
HAL Id: hal-01676691
https://hal.science/hal-01676691v2

Preprint submitted on 17 Jan 2018 (v2), last revised 19 Nov 2019 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the simplicity to produce falsified deep learning
results

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. On the simplicity to produce falsified deep learning results. 2018. �hal-
01676691v2�

https://hal.science/hal-01676691v2
https://hal.archives-ouvertes.fr

On the simplicity to produce falsified deep

learning results

Adrien CHAN-HON-TONG

January 17, 2018

Abstract

Seeing the technological breakthrough of deep learning, there will be
strong discussions about the standards of evaluation for allowing a deep
learning model to take critical decisions.

In this paper, I refute the statement that experting the learning pro-
cedure permits to detect voluntary misconducts. Typically, one may have
been confident about a reproducible deep learning with 0 meta parameter.
But, built on the top of works on adversarial examples, I show that im-
perceptible perturbations (precomputed from test set) of training images
can hack this convex 0 parameter learning process toward unfairly good
weights.

If from computer vision point of view, this contribution is rather in-
cremental, it is not from a social point of view. It is a warning message
that some falsifications of the train/test process are not just possible but
easy with classic deep learning.

1 Introduction

Today, it seems that deep learning [10] may lead to a major industrial rev-
olution. Applications already goes much further than social network (au-
tomatic tagging of social network picture [16]) or web indexation (search
into picture). Applications includes autonomous driving, security, finan-
cial management and health [6].

However, deep learning results can be distorted even by unconscious
and common bad practices like to tune few parameters on the test set, or
more generally, to use little feed back from test evaluations [3].

Worse, one can imagine how it could be distorted by voluntary mis-
conduct. Considering that deep learning will be used on critical decision,
this statement is an issue.

The real solution to this problem is the few evaluations paradigm: only
few evaluation of the trained deep network is allowed on the testing set.
This way, performances are guaranties to be fair.

This is the case in research with benchmarking on guidance datasets.
In such competition like IMAGENET [2] or MSCOCO, a leader team

1

publishes only training data and provides a strict evaluation process1.
This way, participants can not tune too much the algorithms on the test
set, allowing a quite fair evaluation of the algorithms.

Such solution can also be mandatory in self certification process for
companies. Self certification is very common on aerospace industry2 and
medical system, and, it may become common for deep learning compo-
nents in autonomous driving or computer assisted medical decision. If
companies are required to split model design and model evaluation be-
tween two different teams with only few evaluations allowed, then algo-
rithm evaluation will also be quite fair.

Now, imposing such high standard self certification process will be
questioned (not from scientific point of view but from business point of
view). Especially, because a large part of deep learning companies are just
too small to have unconnected teams to enforce such process. This few
evaluations paradigm will also be questioned in trading: let think about a
company with non deep learning expert who want to do a tender including
minimal performance on a test set by the end of the project. Could it be
realistic to have an hidden test set ?

One can disagree about my point because it is well known that testing
data should be hidden. But, yet, my statement hold: what about tenders
and/or small companies not able to properly enforce such paradigm.

Seeing these difficulties, let see if there are alternatives to few evalua-
tions paradigm.

One possible alternative is to make public both training and testing
data. And to require the training algorithm to be reproducible and with
few meta parameters. Currently, this paradigm protects against the at-
tack that will be presented in this paper. And, making both train and test
data to be public is very common in research. But in research, the goal
is to increase knowledge about machine learning. Inversely, in societal
applications, the goal is not to produce knowledge but to solve a societal
problem. So, if the goal is to solve a problem, one can not put restric-
tion into training data to benchmark different deep networks. So, from
scientific point of view, one can claim that collecting the training data
should be done simultaneously with the design of the algorithm because
an algorithm can be honestly good with a specific amount of training
data. Worse, this paradigm is not very relevant from business point of
view because collecting the training data may be the most costly step.
So, this is not realistic that a companies will collect the training data and
just externalize the learning. There are even companies whose value is to
have some specific data to train highlighting the common belief that no
one can require the buyer to design the training data.

So, finally, this alternative protects against some attack (probably not
all) but is not relevant.

Now, the question is to consider the simple learning paradigm: testing
data are made public, training data and algorithm are allowed to be col-
lected simultaneously but the learning process is required to have only few
meta parameter and to be fully reproducible. Indeed, even if from a the-

1see http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015
2see https://ec.europa.eu/transport/modes/air/safety/safety-rules en

2

oretic point of view, every experts would be annoying but this paradigm,
one could have be sufficiently confident with the performance reached by
a reproducible deep learning pipeline with 0 meta parameter.

However, I show in this paper that falsifications of the train/test pro-
cess is not just possible but easy with classic deep learning under this
paradigm. The error about the confidence that one could have given to
the simple learning paradigm is that if there is no meta parameter tuning
on the test set is not possible. But, in this simple learning paradigm,
there is no control of the training data. So, even if there is no meta pa-
rameter, a voluntary misconduct is to perturb the training data instead.
Thus, depending on the fact that little undetectable perturbations could
pervert the learning, this paradigm should or should not be acceptable

Unfortunately, I show in the latter that little undetectable perturba-
tions could strongly pervert the training.

This contribution is inspired by adversarial examples3 [13]. Adversar-
ial example (presented with related work in next section) refers to the
possibility to produce very large change in the output of a network with
imperceptible input noise. In the section 3 of this paper, I present smug-
gling examples: the possibility to compute imperceptible noise of training
examples in order to pervert natural training toward any model, and espe-
cially, the model learnt on the test set. Conclusion (more detailed in final
section) is that with such smuggling examples, one could pretend to reach
high result with highly reproducible training algorithm, while, being in a
complete falsification of the training/testing process.

Off course, the question about what should be the level of self certi-
fication required for deep learning module taking critical decision is well
too beyond the scope of this paper. However, the goal of this paper is
to remind the legislators and the community that this falsification is not
just possible but easy with deep learning.

2 Related works

Today, deep learning is overwhelmingly the state of the art of computer
vision [10]. On static datasets, deep learning provides much higher accu-
racy than prior computer vision systems. For this reason, deep learning
could be quickly use on real life applications including medical images and
autonomous driving.

However, when applied to real life application deep learning system
could have to face hacking behaviour from the users. Unfortunately, deep
learning raises at least two hacking issues: privacy [14] and robustness[13].

The privacy issue is that, with classical network, one can infer infor-
mation about the dataset from the network weight learnt on this dataset.
Air gap deep networks have been proposed [14] as bypass. It consists in
trying to learn a public network from privates networks having seen the
training data.

The robustness issue is that classical networks admit adversarial exam-
ples. It is possible to design a specific imperceptible noise that will make

3first appear on arxiv in Intriguing properties of neural networks

3

the network producing dumb output [12, 19]. The easy way to gener-
ate such example is to look into the root algorithm to train networks: the
back propagation of the gradient[11]. Back propagation allows to compute
derivative according to each weight given a loss from the last layer. This
relies on the computation of derivative according to each neuron. Thus,
by a nature, back propagation allows to compute derivative according to
the input data itself (this can be done easily with PYTORCH for exam-
ple, just asking the internal variable corresponding to the input to store
gradient). If these derivative are high, then, it means that with a very
little change in the input data, one can get a very different output from
the network. And, this is the case for classical deep learning network.

From a scientific point of view, the importance of this lack of robust-
ness is ambiguous. From one hand, regularity is often thought to be a
matter of algorithm (a lot of literature is interested by the theoretical
property of machine learning algorithms see [1, 17] for examples). And
so, changing the network output just by applying an imperceptible noise
raises questions about what is really learnt by the network. But, on the
other hand, [18] shows that, in the finite case, all algorithm are equally
bad when averaged over all possible problems. Thus, if we hope to learnt
something with an algorithm it means that regularity is somehow a mat-
ter of targeted data[20]. This way, one should not expect the algorithm to
handle samples from outside the target data distribution, like for examples
adversarial samples.

But, from a social point of view, this is a problem because if network
are deployed in real word, people will interact with them. And so, net-
works may have to deal with adversarial examples and not just data from
the training distribution. Especially, [9] shows that these examples can
be produced in real physical word.

Now, I present in this paper an other hacking weakness. But, here,
the hacking does not come from the user but from the seller. Based
on adversarial examples, I show the existence of smuggling examples i.e.
examples that allows to hack the train/test process. Indeed, in the next
section, I show how one can pre compute a specific noise to the training
images (knowing the test set) in order to produce an unfairly high efficient
algorithm on the test set.

3 Smuggling examples

3.1 Targeted pipeline

The paradigm, I want to hack is the simple learning : even if the testing
dataset is public, if the selected pipeline is sufficiently simple (without
tunable meta parameter), then one could have had confidence into the
evaluation. So, in order to stress the facility to hack this simple learning
paradigm, I target a 0 meta parameter deep learning pipeline and I show
that very simple perturbation allow to change strongly the learnt weights.

The pipeline is a convolutional neural network (CNN) with IMA-
GENET weights as feature extractor plus SVM [17] as classifier. All
images (training images and testing images) ae forwarded into the CNN

4

network and transformed into a vector (no parameter). Then, a SVM is
trained on the training vector (with LIBLINEAR default parameter [4] so
with no parameter, and, it is a convex problem, so multiple runs lead to
a single model).

Given the training/testing images, this pipeline (inspired from [5]) is
completely straightforward and reproducing (code will be posted in an
appropriated github - first script can be found in in the unrelated folder
of https://github.com/achanhon/CNN SVM for DFC2017).

3.2 Computing smuggling example

Now, the question is to know if one could use the test set to compute
a little perturbation of each training images in order to get an unfairly
high result on the test set.

Mathematically, let x1, ..., xN be some vectors in RD+1 (to simplify the
notation, the SVM bias is removed assuming value of the last dimension
is 1 for all vectors) and y1, ..., yN the corresponding -1/+1 label in the
binary case. Given a vector w in RD+1, the smoothed error of w on the
data x, y is e (w, x, y) = w|w + C

∑
n

relu (1− ynxn|w) with relu be the

function 0 for negative and identity for positive and | the scalar product.
The SVM optimisation4 consists to solve min

w
e (w, x, y).

Here, I will use C = 1 (the default LIBLINEAR parameter). Let
notice that, in the linearly separable hard margin SVM case (C � 1),
final hyperplane is only influenced by support vectors. But in the most
common case, vectors are not separable and soft margin (C ≈ 1) is used
instead, and so, all vectors can influence somehow w.

Now, let consider a desired output. Typically, let note w∗test the re-
sult of a SVM optimization on the test set. Everybody hope to optimize
on the train set but to get w∗train close to w∗test. Now, let notice that
if each xn is transformed into x′n = xn + δnw

∗ + λn with λn|w∗test = 0
and δn > 0), then it is trivial that e (w∗test, x

′, y) ≤ e (w∗test, x, y) be-
cause ∀n, relu (1− ynx′n|w∗test) = relu

(
1− ynxn|w∗test − δy2nw∗test|w∗test

)
≤ relu (1− ynxn|w∗test) (relu is an increasing function).

So, if one add a little transformation on each image in order to increase
the scalar product between xn (CNN features from the image) and the
desired vector w∗test, it unfairly decreases the distance with w∗train (the
vector which will result from the optimization on the modified training
data). Let notice that decreasing the error is decreasing the distance to
the minimum as this is a convex problem.

So one can easily produce smuggling examples by:

• take network CNN initialized from IMAGENET

• add a fully connected layer initialized with the desired SVM weight
(typically the weight that one get by optimizing the SVM on the
test set)

• for each training image, optimize a noise added on the image in
order to increase the network classification - this can be easily done

4Here, I will write optimization and not training as I will apply this optimization on original
train data, test data and modified train data.

5

by gradient descent using the derivatives that are computed by back
propagation

• learning a SVM on the modified training images will produce weights
biased to be close to the desired SVM weights

Let notice that the optimal additive perturbation to bias weight to-
ward a target can be formalized and computed at least by replacing w|w
per ‖w‖1. Because, the problem of computing min

w
can be converted into

an inequality problem on w using primal-dual theory. Then, these set of
inequality can become a set of constraint into new formulation with per-
turbations as variable and where objective function is L1 distance between
w and the target. This is a classical optimisation trick and could be more
detailed into an appendix. But, here, vectors are derived from application
of CNN to image, and, this is the image that should be perturbed. So
there is no room for this kind of formal optimisation.

Now, the possibility to create smuggling examples is kind of trivial (and
if not, a way is just presented bellow). But, the question is how smuggling
are these examples. In other words, how these smuggling examples have
to be far from the original examples to produce a real bias.

Indeed, I show in the next subsection that smuggling attack could be
dramatic with classical deep learning. This statement is currently base on
result on CIFAR10 (a well know dataset of computer vision) and should
off course be extended. But, yet, it prove a point.

3.3 Experiment on CIFAR10

For this preliminary experiment, I just use one very classical network
VGG5. Other networks should be considered (e.g. alexnet, googlenet,
resnet see [15] for a brief review).

I also use only CIFAR10 [8] but other datasets would be considered.
Images (32x32) are forwarded into VGG until conv4 1 and transformed

into 2048 vectors.
Honest performances of the pipeline are 69% of accuracy (train on raw

train images, test on raw test images). Desired performances (train on
raw test images, test on the same) are 99%. There is thus a room for
smuggling examples.

With only few gradient step (with lr = 1, momentum = 0.5, cross
entropy), the unfair performance (train on modified train image, test on
test) reaches 77% with a noise no more than 5 over 256 (in color intensity).

However, this lead to floating images (one could suspect falsification).
But, such result can be reached even with integer images. I compute the
gradient for each training image (with cross entropy). Then, for each
pixel and each channel, if partial derivative is higher than a threshold,
pixel value is increased by 1. And if the partial derivative is bellow some
the opposite of this threshold, pixel value is decreased by 1.

Thus, this lead to a modified training data set where each pixel of each
image is distant from at most 1 from the original image. So, this is clearly

5https://github.com/jcjohnson/pytorch-vgg

6

an undetectable perturbation. Yet, training on this modified data leads
to 76% accuracy.

This results have off course to be strengthen but show that smuggling
examples are easy to implement and can strongly pervert the train/test
process.

4 social implication

I have show that, knowing the test set, one can add a small noise to
training data in order to increase the performance on the test set. Off
course, such misconduct is not possible if test set is hidden until algorithm
is frozen.

Now, inversely, if a test set is made public. Then, one could collect
relevant training data, and modify these training data with this smuggling
examples to reach unfair performance on the test set. This person could
even make the modified data public and claim to have resolved the prob-
lem with a 0 meta parameter pipeline completely reproducible. Worse,
if transformation are small enough, it could be impossible to detect that
these are transformed data.

Again, one can argue that nobody will organize a benchmark with
a public testing set. I hope so. But, what about if testing set is just
collected by a team from a same company or even by the only team of
the company. Again, let think about a public organization with non deep
learning expert who want to do a tender including minimal performance
on a test set by the end of the project. Could legislation really allow
the test set to be hidden ? How could a company answer a tender with
penalty based on exigence on an hidden dataset ? How could a judge
decide about a complain from the company that the problem comes from
the data and no the produced algorithm ?

I argue that there will be pressure to allow low control standard on
deep learning module (e.g. data sharing between evaluator and designer).
But, accepting such data sharing makes smuggling attack possible.

References

[1] Thomas Cover and Peter Hart. Nearest neighbor pattern classifica-
tion. IEEE transactions on information theory, 13(1):21–27, 1967.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Confer-
ence on, pages 248–255. IEEE, 2009.

[3] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi,
Omer Reingold, and Aaron Roth. The reusable holdout: Preserv-
ing validity in adaptive data analysis. Science, 349(6248):636–638,
2015.

[4] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

7

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014.

[6] Hayit Greenspan, Bram van Ginneken, and Ronald M Summers.
Guest editorial deep learning in medical imaging: Overview and fu-
ture promise of an exciting new technique. IEEE Transactions on
Medical Imaging, 35(5):1153–1159, 2016.

[7] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, et al. sel4: Formal verification of
an os kernel. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 207–220. ACM, 2009.

[8] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. 2009.

[9] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversar-
ial examples in the physical world. In International Conference on
Learning Representations (ICLR), 2017.

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[11] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Hender-
son, Richard E Howard, Wayne E Hubbard, and Lawrence D Jackel.
Handwritten digit recognition with a back-propagation network. In
Advances in neural information processing systems, pages 396–404,
1990.

[12] Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. Universal adversarial perturbations. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[13] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecognizable im-
ages. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 427–436, 2015.

[14] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning.
In Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security, pages 1310–1321. ACM, 2015.

[15] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. Inception-v4, inception-resnet and the impact of residual con-
nections on learning. In AAAI, pages 4278–4284, 2017.

[16] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
Deepface: Closing the gap to human-level performance in face veri-
fication. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1701–1708, 2014.

[17] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learn-
ing theory, volume 1. Wiley New York, 1998.

8

[18] David H Wolpert. The lack of a priori distinctions between learning
algorithms. Neural computation, 8(7):1341–1390, 1996.

[19] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie,
and Alan Yuille. Adversarial examples for semantic segmentation and
object detection. In The IEEE International Conference on Com-
puter Vision (ICCV), Oct 2017.

[20] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gen-
eralization. In International Conference on Learning Representations
(ICLR), 2017.

9

