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Abstract:
Deep learning is such a breakthrough that deep networks may quickly
be allowed to take critical decisions (diagnosis, really autonomous
driving).
Yet, there will probably be strong discussions about the standards
of evaluation of such system. Indeed, if using private data allows a
quite safe evaluation, it also raises business issues. And, one could
have been tempted to accept a business friendly evaluation mostly
based on (apparent) good practices.
However, I show on this paper that such review based evaluation can
be trivially hacked.
If from computer vision point of view, this contribution is rather
incremental, it is not from a social point of view. It is an additional
warning message about deep learning safety.

Today, it seems that deep learning [8] may lead to a major industrial revo-
lution. Applications already goes much further than social network (automatic
tagging of social network picture [14]) or web indexation (search into picture).
Applications includes autonomous driving, security, financial management and
health care [5]. This way, deep network may be quickly allowed to take critical
decisions.

So, the question of the evaluation of such system will becoming more and
more important.

For theoretic point of view, there is no way to formally define what is the
expected output of such network1. So, formal verification (see [6] for an exam-
ple) and other mathematics tool for verification are useless. But, a quite fair
evaluation of such deep networks is possible by comparing the current outputs
to the desired outputs on a small set of samples. This small set of samples
is, then, called the testing set (or test set). Off course, the evaluation is fair
only if the testing set has not been seen too much by the system2. Indeed,

1otherwise, there is no point to use a deep network because one should use instead the
desired output

2Typically, if one known the testing set, a simple mapping between testing samples to
expected outputs will be evaluated as perfect.
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deep learning results can be distorted even by unconscious and common bad
practices like to tune few meta parameters on the test set, or more generally, to
use little feed back from test evaluations (see [2] for complementary description
of this issue). But, by checking this number of evaluations, one can enforce
safety. This is the way it works for research benchmarking. In such competition
like IMAGENET [1] or MSCOCO, the organizers provides a strict evaluation
process based on this paradigm3. Let stress that there are even theoretic works
aiming at increasing the efficiency of this process. Typically, [2] shows that
using only thresholded and noised observations allows to do exponentially more
evaluations of a common test set before starting to loss safety.

This way of evaluating a deep learning system will be called the private
evaluations paradigm and it is a quite safe way.

However, there will probably be discussion about this private evaluations
paradigm because it raises business issues.

First, relying on this few evaluations paradigm means to make it mandatory
in self certification process for companies. Self certification is very common
on aerospace industry4 and medical system, and, it may become common for
deep learning components in autonomous driving or computer assisted medical
decision. So, let say that if a company wants to sell a deep learning system, it
has to split system design and system evaluation between two different teams
with only few evaluations allowed from one team to the other. This way, the
system evaluation will also be quite fair. Now, imposing such high standard self
certification process will be questioned from business point of view. Especially,
because a large part of deep learning companies are just too small to have
unconnected teams to enforce such process. Such team splitting is today used
in plane design which is a more slow market with much less competition.

Then, this few evaluations paradigm will also be questioned in trading. Let
think about a company who want to buy a deep learning system. To be sure
that the system is correct, the company would have to design an hidden test
set. But, could it be realistic to have an hidden test set ? If the system is not off
the shelf, is it possible to do a tender with minimal performance at the end of
the project on a hidden test set ? Would a candidate company accept a tender
with financial penalties on an unknown test set ? What about if the unknown
test set is poorly designed ?

Off course, the question about what should be the level of self certification
required for deep learning module taking critical decision is well too beyond the
scope of this paper. So, I do not feel allowed to state that seeing the current
state of the art, it seems that despite the two economic issues of the private
evaluation, there is no alternative.

But, more modestly, I show in this paper that a good looking alternative
candidate is not just possibly but easily hackable.

One candidate alternative is to design both train data and test data, and, to
require to the training procedure to follow good practices (and to be open for

3see http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015
4see https://ec.europa.eu/transport/modes/air/safety/safety-rules en
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review). The idea behind this alternative is to increase the confidence toward
the system by reviewing the training which has generated the system (system
is then called model). Let recall that a deep learning system is classically an
architecture with free parameters and meta parameters. Free parameters are
expected to be optimized from a training set. Meta parameters are expected
to be tuned from validation set and/or using prior. The meta parameters are
the simplest way to overfit on specific target. So, if someone bring a 0 meta pa-
rameter pipeline which trained on a controlled training set leads to high results
on the controlled test set. Then, one can be quite confident into the quality
of this 0 meta parameter pipeline. Inversely, if someone brings a pipeline with
high score but with very strange architecture and tremendous meta parameters
tuned without explication, then everyone will just run away.

Now, from scientific point of view, one can claim that collecting the training
data should be done simultaneously with the design of the algorithm because an
algorithm can be honestly good with a specific amount of training data. More
precisely, from scientific point of view, the question is either about learning (and
there is a reason to froze both train and test set) or about solving a specific
problem (and there is no reason to froze the training set). But much more
problematic, this alternative is not very relevant from business point of view
because collecting the training data may be the most expensive step. So, this is
not realistic that a company will collect the training data and just externalize
the learning. There are even companies whose value is to have some specific
data to train highlighting the common belief that no one can require the buyer
to pay the training data.

So, making both the train set and test set public in exchange from the
possibility to review the training process is not a real alternative to the private
evaluation paradigm because it raises even more business issues while not being
safe anyway (currently, it protects against the attack designed in this paper but
it may still be hackable).

An other alternative candidate is to make public the testing set and just to
require the system to evaluated to follow good practices (plus to be open for
review plus that training data are also open for review). This paradigm will be
called review based evaluation. Again, the underlining idea is that if someone
bring a training set which seems fair (at least with not testing data in it) and
a 0 meta parameter pipeline which after training leads to high results on the
controlled test set, one could have been confident. But, the point is exactly
about the fact that the training set could seem fair while being perverted.

Now, instead of arguing that modifying training data could pervert the train-
ing process, I will just give a constructive way to do it with classical deep learn-
ing pipeline. The important point of this paper is that this hacking is dramatic
while only requiring a PYTORCH script of 40 lines. Of course, it may exist
patch to this hacking. But, the point is anyway to show that falsification can
be easy.

The power of the proposed hack is that

• a company can collect fairly training data
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• a company can design fairly a train test experiment

• but by adding undetectable perturbation to the train data (computed from
the test data), this company could dramatically increase the score of the
resulting model

From computer vision point of view, this incremental contribution is in-
spired by adversarial examples5 [12, 10, 16]. Adversarial example refers to the
possibility to produce very large change in the output of a deep network with
imperceptible input noise. So, I call the proposed hack smuggling examples as
it refers to the possibility to compute imperceptible noise of training examples
in order to pervert natural training toward the model learnt on the test set.

As, the paradigm, I want to hack is the review base evaluation, I target a
deep learning pipeline with 0 meta parameter and convexity property. This is a
very fair pipeline. And, I show that very simple perturbation of training images
(fair before perturbation) allow to change strongly the learnt weights.

The pipeline is a convolutional neural network (CNN) with IMAGENET
weights as feature extractor plus SVM [15] as classifier. Given the training and
testing images, this pipeline (inspired from [4]) is completely straightforward
and reproducing. All images (training images and testing images) are forwarded
into the CNN network and transformed into a vector (no parameter). Then, a
SVM is trained on the training vector (with LIBLINEAR default parameter [3]
so with no parameter, and, it is a convex problem, so multiple runs lead to a
single model).

Now, the question is to know if one could use the test set to compute a
little perturbation of each training images in order to get an unfairly high
result on the test set. Mathematically, let x1, ..., xN be some vectors in RD+1

(to simplify the notation, the SVM bias is removed assuming value of the last
dimension is 1 for all vectors) and y1, ..., yN the corresponding -1/+1 label in
the binary case. Given a vector w in RD+1, the smoothed error of w on the
data x, y is e (w, x, y) = w|w +C

∑
n
relu (1− ynxn|w) with relu be the function

0 for negative and identity for positive and | the scalar product. The SVM
optimisation6 consists to solve min

w
e (w, x, y). Here, I will use C = 1 (the default

LIBLINEAR parameter). Let notice that, in the linearly separable hard margin
SVM case (C � 1), final hyperplane is only influenced by support vectors. But
in the most common case, vectors are not separable and soft margin (C ≈ 1) is
used instead, and so, all vectors can influence somehow w.

Now, let consider a desired output. Typically, let note w∗test the result of
a SVM optimization on the test set (trained on test set - worse bad practice
ever). Everybody hope to optimize on the train set but to get w∗train (trained on
training data - normal practice) close to w∗test. Now, let notice that if each xn
is transformed into x′n = xn + δnw

∗+λn with λn|w∗test = 0 and δn > 0), then it
is trivial that e (w∗test, x

′, y) ≤ e (w∗test, x, y) because ∀n, relu (1− ynx′n|w∗test) =

5first appear on arxiv in Intriguing properties of neural networks
6Here, I will write optimization and not training as I will apply this optimization on original

train data, test data and modified train data.
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relu
(
1− ynxn|w∗test − δy2nw∗test|w∗test

)
≤ relu (1− ynxn|w∗test) (relu is an in-

creasing function).
So, if one add a little transformation on each image in order to increase the

scalar product between xn (CNN features from the image) and the desired vector
w∗test, it unfairly decreases the distance with w∗train. Let notice that decreasing
the error is decreasing the distance to the minimum as this is a convex problem.

Now, adversarial example show that deep networks are candidate for such
little transformation. The easy way to generate such adversarial/smuggling ex-
ample is to look into the root algorithm to train networks: the back propagation
of the gradient[9]. Back propagation allows to compute derivative according to
each weight given a loss from the last layer. This relies on the computation of
derivative according to each neuron. Thus, by a nature, back propagation allows
to compute derivative according to the input data itself (this can be done easily
with PYTORCH for example, just asking the internal variable corresponding
to the input to store gradient). If these derivative are high, then, it means that
with a very little change in the input data, one can get a very different output
from the network. And, this is the case for classical deep learning network.

So one can easily produce smuggling examples by:

• take network CNN initialized from IMAGENET

• add a fully connected layer initialized with the desired SVM weight (typ-
ically the weight that one get by optimizing the SVM on the test set)

• for each training image, optimize a noise added on the image in order to
increase the network classification - this can be easily done by gradient
descent using the derivatives that are computed by back propagation

• take the original CNN as feature extractor

• learning a SVM on the modified training images

• it will produce weights biased to be close to the desired SVM weights

Now, the possibility to create smuggling examples is kind of trivial (and if not,
a way is just presented bellow). But, the question is how smuggling are these
examples. In other words, how these smuggling examples have to be far from
the original examples to produce a real bias.

Indeed, I show that on CIFAR10 [7] (a well know dataset of computer vision)
smuggling examples are dramatic. Other datasets should be considered, but it
still prove a point. For this experiment, I just use one very classical network
VGG7. Other networks should, again, be considered (e.g. alexnet, googlenet,
resnet see [13] for a brief review) but it still prove a point. Images (32x32 pixel)
are forwarded into VGG until conv4 1 and transformed into 2048 vectors on
which SVM is trained.

7https://github.com/jcjohnson/pytorch-vgg

5



Honest performances of the pipeline are 69% of accuracy (train on raw train
images, test on raw test images). Desired performances (train on raw test
images, test on the same) are 99%.

Then, I compute the gradient for each training image (with cross entropy).
For each pixel and each channel (but it could be a random subset), if partial
derivative is higher than a threshold, pixel value is increased by 1. And if the
partial derivative is bellow some the opposite of this threshold, pixel value is
decreased by 1. Thus, this lead to a modified training set where each pixel of
each image is distant from at most 1 (over 255) from the original image. So, this
is clearly undetectable perturbations. Yet, training on this modified data leads
to 76% accuracy. Scripts of this experiments can be found in in the unrelated
folder of the github https://github.com/achanhon/CNN SVM for DFC2017.

This results have off course to be strengthen but it shows that smuggling
examples are easy to implement and can strongly pervert the evaluation. On
CIFAR10, with VGG, this undetectable smuggling example attack increases
score from 69% to 76% of accuracy with a 40 line script. So, I argue that I
have showed that knowing the test set, one can easily add a small noise to
training data in order to increase the performance on the test set for a VGG
based pipeline. So, review based evaluation is easily hackable for classical deep
learning.

One can argue that it is then sufficient to add to the review based evaluation
the constraint that performance should be stable toward local deformations.
This would also remove the sensibility to adversarial examples by the same
way. An other implementation is to set the rule that the score of model will
be the min over all local perturbations of the training images. However, from
scientific point of view it may be questionable, and may lead to very pessimistic
performances.

And more seriously, this patch may still be hacked by gradient masking.
What about if one hack the training with smuggling example. And, then add
a network trained to behave like the round function before the target network.
Then, it may not change the image which are already integer value but it will
simulated an invariance toward local perturbation. This way, gradient on all
training image is 0 (this is just one example of gradient masking strategy).

Of course, adding a round net before a network only simulates that the
network is robust to adversarial examples. So, an other patch is to require
robustness to black box attack (this point is very technical, see [11]) i.e. high
performance under small perturbation of substitute models. Currently, I found
no clear bypass to this last patch. However, it still may exist a way to hack first
and add robustness to adversarial after the initial hack.

So, I do not claim that there is no patch to smuggling example attack. I just
say that starting an attack vs defence race instead of just relying on the private
evaluation paradigm is a dangerous move. Especially because, attack may be
easier than defence (no known protection against generic adversarial attack of
[11]).
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Again, the scope of this paper does not contains the question of the exis-
tence of alternatives to the private evaluation paradigm and/or about what the
legislator should put in place seeing both the safety and business constraints.

But, yet, I have showed that the review based evaluation is absolutely not
sufficient to enforce safe deep learning system evaluation.
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