward(auxiliaryCNN,x,y)

x’ = x

for i in x:

x’[i] += sign(gradient[i])

X’.append(x’)

return X’

Table 2: Pseudo code of the selected adversarial model implementation
Applying a fair training process on the dataset X’,Y leads to a model biased
toward wDesired. This function can be applied multiple times leading to a more
and more distant dataset but biasing more and more the resulting model. As
an example, a fair training could be implemented as:
fairTraining(CNN,X,Y,lr)

w = randomVect()

pipeline = CNN::w

for epoch in nbEpoch:

shuffle(X,Y)

for x,y in X,Y:

gradient = forwardBackward(pipeline,x,y)

for i in w:

w[i] -= lr*gradient[i]

return w

14



Figure 4: Polluting a system by adding adversarial examples into the training
has an ambiguous effect.

5 Conclusion

I offer in this paper a theoretic contribution applied to cyber security. The
theoretic contribution is to show that it is possible to design specific perturbation
of training examples which will make the standard/fair training to produced a
desired model (i.e. system behaviour).

Experimental validation of this theoretic contribution is provided on image
dataset with classical deep networks. Code allowing to reproduce the main
experiment is disclosed. These experiments show that adversarial model as
perturbing than adversarial examples.

I state that this phenomenon could allows to hack a continuously trained
security module (e.g. malware detection module). The interest of this long
run hacking strategy is to work even when directly creating efficient adversarial
attacks is not possible.

Thus, this new issue for deep learning base cyber security module should be
considered just behind adversarial example issue.

References

[1] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: Advances in neural information
processing systems. (2012) 1097–1105

15



[2] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553)
(2015) 436–444

[3] Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the
gap to human-level performance in face verification. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. (2014)
1701–1708

[4] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson,
R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for seman-
tic urban scene understanding. In: Conference on Computer Vision and
Pattern Recognition. (2016)

[5] Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep
learning in medical imaging: Overview and future promise of an exciting
new technique. IEEE Transactions on Medical Imaging 35(5) (2016) 1153–
1159

[6] Alsulami, B., Dauber, E., Harang, R., Mancoridis, S., Greenstadt, R.:
Source code authorship attribution using long short-term memory based
networks. In: European Symposium on Research in Computer Security,
Springer (2017) 65–82

[7] Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for
network intrusion detection system. In: Proceedings of the 9th EAI Interna-
tional Conference on Bio-inspired Information and Communications Tech-
nologies (formerly BIONETICS), ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering) (2016) 21–26

[8] Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Ad-
versarial examples for malware detection. In: European Symposium on
Research in Computer Security, Springer (2017) 62–79

[9] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami,
A.: The limitations of deep learning in adversarial settings. In: Security
and Privacy (EuroS&P), 2016 IEEE European Symposium on, IEEE (2016)
372–387

[10] Moosavi Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal
adversarial perturbations. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). (July 2017)

[11] Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial
examples for semantic segmentation and object detection. In: The IEEE
International Conference on Computer Vision (ICCV). (Oct 2017)

[12] Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding
deep learning requires rethinking generalization. In: International Confer-
ence on Learning Representations (ICLR). (2017)

16



[13] Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the
physical world. In: International Conference on Learning Representations
(ICLR). (2017)

[14] Narodytska, N., Kasiviswanathan, S.: Simple black-box adversarial attacks
on deep neural networks. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). (July 2017) 1310–1318

[15] Ronneberger, O., Fischer, P., Brox, T. In: U-Net: Convolutional Net-
works for Biomedical Image Segmentation. Springer International Publish-
ing (2015)

[16] Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions
on pattern analysis and machine intelligence 39(12) (2017) 2481–2495

[17] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A
large-scale hierarchical image database. In: Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE (2009) 248–255

[18] Vapnik, V.N., Vapnik, V.: Statistical learning theory. Volume 1. Wiley
New York (1998)

[19] LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hub-
bard, W.E., Jackel, L.D.: Handwritten digit recognition with a back-
propagation network. In: Advances in neural information processing sys-
tems. (1990) 396–404

[20] Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A.:
The reusable holdout: Preserving validity in adaptive data analysis. Science
349(6248) (2015) 636–638

[21] Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies
for accurate object detection and semantic segmentation. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (June
2014)

[22] Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLIN-
EAR: A library for large linear classification. Journal of Machine Learning
Research 9 (2008) 1871–1874

[23] Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-
based image retrieval. In: ESANN. (2011)

17


