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Abstract

Built on the top of works on adversarial examples, I show the existence
of smuggling examples: alterations of training examples (precomputed
from test set) which then lead the training toward unfairly good weights.

If from computer vision point of view this contribution is rather incre-
mental, it is not from a social point of view. It is a clear warning message
that falsification of the train/test paradigm is not just possible but easy
with classic deep learning.

1 Introduction

Deep learning [10] results can be distorted even by unconscious/common
bad practices like to tune few parameters on the test set, or more generally,
to use little feed back from test evaluations [3]. So, one can imagine how
it could be distorted by voluntary misconduct.

This statement is an issue considering the technological breakthrough
of deep learning. Today, it seems that deep learning may lead to a major
industrial revolution. Applications already goes much further than social
network (automatic tagging of social network picture [16]) or web index-
ation (search into picture). Applications includes autonomous driving,
security, financial management and health [6]. And, yet, this statement
holds.

In research, one watchdog is the peer review process. Indeed, if a paper
pretends to have reached very large level of quality with something almost
not new, reviewer will be suspicious. But, plausible but false results are
hardly detectable (except by doing the experiment) even if the reviewer is
an expert from the field. This statement goes beyond the question about
replicability vs reproducibility1: it is about the training/testing paradigm.

The real watchdog in research is benchmarking on guidance datasets.
In such competition like IMAGENET [2] or MSCOCO, a leader team
publishes only training data and provides a strict evaluation process2.
This way, participants can not tune too much the algorithms on the test
set, allowing a quite fair evaluation of the algorithms.

1see Replicability is not reproducibility: nor is it good science from Drummond 2009
2see http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015
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Now, such watchdog does not exist outside research. Sharing data
and/or benchmarking himself with outsiders can not be imposed to com-
panies. The main watchdog for companies is self certification. Self certi-
fication is very common on aerospace industry3 and medical system and
may become common for deep learning components in autonomous driv-
ing or computer assisted medical decision. Indeed, self certification can
be a fair enough way to evaluate an algorithm. This is the case for exam-
ple if algorithm, training and testing datasets are designed by unrelated
teams/companies plus evaluation is done only after algorithm is com-
pletely frozen. Now, imposing such high standard self certification process
seems hard. Especially, because a large part of deep learning companies
are just too small to have unconnected teams to enforce such process.
And, as the main problem with deep learning is the correctness of the
output and not of the code correctness, formal verification (see [7] for an
example) and other mathematics tool for verification are useless.

Off course, the question about what should be the level of self certifica-
tion required for deep learning module taking critical decision is well too
beyond the scope of this paper.

However, the goal of this paper is to remind the legislators and the
community that falsification is not just possible but easy with deep learn-
ing. The contribution of this paper is inspired by adversarial examples4

[13]. Adversarial example (presented with related work in next section)
refers to the possibility to produce very large change in the output of a
network with imperceptible input noise. In the section 3 of this paper,
I present smuggling examples: the possibility to compute imperceptible
noise of training examples in order to bias natural training toward any
model, and especially, the model trained on the test set. Conclusion more
detailed in final section is that with such smuggling examples, one could
pretend to reach high result with highly reproducible experiment, while,
being in a complete falsification of the training/testing paradigm.

2 Related works

Today, deep learning is overwhelmingly the state of the art of computer
vision [10]. On static datasets, deep learning provides much higher accu-
racy than prior computer vision systems. For this reason, deep learning
could be quickly use on real life applications including medical images and
autonomous driving.

However, when applied to real life application deep learning system
could have to face hacking behaviour from the users. Unfortunately, deep
learning raises at least two hacking issues: privacy [14] and robustness[13].

The privacy issue is that, with classical network, one can infer infor-
mation about the dataset from the network weight learnt on this dataset.
Air gap deep networks have been proposed [14] as bypass. It consists in
trying to learn a public network from privates networks having seen the
training data.

3see https://ec.europa.eu/transport/modes/air/safety/safety-rules en
4first appear on arxiv in Intriguing properties of neural networks
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The robustness issue is that classical networks admit adversarial exam-
ples. It is possible to design a specific imperceptible noise that will make
the network producing dumb output [12, 19]. The easy way to gener-
ate such example is to look into the root algorithm to train networks: the
back propagation of the gradient[11]. Back propagation allows to compute
derivative according to each weight given a loss from the last layer. This
relies on the computation of derivative according to each neuron. Thus,
by a nature, back propagation allows to compute derivative according to
the input data itself (this can be done easily with PYTORCH for example,
just asking the internal variable to store gradient). If these derivative are
high, then, it means that with a very little change in the input data, one
can get a very different output from the network. And, this is the case
for classical deep learning network.

From a scientific point of view, the importance of this lack of robust-
ness is ambiguous. From one hand, regularity is often thought to be a
matter of algorithm (a lot of literature is interested by the theoretical
property of machine learning algorithms see [1, 17] for examples). And
so, changing the network output just by applying an imperceptible noise
raises questions about what is really learnt by the network. But, on the
other hand, [18] shows that, in the finite case, all algorithm are equally
bad when averaged over all possible problems. Thus, if we hope to learnt
something with an algorithm it means that regularity is somehow a mat-
ter of targeted data[20]. This way, one should not expect the algorithm to
handle samples from outside the target data, like for examples adversarial
samples.

But, from a social point of view, this is a problem because if network
are deployed in real word, people will interact with them. And so, net-
works may have to deal with adversarial examples. Especially, [9] shows
that these examples can be produced in real physical word.

Now, I present in this paper an other hacking weakness. But, here,
the hacking does not come from the user but from the seller. Based
on adversarial examples, I show the existence of smuggling examples i.e.
examples that allows to hack the train/test paradigm. Indeed, in the next
section, I show how one can pre compute a specific noise to the training
images (knowing the test set) in order to produce an unfairly high efficient
algorithm on the test set.

3 Smuggling examples

3.1 Targeted pipeline

In order to stress the possibility to falsify the train/test paradigm while
being reproducible, I target a 0 meta parameter deep learning pipeline.

The pipeline is a convolutional neural network (CNN) with IMA-
GENET weight as feature extractor plus SVM [17] as classifier. All images
(training images and testing images) are forwarded into the CNN network
and transformed into a vector. Then, a SVM is trained on the training
vector (with LIBLINEAR default parameter [4]).

Given the training/testing images, this pipeline (inspired from [5]) is
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completely straightforward and reproducing (code will be posted in an
appropriated github).

3.2 Computing smuggling example

Now, the question is to know if one could use the test set to compute
a little perturbation of each training images in order to get an unfairly
high result on the test set.

Mathematically, let x1, ..., xN be some vectors in RD+1 (value into the
last dimension is 1 for all vectors) and y1, ..., yN the corresponding -1/+1
label in the binary case. Given a vector w in RD+1, the smoothed error of
w on the data x, y is e (w, x, y) = w|w + C

∑
n

relu (1− ynxn|w) with relu

be the function 0 for negative and identity for positive and | the scalar
product. The SVM optimisation5 consists to solve min

w
e (w, x, y).

Here, I will use C = 1 (the default LIBLINEAR parameter). Let
notice that, in the linearly separable hard margin SVM case (C � 1),
final hyperplane is only influenced by support vectors. But in the most
common case, vectors are not separable and soft margin (C ≈ 1) is used
instead, and so, all vectors can influence somehow on w.

Now, let consider a desired output. Typically, let note w∗test the result
of a SVM optimization on the test set. Everybody hope to optimize on
the train set but to get w∗test (or something close). Now, let notice that
if each xn is transformed into x′n = xn + δnw

∗ + λn with λn|w∗test = 0
and δn > 0), then it is trivial that e (w∗test, x

′, y) ≤ e (w∗test, x, y) be-
cause ∀n, relu (1− ynx′n|w∗test) = relu

(
1− ynxn|w∗test − δy2nw∗test|w∗test

)
≤ relu (1− ynxn|w∗test) (relu is an increasing function).

So, if one add a little transformation on each image in order to increase
the scalar product between xn (CNN features from the image) and the
desired vector w∗test, it unfairly decreases the distance with w∗train (the
vector which will result from the optimization on the modified training
data). Let notice that decreasing the error is decreasing the distance to
the minimum as this is a convex problem.

So one can easily produce smuggling examples by:

• take network CNN initialized from IMAGENET

• add a fully connected layer initialized with the desired SVM weight
(typically the weight that one get by optimizing the SVM on the
test set)

• for each training image, optimize a noise added on the image in
order to increase the network classification - this can be easily done
by gradient descent using the derivatives that are computed by back
propagation

• learning a SVM on the modified training images will produce weights
biased to be close to the desired SVM weights

Let notice that the optimal additive perturbation to bias weight to-
ward a target can be formalized and computed at least by replacing w|w

5Here, I will write optimization and not training as I will apply this optimization on original
train data, test data and modified train data.
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per ‖w‖1. Because, the problem of computing min
w

can be converted into

an inequality problem on w using primal-dual theory. Then, these set of
inequality can become a set of constraint into new formulation with per-
turbations as variable and where objective function is L1 distance between
w and the target. This is a classical optimisation trick and could be more
detailed into an appendix. But, here, vector are derived from application
of CNN to image, and, this is the image that should be perturbed. So
there is no room for this kind of formal optimisation.

Now, the possibility to create smuggling examples is kind of trivial (and
if not, a way is just presented bellow). But, the question is how smuggling
are these examples. In other words, how these smuggling examples have
to be far from the original examples to produce a real bias.

Indeed, I show in the next subsection that smuggling attack could be
dramatic with classical deep learning. This statement is currently base on
partial result on CIFAR10 (a well know dataset of computer vision) and
should off course be extended. But, yet, it prove a point.

3.3 Experiment on CIFAR10

For this preliminary experiment, I just use one very classical network
VGG6. Other networks should be considered (e.g. alexnet, googlenet,
resnet see [15] for a brief review).

I also use only CIFAR10 [8] but other datasets would be considered.
Images (32x32) are forwarded into VGG until conv4 1 and transformed

into 2048 vectors.
Honest performances of the pipeline are 69% of accuracy (train on raw

train images, test on raw test images). Desired performances (train on
raw test images, test on the same) are 99%. There is thus a room for
smuggling examples.

With only few gradient step (with lr = 1, momentum = 0.5, cross
entropy), the unfair performance (train on modified train image, test on
test) reaches 77% with a noise no more than 5 over 256 (in color intensity).

This preliminary results have off course to be strengthen but show that
smuggling examples are easy to implement.

4 social implication

I have show that, knowing the test set, one can add a small noise to
training data in order to increase the performance on the test set. Off
course, such misconduct is not possible if test set is hidden until algorithm
is frozen.

Now, inversely, if a test set is made public. Then, one could collect
relevant training data, and modify these training data with this smuggling
examples to reach unfair performance on the test set. This person could
even make the modified data public and claim to have resolved the prob-
lem with a 0 meta parameter pipeline completely reproducible. Worse,

6https://github.com/jcjohnson/pytorch-vgg
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if transformation are small enough, it could be impossible to detect that
these are transformed data.

One can argue that nobody will organize a benchmark with a public
testing set. I hope so. But, what about if testing set is just collected by
a team from a same company or even by the only team of the company.
Again, let think about a public organization with non deep learning expert
who want to do a tender including minimal performance on a test set by
the end of the project. Could legislation really allow the test set to be
hidden ? How could a company answer a tender with penalty based
on exigence on an hidden dataset ? How could a judge decide about a
complain from the company that the problem comes from the data and
no the produced algorithm ?

I argue that there will be pressure to allow low control standard on
deep learning module (e.g. data sharing between evaluator and designer).
But accepting such data sharing makes smuggling attack possible.

References

[1] Thomas Cover and Peter Hart. Nearest neighbor pattern classifica-
tion. IEEE transactions on information theory, 13(1):21–27, 1967.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Confer-
ence on, pages 248–255. IEEE, 2009.

[3] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi,
Omer Reingold, and Aaron Roth. The reusable holdout: Preserv-
ing validity in adaptive data analysis. Science, 349(6248):636–638,
2015.

[4] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014.

[6] Hayit Greenspan, Bram van Ginneken, and Ronald M Summers.
Guest editorial deep learning in medical imaging: Overview and fu-
ture promise of an exciting new technique. IEEE Transactions on
Medical Imaging, 35(5):1153–1159, 2016.

[7] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, et al. sel4: Formal verification of
an os kernel. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 207–220. ACM, 2009.

[8] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. 2009.

6



[9] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversar-
ial examples in the physical world. In International Conference on
Learning Representations (ICLR), 2017.

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[11] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Hender-
son, Richard E Howard, Wayne E Hubbard, and Lawrence D Jackel.
Handwritten digit recognition with a back-propagation network. In
Advances in neural information processing systems, pages 396–404,
1990.

[12] Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. Universal adversarial perturbations. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[13] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecognizable im-
ages. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 427–436, 2015.

[14] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning.
In Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security, pages 1310–1321. ACM, 2015.

[15] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. Inception-v4, inception-resnet and the impact of residual con-
nections on learning. In AAAI, pages 4278–4284, 2017.

[16] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
Deepface: Closing the gap to human-level performance in face veri-
fication. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1701–1708, 2014.

[17] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learn-
ing theory, volume 1. Wiley New York, 1998.

[18] David H Wolpert. The lack of a priori distinctions between learning
algorithms. Neural computation, 8(7):1341–1390, 1996.

[19] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie,
and Alan Yuille. Adversarial examples for semantic segmentation and
object detection. In The IEEE International Conference on Com-
puter Vision (ICCV), Oct 2017.

[20] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gen-
eralization. In International Conference on Learning Representations
(ICLR), 2017.

7


