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Controllability of the Navier-Stokes equation in a rectangle
with a little help of an interior phantom force

Jean-Michel Coron∗†, Frédéric Marbach‡, Franck Sueur§, Ping Zhang¶

January 5, 2018

Abstract

We consider the 2D incompressible Navier-Stokes equation in a rectangle with the
usual no-slip boundary condition prescribed on the upper and lower boundaries. We
prove that for any positive time, for any finite energy initial data, there exist controls
on the left and right boundaries and a distributed force, which can be chosen arbitrarily
small in any Sobolev norm in space, such that the corresponding solution is at rest at
the given final time.

Our work improves earlier results in [17, 18] where the distributed force is small only
in a negative Sobolev space. It is a further step towards an answer to Jacques-Louis
Lions’ question in [23] about the small-time global exact boundary controllability of the
Navier-Stokes equation with the no-slip boundary condition, for which no distributed
force is allowed.

Our analysis relies on the well-prepared dissipation method already used in [28]
for Burgers and in [9] for Navier-Stokes in the case of the Navier slip-with-friction
boundary condition. In order to handle the larger boundary layers associated with
the no-slip boundary condition, we perform a preliminary regularization into ana-
lytic functions with arbitrarily large analytic radius and prove a long-time nonlin-
ear Cauchy-Kovalevskaya estimate relying only on horizontal analyticity, in the spirit
of [3, 37].

∗Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex
05; France, coron@ann.jussieu.fr

†ETH Zurich Institute for Theoretical Studies Clausiusstrasse 47 8092 Zurich; Switzerland
‡Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France, marbach@ann.jussieu.fr
§Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351 cours de la libération, 33405

Talence; France, franck.sueur@math.u-bordeaux.fr
¶Academy of Mathematics & Systems Science and Hua Loo-Keng Key Laboratory of Mathematics, The

Chinese Academy of Sciences, Beijing 100190; China, zp@amss.ac.cn

1

mailto:coron@ann.jussieu.fr
mailto:marbach@ann.jussieu.fr
mailto:franck.sueur@math.u-bordeaux.fr
mailto:zp@amss.ac.cn


Contents

1 Introduction and statement of the main result 3
1.1 Historical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Statement of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Comments and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Strategy of the proof and plan of the paper . . . . . . . . . . . . . . . . . . 5

2 Regularization enhancement 8
2.1 Fourier analysis in the tangential direction . . . . . . . . . . . . . . . . . . . 8
2.2 Regularization enhancement using the phantom and the control . . . . . . . 9
2.3 Proof of the regularization proposition . . . . . . . . . . . . . . . . . . . . . 10

3 Strategy for global approximate controllability 11
3.1 Small-time to small-viscosity scaling . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Return method ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Estimates and proof of approximate controllability . . . . . . . . . . . . . . 13
3.4 Comments and insights on the proposed expansion . . . . . . . . . . . . . . 15

4 Well-prepared dissipation method for the boundary layer 16
4.1 Large time decay of the boundary layer profile . . . . . . . . . . . . . . . . . 16
4.2 Fast variable scaling and Lebesgue norms . . . . . . . . . . . . . . . . . . . 17
4.3 Estimates for the technical profile . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Proof of the decay of approximate trajectories . . . . . . . . . . . . . . . . . 18

5 Estimates on the remainder 19
5.1 Singular amplification to loss of derivative . . . . . . . . . . . . . . . . . . . 20
5.2 A few tools from Littlewood-Paley theory . . . . . . . . . . . . . . . . . . . 20
5.3 Long-time weakly nonlinear Cauchy-Kovalevskaya estimate . . . . . . . . . . 24
5.4 Proof of Proposition 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Estimate of (r · ∇)u1. Proof of Lemma 5.14 . . . . . . . . . . . . . . . . . . 29
5.6 Estimate of (u1 · ∇)r. Proof of Lemma 5.15 . . . . . . . . . . . . . . . . . . 31
5.7 Estimate of (r · ∇)r. Proof of Lemma 5.16. . . . . . . . . . . . . . . . . . . 34

6 Analytic estimates for the approximate trajectories 39
6.1 Preliminary estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Estimates for the amplification terms . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Estimates for the source terms . . . . . . . . . . . . . . . . . . . . . . . . . 42

2



1 Introduction and statement of the main result

1.1 Historical context

In the late 1980’s, Jacques-Louis Lions introduced in [23] (see also [24, 25, 26]) the question
of the controllability of fluid flows in the sense of how the Navier-Stokes system can be
driven by a control of the flow on a part of the boundary to a wished plausible state, say a
vanishing velocity. Jacques-Louis Lions’ problem has been solved in [9] by the first three
authors in the particular case of the Navier slip-with-friction boundary condition (see also
[10] for a gentle introduction to this result). In its original statement with the no-slip
Dirichlet boundary condition, it is still an important open problem in fluid controllability.

1.2 Statement of the main result

In this paper we consider the case where the flow occupies a rectangle, where controls are
applied to the lateral boundaries and the no-slip condition is prescribed on the upper and
lower boundaries. We thus consider a rectangular domain

Ω := (0, L)× (−1, 1),

where L > 0 is the length of the domain. We will use (x, y) as coordinates. Inside this
domain, a fluid evolves under the Navier-Stokes equation. We will name u = (u1, u2) the
two components of its velocity. Hence, u satisfies:{

∂tu+ (u · ∇)u+∇p−∆u = fg,

div u = 0,
(1.1)

in Ω, where p denotes the fluid pressure and fg a force term (to be detailed below). We
think of this domain as a river or a tube and we assume that we are able to act on the
fluid flow at both end boundaries:

Γ0 := {0} × (−1, 1) and ΓL := {L} × (−1, 1).

On the remaining parts of the boundary,

Γ± := (0, L)× {±1},

we assume that we cannot control the fluid flow and that it satisfies null Dirichlet boundary
conditions:

u = 0 on Γ±. (1.2)

We will consider initial data in the space L2
div(Ω) of divergence free vector fields, tangent

to the boundaries Γ±. The main result of this paper is the following.

Theorem 1. Let T > 0 and u∗ in L2
div(Ω). For any k ∈ N and for any η > 0, there exists

a force fg ∈ L1((0, T );Hk(Ω)) satisfying

‖fg‖L1((0,T );Hk(Ω)) ≤ η (1.3)

and an associated weak Leray solution u ∈ C0([0, T ];L2
div(Ω)) ∩ L2((0, T );H1(Ω)) to (1.1)

and (1.2) satisfying u(0) = u∗ and u(T ) = 0.
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Since the notion of weak Leray solution is classically defined in the case where the
null Dirichlet boundary condition is prescribed on the whole boundary, let us precise that
we say that u ∈ C0([0, T ];L2

div(Ω)) ∩ L2((0, T );H1(Ω)) is a weak Leray solution to (1.1)
and (1.2) satisfying u(0, ·) = u∗ and u(T, ·) = 0 when it satisfies the weak formulation

−
∫ T

0

∫
Ω
u · ∂tϕ+

∫ T

0

∫
Ω

(u · ∇)u · ϕ+ 2

∫ T

0

∫
Ω
D(u) : D(ϕ)

=

∫
Ω
u∗ · ϕ(0, ·) +

∫ T

0

∫
Ω
u · fg,

(1.4)

for any test function ϕ ∈ C∞([0, T ]×Ω̄) which is divergence free, tangent to Γ±, vanishes at
t = T and vanishes on the controlled parts of the boundary Γ0 and ΓL. Thus, (1.4) encodes
the no-slip condition on the upper and lower boundaries only. This under-determination
encodes that one has control over the remaining part of the boundary, that is on the
lateral boundaries. The controls on the lateral boundaries are therefore not explicit in
the statement of Theorem 1. Still the proof below will provide some more insights on the
nature of possible controls to the interested reader. Once a trajectory is known, one can
indeed deduce that the associated controls are the traces on Γ0 and ΓL of the solution.

1.3 Comments and references

Remark 1.1 (Relation to the open problem). We see Theorem 1 as an intermediate step
towards an answer to Jacques-Louis Lions’ problem, which requires to prove that the theo-
rem is still true with a vanishing distributed force fg = 0. Here, we need a non-vanishing
force but we can choose it very small even in strong topologies. Our result therefore sug-
gests that the answer to Jacques-Louis Lions’ question is very likely positive, at least for
this geometry. Nevertheless, new ideas are probably necessary to “eliminate” the unwanted
distributed force we use.

Remark 1.2 (Local vs. global null controllability and Reynolds numbers). The fact that,
for any T > 0, one can drive to the null equilibrium state u = 0 in time T without any
distributed force (fg = 0) was already known when the initial data u∗ is small enough in
L2(Ω) (with a maximal size depending on T ). In this case, one may think of the bilinear
term as a small perturbation term of the Stokes equation so that the controllability can be
obtained by means of Carleman estimates and fixed point theorems. Loosely speaking, such
an approach corresponds to low Reynolds controllability.

More generally, local null controllability is a particular case of local controllability to
trajectories. For Dirichlet boundary conditions, the first results have been obtained by
Imanuvilov who proved local controllability in 2D and 3D provided that the initial state are
close in H1 norm, with interior controls, first towards steady-states in [21] then towards
strong trajectories in [22]. Fursikov and Imanuvilov proved large time global null controlla-
bility in 2D for a control supported on the full boundary of the domain in [13]. Still in 2D,
they also proved local controllability to strong trajectories for a control acting on a part of
the boundary and initial states close in H1 norm in [14]. Eventually, in [15] they proved in
2D and 3D local controllability to strong trajectories with controls acting on the full bound-
ary, still for initial states close in H1 norm. More recently, these works have been improved
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in [11], where the authors prove local controllability towards less regular trajectories with
interior controls and for initial states close in L2 norm in 2D and L4 norm in 3D.

In contrast, in Theorem 1, the initial data u∗ can be arbitrarily large (and T arbitrarily
small). This corresponds to controllability at large Reynolds numbers. In this regime, the
first author and Fursikov proved global null controllability for the Navier-Stokes system in
a 2D manifold without boundary in [8].

Remark 1.3 (Comparison with earlier results). For the large Reynolds regime, let us
mention the earlier references [17, 18] where a related result is obtained in a similar setting.
In this earlier result, the distributed force can be chosen small in Lp((0, T );H−1(Ω)), where
1 < p < 4/3. The fact that, in Theorem 1, our phantom force can be chosen arbitrarily
small in the space L1((0, T ), Hk(Ω)) for any k ≥ 0, is the major improvement of this work.

Remark 1.4 (Geometric setting). Theorem 1 remains true for any rectangular domain
(0, L1)×(0, L2) and any positive viscosity ν, thanks to a straightforward change of variables.
On the other hand, we consider the case of a rectangle because it provides many crucial
simplifications. This is not for the sake of clarity of the exposition; we suspect that the
case of a general domain requires different arguments. A key point is that this geometric
setting and the use of well-chosen controls enable us to guarantee that the boundary layer
equations we consider will remain linear and well-posed (see (3.14) and Remark 3.5).

Remark 1.5 (Additional properties of the phantom force). During the proof, we will check
that the phantom force fg we use has C∞ regularity by parts with respect to time and C∞

regularity with respect to space for each time. Moreover, we will check that, during the
most important step of our strategy (the global approximate control phase, which involves
passing through intermediate states of very large size), there exists δ > 0 such that

supp fg(t) ⊂ [0, L]× [−1 + δ, 1− δ]. (1.5)

1.4 Strategy of the proof and plan of the paper

We explain the strategy of the proof of Theorem 1, which is divided into three steps. First,
we prove that the initial data can be regularized into an analytic function with arbitrary
analyticity radius. Then, we prove that a large analytic initial data with a sufficient
analyticity radius can be driven approximately to the null equilibrium. Last, we know
that small enough states can be driven exactly to the rest state. These three steps are
implemented in the three propositions below, where we set the Navier-Stokes equations in
the horizontal band

B := R× [−1, 1], (1.6)

with a control supported in the extended region, outside of Ω. Therefore, we look for
solutions to 

∂tu+ (u · ∇)u+∇p−∆u = fc + fg in (0, T )×B,

div u = 0 in (0, T )×B,

u = 0 on (0, T )× ∂B,
(1.7)

where the force fc is a control supported in B \Ω and the force fg is the phantom (ghost)
force supported in Ω. Restricting such solutions of Navier-Stokes in the band to the physical
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domain Ω will prove Theorem 1. We also introduce a domain

G := [−2L,−L]× [−1, 1] (see Fig. 1). (1.8)

We will denote by ex and ey the unit vectors of the canonical basis of R2.

Proposition 1.6 (Analytic regularization of the initial data). Let T > 0 and ρb > 0. Let
u∗ ∈ L2

div(Ω̄) with
∫

Ω u∗ · ex = 0. For any k ∈ N and ηb > 0, there exists an extension
ua ∈ L2

div(B) of u∗ to the band B, a control force fc ∈ C∞([0, T ] × (B \ Ω̄)), a phantom
force fg ∈ C∞([0, T ]× Ω̄) satisfying

‖fg‖L1((0,T );Hk(Ω)) ≤ ηb, (1.9)

and a weak Leray solution u ∈ C0([0, T ];L2
div(B)) ∩ L2((0, T );H1(B)) to (1.7) associated

with the initial data ua, such that there exists Tb ≤ T such that ub := u(Tb) ∈ L2
div(B)

satisfies
‖ub|G‖Hk(G) + ‖ub|B\Ω‖L2(B\Ω) + ‖ub|Ω − u∗‖L2(Ω) ≤ ηb (1.10)

and is such that there exists Cb > 0 such that

∀m ≥ 0, ‖∂mx ub‖H3(B) ≤
m!

ρmb
Cb, (1.11)∑

0≤α+β≤3

‖∂αx ∂βy ub‖L1
x(L2

y) ≤ Cb. (1.12)

Proposition 1.7 (Global approximate null controllability from any analytic initial data).
Let T > 0. There exists ρb > 0 such that, for every σ > 0 and each ub ∈ L2

div(B) for which
there exists Cb > 0 such that (1.11) and (1.12) hold, for every k ∈ N and δ ∈ (0, 1

2), there
exist two forces fc ∈ C∞([0, T ]× (B \ Ω)) and fg ∈ C∞([0, T ]× Ω̄) satisfying

‖fg‖L1((0,T );Hk(Ω)) ≤ Ck,δ‖ub|G‖Hk(G), (1.13)

supp fg ⊂ (0, T )× [0, L]× [−1 + δ, 1− δ], (1.14)
supp fc ⊂ (0, T )×B \ Ω̄ (1.15)

and a weak solution u ∈ C0([0, T ];L2
loc,div(B)) ∩ L2((0, T );H1

loc(B)) to (1.7) associated
with the initial data ub, such that there exists Tc ≤ T such that uc := u(Tc) ∈ L2

loc,div(B)
satisfies

‖uc|Ω‖L2(Ω) ≤ σ + ‖ub|{|y|≥1−2δ}‖L2(B). (1.16)

Moreover, the constant Ck,δ only depends on k and δ.

Proposition 1.8 (Local null controllability). Let T > 0. There exists σ > 0 such that,
for any uc ∈ L2

div(Ω) which satisfies

‖uc|Ω‖L2(B) ≤ 3σ, (1.17)

there exists a weak solution u ∈ C0([0, T ];L2
div(Ω)) ∩ L2((0, T );H1(Ω)) to (1.1) with the

initial data uc and fg = 0, which satisfies u(T ) = 0.
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Proposition 1.8 is a direct consequence of known results concerning the small-time local
null controllability of the Navier-Stokes equation (see Remark 1.2 for references).

Let us prove that the combination of these three propositions implies Theorem 1. First,
thanks to standard arguments, it is sufficient to prove Theorem 1 for initial data satisfying∫

Ω u∗ · ex = 0. Indeed, applying vanishing boundary controls on the original system for
any positive time guarantees that the state gains this property. Therefore, we assume that
the initial data already satisfies this property. We fix the quantities step by step in the
following manner.

• Let T > 0 and u∗ ∈ L2
div(Ω) satisfying

∫
Ω u∗ · ex = 0.

• Let ρb > 0 be given by Proposition 1.7 for a time interval of length T/3.

• Let σ > 0 be given by Proposition 1.8 for a time interval of length T/3.

• Let δ1 ∈ (0, 1
2) small enough such that ‖(u∗)|{|y|≥1−2δ1}‖L2(Ω) ≤ σ.

• Let k ∈ N and η > 0.

• Let ηb := min{η/2, σ, η/(2Ck,δ1)}.

• We apply Proposition 1.6 with a time interval of length T/3, ρb, k and ηb. Hence,
there exists Tb ≤ T/3 and a solution u defined on [0, Tb] with u(0)|Ω = u∗ and such
that ub := u(Tb) satisfies (1.10), (1.11) and (1.12).

• We apply Proposition 1.7 with a time interval of length T/3, ρb, δ1, k and σ. This
yields a solution u defined on [Tb, Tc] with Tc ≤ Tb+T/3 ≤ 2T/3 such that uc := u(Tc)
satisfies (1.16).

• By triangular inequality, ‖ub|{|y|≥1−2δ1}‖L2(B) ≤ ‖ub|B\Ω‖L2(B) + ‖ub|Ω − u∗‖L2(Ω) +
‖(u∗)|{|y|≥1−2δ1}‖L2(Ω). Since ηb ≤ σ, (1.10) and (1.16) imply that (1.17) holds.

• Finally, we apply Proposition 1.8. This yields a solution u defined on [Tc, T3] with
T3 := Tc + T/3 ≤ T such that u(T3) = 0.

• The concatenated forces fc and fg are C∞ by parts in time with C∞ regularity in
space.

• This concludes the proof of Theorem 1 up to extending the solution and the forces
by 0 on [T3, T ].

Remark 1.9. The fact that, starting from a finite energy initial data, the solution to
the Navier-Stokes equation instantly becomes analytic is well-known. However, in the un-
controlled setting, the analytic radius only grows like

√
t. In Proposition 1.6, we use the

phantom force to enhance the regularization in short time.

Remark 1.10. The small-time global approximate null controllability result of Proposi-
tion 1.7 will be proved thanks to a return-method argument (see Section 3). A base flow
will shift the whole band B of a distance 2L towards the right. Roughly speaking, the main
part of the initial data ub|Ω will then be outside of the physical domain and killed by a
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x

y

0 L 2L 3L−L−2L−3L

Flushing of 2L

δ

B = R× [−1, 1]
ΩG

supp fg

Figure 1: The horizontal band B = R × [−1, 1], the physical domain Ω = [0, L] × [−1, 1]
and the domain G = [−2L,−L]× [−1, 1].

control force. However, since we need to work in an analytic setting (to establish estimates
for a PDE with a derivative loss, see Section 5), this action cannot be exactly localized
outside of the physical domain. Its leakage inside the physical domain will be related to the
values of ub in G and lead to the unwanted phantom force. This explains estimate (1.13).
Of course, since ub is analytic in the tangential direction x, it cannot satisfy ub|G = 0.

Proposition 1.6 is proved in Section 2. Proposition 1.7 is the main contribution of this
paper. We explain our strategy to prove this small-time global approximate null control-
lability result in Section 3. It is based on the construction of approximate trajectories and
the well-prepared dissipation method. We give estimates concerning the boundary layer in
Section 4, estimates concerning the remainder in Section 5 and finally analytic estimates
on the approximate trajectories themselves as an appendix in Section 6.

2 Regularization enhancement

This section is devoted to the proof of Proposition 1.6.

2.1 Fourier analysis in the tangential direction

We introduce a few notations that will be used throughout this paper.

Tangential Fourier transform. To perform analytic estimates in the tangential direc-
tion, we use Fourier analysis in the tangential direction. For a ∈ L2(B), we will denote its
Fourier transform with respect to the tangential variable by Fa and define it as

Fa(ξ, y) :=

∫
Rx
a(x, y)e−ixξ dx. (2.1)

We define similarly the reciprocal Fourier transform F−1, which obviously also acts only
on the tangential variable.
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Band-limited functions. Let N > 0. We will sometimes need to consider functions
in L2(B) whose Fourier transform is supported within the set of tangential frequencies ξ
satisfying |ξ| ≤ N . Therefore, we introduce the Fourier multiplier

PN (ξ) := 1[−N,N ](ξ) (2.2)

and the associated functional space

L2
N (B) :=

{
a ∈ L2(B); a = PNa

}
. (2.3)

For any k ∈ N and a ∈ Hk(B), it is clear that

‖PNa− a‖Hk(B) → 0 as N → +∞. (2.4)

2.2 Regularization enhancement using the phantom and the control

We start with the following lemma concerning the possibility to remove high tangential
frequencies from a smooth initial data. We denote by P the usual Leray projector on
divergence free vector fields, tangent to ∂B.

Lemma 2.1. Let ua ∈ L2
div(B) and Tb > 0. We denote by ũa the solution of the free

Navier-Stokes equation at time Tb starting from ua. There exists a family indexed by
N > 0 of vector fields uN ∈ C0([0, Tb];L

2
div(B))∩L2((0, Tb);H

1(B)) associated with forces
fN ∈ C0([0, Tb];H

k(B)), which are weak Leray solutions to

∂tuN −∆uN + P[(uN · ∇)uN ] = PfN , uN (0) = ua (2.5)

and satisfy, for any k ∈ N and ρb > 0,

‖(fN )|Ω‖L1((0,Tb);Hk(Ω)) −→
N→+∞

0, (2.6)

fN ∈ C∞([0, Tb]×B), (2.7)
‖(uN (Tb)− ũa)|Ω‖L2(Ω) −→

N→+∞
0, (2.8)

‖(uN (Tb))|G‖Hk(G) −→
N→+∞

0, (2.9)

‖(uN (Tb))|B\Ω̄‖L2(B\Ω̄) ≤ ‖(ũa)|B\Ω̄‖L2(B\Ω̄) + o
N→+∞

(1), (2.10)

∃CN > 0, sup
m≥0
‖∂mx uN (Tb)‖H3(B) ≤

m!

ρmb
CN , (2.11)

∃CN > 0,
∑

0≤α+β≤3

‖∂αx ∂βy uN (Tb)‖L1
x(L2

y) ≤ CN . (2.12)

Proof. Let ua ∈ L2
div(B). Let Tb > 0. Let v be the weak Leray solution to

∂tv −∆v + P[(v · ∇)v] = 0, v(0) = ua. (2.13)

Hence, by definition, ũa = v(Tb). It is classical to prove that v ∈ C∞((0, Tb] × B) (see
e.g. [36]). Let β ∈ C∞([0, Tb]; [0, 1]) with β = 1 on [0, Tb/3] and β = 0 on [2Tb/3, Tb]. Let
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θ ∈ C∞(B; [0, 1]) with θ = 1 for x ∈ [0, L] and θ = 0 for x < −L or x > 2L. We consider
u := βv + (1− β)θv. Then, u is the weak Leray solution to

∂tu−∆u+ P[(u · ∇)u] = Pg, u(0) = ua, (2.14)

where we set

g := β̇(1− θ)v − (1− β)(θv · ∇)((1− θ)v)

− β(1− β)(v · ∇)((1− θ)v) + β(1− β)(θv · ∇)((1− θ)v).
(2.15)

Hence, supp g ⊂ [Tb/3, Tb]× (B \ Ω̄) and g ∈ C∞([0, Tb]×B). We define

uN (t) := β(t)u(t) + (1− β(t))PNu(t), (2.16)

where PN is defined in (2.2). In particular, (2.16) implies (2.5), provided that one sets

fN := β̇(u−PNu) + (1− β)
(

(PNu · ∇)PNu−PN ((u · ∇)u)
)

+ β(1− β)
(

(u · ∇)(PNu− u) + (PNu · ∇)(PNu− u)
)

+ βg + (1− β)PNg.

(2.17)

Let k ∈ N. Thanks to definition (2.17), there holds (2.6) and (2.7). Indeed, u belongs
to C0([Tb/3, Tb];H

k+1(Ω)) and the family PNu converges towards u in this space. From
(2.16), at the final time, one has

uN (Tb) = PNu(Tb) = PN (θv(Tb)) = PN (θũa). (2.18)

In particular, we deduce from (2.18) that uN (Tb) is "entire" in x so that, for any ρb > 0,
there exists Cb > 0 such that (2.11) holds. We also deduce from (2.18) that uN (Tb)→ θũa
in Hk(B), which implies (2.8), (2.9) and (2.10).

To obtain (2.12), we change slightly the definition (2.2) of PN . Instead of a rectangular
window filter, we define PN as the Fourier multiplier WN , where WN ∈ C∞(R; [0, 1]) is
such thatWN (ξ) = 1 for ξ ∈ [−N+1, N−1] andWN (ξ) = 0 when |ξ| ≥ N . This preserves
the property (2.4) but has a better behavior with respect to L1 norms in space. Indeed, if
φ ∈ S(R,R), one checks that WNφ ∈ L1(R). This property implies (2.12).

2.3 Proof of the regularization proposition

We turn to the proof of Proposition 1.6.
Let T, ρb, ηb > 0 and k ∈ N. Let u∗ ∈ L2

div(Ω) satisfying
∫

Ω u∗ · ex = 0. We start by
extending u∗ into ua ∈ L2

div(B) such that ‖(ua)|B\Ω‖L2(B\Ω) ≤ ηb/10. For Tb ∈ (0, T ) small
enough, the free solution starting from ua at time Tb, say ũa satisfies ‖(ũa)|B\Ω̄‖L2(B\Ω̄) ≤
ηb/5 and ‖(ũa)|Ω − u∗‖L2(Ω) ≤ ηb/5.

We choose N large enough such that (2.8), (2.9) and (2.10) imply that ub := uN (Tb),
where the family (uN , fN ) is given by Lemma 2.1, satisfies (1.10) and such that (2.6)
ensures (1.9). Estimates (2.11) and (2.12) prove (1.11) and (1.12). This concludes the
proof of Proposition 1.6, provided that we define fg := (fN )|Ω and fc := (fN )|B\Ω, each
being smooth within its support.
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3 Strategy for global approximate controllability

We explain our strategy to prove Proposition 1.7. Let T > 0, ub ∈ L2
div(B), δ ∈ (0, 1

2) and
k ∈ N. We intend to construct a family of approximate trajectories depending on a small
parameter 0 < ε � 1 and driving ub approximately to zero. We detail the construction
of this family in the following paragraphs. Then, we prove estimates on boundary layer
terms for these approximate trajectories in Section 4. We prove estimates on the remainder
in Section 5 and postpone analytic-type estimates for these approximate trajectories to
Section 6.

3.1 Small-time to small-viscosity scaling

Let κ ∈ (0, 1). Although it might seem like a further complication, our strategy is based
on trying to control the system (1.7) at an even shorter time scale, ε1−κT , passing through
intermediate states (velocities) of order 1/ε. For ε ∈ (0, 1), we introduce the trajectories

U ε(t, x, y) := uε(t/ε, x, y)/ε, P ε(t, x, y) := pε(t/ε, x, y)/ε2, (3.1)

F εg (t, x, y) := f εg (t/ε, x, y)/ε2 and F εc (t, x, y) := f εc (t/ε, x, y)/ε2. (3.2)

The tuples (U ε, P ε, F εc , F
ε
g ) define solutions to (1.7) with initial data ub if and only if the

new unknowns (uε, pε, fεc , f
ε
g ) are solutions to the rescaled system

∂tu
ε + (uε · ∇)uε +∇pε − ε∆uε = f εg + f εc in (0, T/εκ)×B,

div uε = 0 in (0, T/εκ)×B,

uε = 0 on (0, T/εκ)× ∂B,
uε|t=0 = εub in B.

(3.3)

Observe the three differences between (3.3) and the original system (1.7):

• the Laplace term has a small factor ε in front of it rather than 1,

• the system is set on the long time interval (0, T/εκ) rather than (0, T ),

• the initial data is εub rather than ub.

We construct approximate solutions to (3.3) if the following paragraph.

3.2 Return method ansatz

We introduce the following explicit approximate solution to (3.3):

uεapp(t, x, y) := u0(t) + χ(y)v0
(
t, ϕ(y)/

√
ε
)

+ εu1(t, x, y)+ε2wε(t, y), (3.4)

pεapp(t, x, y) := p0(t, x), (3.5)

f εc (t, x, y) := εf1
|B\Ω(t, x, y), (3.6)

f εg (t, x, y) := εf1
|Ω(t, x, y). (3.7)

In the following lines, we define each of the three terms involved in this approximate
solution. We refer to Section 3.4 for comments on the choice of these profiles.
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Base Euler flow profile. Let n ∈ N satisfying n ≥ 3 and

n >
3

4

(
1

κ
− 1

)
. (3.8)

Let h in C∞(R+,R) be such that

supp h ⊂ (0, T/3] ∪ [2T/3, T ), (3.9)∫ T/3

0
h(t)dt = 2L, (3.10)∫ T

0
tkh(t)dt = 0 for 0 ≤ k < n. (3.11)

We define
u0(t) := h(t)ex and p0(t, x) := −ḣ(t)x. (3.12)

For a function a ∈ L2(B), we will denote its translation along the base flow h by

(τha)(t, x, y) := a

(
x−

∫ t

0
h(s) ds, y

)
. (3.13)

Boundary layer profile. Let ϕ ∈ C∞([−1, 1], [0, 1]) such that ϕ(±1) = 0 and |ϕ′(y)| =
1 for |y| ≥ 1/4. Let χ ∈ C∞([−1, 1], [0, 1]) such that χ(y) = 1 for |y| ≥ 2/3, and χ(y) = 0
for |y| ≤ 1/3. Let V (t, z) be the solution to

∂tV − ∂zzV = 0 in R+ × R+,

V (t, 0) = h(t) on R+,

V (0, z) = 0 in R+.

(3.14)

We define
v0(t, z) := −V (t, z)ex. (3.15)

In the sequel, for any function V(t, z), depending on the fast variable, we will denote its
evaluation at z = ϕ(y)/

√
ε by

{V}(t, y) := V
(
t,
ϕ(y)√
ε

)
. (3.16)

Linearized Euler flow profile. Let β ∈ C∞(R+, [0, 1]) non-increasing such that β(1) =
1 for t ≤ T/3 and β(t) = 0 for t ≥ 2T/3. Let χδ ∈ C∞([−1, 1], [0, 1]) such that χδ(y) = 1
for |y| ≤ 1 − 2δ and χδ(y) = 0 for |y| ≥ 1 − δ. We define the stream function associated
with ub, then u1 and eventually the force f1.

ψb(x, y) := −
∫ y

−1
ub(x, y

′) · ex dy′, (3.17)

u1(t, x, y) := β(t)τh∇⊥[χδψb] + τh∇⊥[(1− χδ)ψb], (3.18)

f1(t, x, y) := β̇(t)
(
χδ(y)ub(x− 2L, y)− χ′δ(y)ψb(x− 2L, y)ex

)
. (3.19)
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Technical profile. For t ∈ R+ and y ∈ [−1, 1], we define the source

f εW :=
χ′′

ϕ4
{z4V }+ 2

χ′

ϕ5
ϕ′{z5∂zV }. (3.20)

Let W ε(t, y) : R+ × [−1, 1]→ R be the solution to
∂tW

ε − ε∂yyW ε = f εW in R+ × [−1, 1],

W ε(t,±1) = 0 on R+,

W ε(0, y) = 0 in [−1, 1].

(3.21)

Finally, we let
wε(t, y) := W ε(t, y)ex. (3.22)

Equation satisfied by the approximate trajectories. Then (uεapp, p
ε
app) are solutions

to
∂tu

ε
app +

(
uεapp · ∇

)
uεapp − ε∆uεapp +∇pεapp = f εc + f εg + εf εapp in (0, T/εκ)×B,

div uεapp = 0 in (0, T/εκ)×B,

uεapp = 0 on (0, T/εκ)× ∂B,
uεapp|t=0 = εub in B,

(3.23)
where we define

f εapp :=− ε∆u1 + ε(u1 · ∇)u1+ε2W ε∂xu
1 + ε2(u1 · ey)∂ywε

− χ{V }∂xu1 − u1 · ey
ϕ

(√
εχ′{zV }+ χϕ′{z∂zV }

)
ex.

(3.24)

3.3 Estimates and proof of approximate controllability

By construction, the approximate trajectory will be small at the final time.

Proposition 3.1. There exists a constant Capp > 0 such that, for ε > 0 small enough,

1

ε
‖uεapp(T/εκ)|Ω‖L2(B)

≤ Capp

(
ε

1
4 + εκ(n− 3

4
( 1
κ
−1))| ln ε|n+ 3

4

)
+ ‖ub|{|y|≥1−2δ}‖L2(B).

(3.25)

Moreover, the approximate trajectory can be arbitrarily close to a true trajectory.
Indeed, we can construct a remainder which is small, provided that the initial data ub is
sufficiently regular (its tangential analytic radius is large enough).

Proposition 3.2. There exists ρb > 0, depending only on T such that, if ub satisfies (1.11)
and (1.12) for some Cb > 0, there exists Cr > 0 such that, for ε > 0 small enough, there
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exists a weak Leray solution rε ∈ C0([0, T/εκ], L2
div(B)) ∩ L2((0, T/εκ), H1(B)) to

∂tr
ε +

(
uεapp · ∇

)
rε + ε (rε · ∇) rε + (rε · ∇)uεapp

−ε∆rε +∇πε = −f εapp in (0, T/εκ)×B,

div rε = 0 in (0, T/εκ)×B,

rε = 0 on (0, T/εκ)× ∂B,
rε|t=0 = 0 in B,

(3.26)
which moreover satisfies

‖rε‖L∞((0,T/εκ);L2(B)) ≤ Cr(ε
1
4 + ε1−κ). (3.27)

It is straightforward to check that Proposition 3.1 and Proposition 3.2 imply Proposi-
tion 1.7. Indeed, let ρb be given by Proposition 3.2 and assume that ub satisfies (1.11) and
(1.12) for some Cb > 0. We choose ε > 0 small enough such that the conclusions of both
propositions hold. We construct an exact trajectory by setting

uε := uεapp + εrε and pε := pεapp + επε. (3.28)

Combining (3.28) with the equation (3.23) satisfied by uεapp and the equation (3.26) satisfied
by rε proves that uε is a weak solution to (3.3).

Let σ > 0. Choosing ε > 0 small enough, summing estimates (3.25) and (3.27) and
recalling the definition (3.28) of uε, the assumption (3.8) on n and the scaling (3.1) proves
that (1.16) holds at the time Tc := ε1−κT < T .

Since ub satisfies (1.11), ub ∈ C∞(B). Thus, thanks to (3.2), (3.6), (3.7) and (3.19),
Fg ∈ C∞([0, Tc]× Ω̄), Fc ∈ C∞([0, Tc]×B \ Ω̄) and moreover

suppFg ⊂ (0, Tc)× [0, L]× [−1 + δ, 1− δ], (3.29)
suppFc ⊂ (0, Tc)×B \ Ω̄, (3.30)

Moreover, using (3.2), (3.7) and (3.19), one has

‖F εg (t)‖L1([0,Tc];Hk(Ω)) =
1

ε2
‖f εg (t/ε)‖L1([0,ε1−κT ];Hk(Ω))

=
1

ε
‖f εg (t)‖L1([0,T/εκ];Hk(Ω))

= ‖f1
|Ω‖L1([0,T/εκ];Hk(Ω))

= ‖χδub + χ′δψb‖Hk(G),

(3.31)

where we recall that the set G is defined in (1.8). This proves the estimate (1.13) concerning
the size of the phantom force, for a constant Ck,δ which only depends on the norm of χδ
in Hk+1(−1, 1), and thus concludes the proof of the approximate controllability result
Proposition 1.7.

We prove Proposition 3.1 in Section 4 (thanks to the well-prepared dissipation method)
and Proposition 3.2 in Section 5 (using a long-time nonlinear Cauchy-Kovalevskaya esti-
mate).
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3.4 Comments and insights on the proposed expansion

Remark 3.3 (Return method and base Euler flow). Since system (3.3) can be seen as a
perturbation of the Euler equations a natural idea is to follow the return method introduced
by Coron in [5] (see also [7, Chapter 6]) to prove the controllability of the Euler equations
in the 2D case (see also [6], and [16] for the 3D case). Loosely speaking the idea is to
overcome that the linearized problem around zero is not controllable by introducing, thanks
to the boundary control, a velocity u0 of order O(1) (whereas the initial velocity is only of
order O(ε)) solution to the Euler equation satisfying u0|t=0 = u0|t=T = 0 and such that the
corresponding flow flushes all the domain out during the time interval (0, T ). In the present
case of a rectangle this step is pretty easy and explicit: it corresponds to the introduction
of a flow which flushes out the initial data. From (3.12), we get that (u0, p0) indeed solves
the incompressible Euler equation:

∂tu
0 +

(
u0 · ∇

)
u0 = −∇p0, in R+ ×B,

div u0 = 0 in R+ ×B,

u0 · ey = 0 on R+ × ∂B,
(3.32)

with initial data u0(0) = 0 and u0(t) = 0 for t ≥ T .

Remark 3.4 (Transport of the initial data). The term u1 takes into account the initial
data ub, which is transported by the flow u0. Using (3.12), (3.18) and (3.19), we obtain
that u1 solves 

∂tu
1 + h(t)∂xu

1 = f1 in R+ ×B,

div u1 = 0 in R+ ×B,

u1 = 0 on R+ × ∂B,
u1(0) = ub in B.

(3.33)

Thanks to assumption (3.10), it is clear that the initial data will be flushed outside of the
domain at time T/3. During the time interval [T/3, 2T/3], the initial data ub has been
shifted towards the right of a distance 2L. This is the time interval during which the force
f1 kills most of the initial data (for |y| ≤ 1− δ).

The key point is that, outside of the physical domain, this force is merely a control.
However, since we need this force to be analytic, it also acts a little bit within the physical
domain. This gives rise to an unwanted phantom force.

Remark 3.5 (Boundary layer correction). A major difficulty is linked to the discrepancy
between the Euler and the Navier-Stokes equations in the vanishing viscosity limit. Indeed,
although inertial forces prevail inside the domain, viscous forces play a crucial role near
the uncontrolled boundary, and give rise to a boundary layer of order O(1) associated with
the velocity u0 which does not satisfy the tangential part of the Dirichlet condition on the
top and bottom boundaries.

The purpose of the second term v0 is to recover the Dirichlet boundary condition by
introducing the boundary layer generated by u0. Thanks to our previous choice of u0 we will
avoid the difficulty usually associated with the Prandtl equation. Indeed the boundary layer
will also be fully horizontal (tangential) and will not depend on x so that the equation for
v0 will deplete into a linear heat equation with non-homogeneous Dirichlet data depending
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on u0. The quantity ϕ(y)/
√
ε reflects quick variations within the boundary layer, where

ϕ(y) is the distance to the boundary.

4 Well-prepared dissipation method for the boundary layer

The key argument of the well-prepared dissipation method is that the normal dissipation
involved in fluid mechanics boundary layer equations can dissipate most of their energy,
provided that the created boundary layers are “well-prepared” in some sense. Roughly
speaking, this preparation amounts to ensure that they do not contain energy at low
frequencies.

4.1 Large time decay of the boundary layer profile

In the work [9] concerning the case of the Navier slip-with-friction boundary condition, we
used boundary controls to import enough vanishing moments thanks to the transport by
the Euler flow within the boundary layer. In this work, we cannot use this strategy because
we do not want the boundary layer profile to depend on the slow tangential variable, see
Remark 3.5. Instead we rely on the assumptions (3.11) on the base Euler flow. We prove
below that these conditions entail a good decay for the boundary layer profile. This decay
will be used both to prove that the source terms generated by v in equation (3.26) for the
remainder are integrable with respect to time and that the boundary profile at the final
time is small enough to apply a local controllability result. For s,m ∈ N and I an interval
of R, we introduce the following weighted Sobolev spaces:

Hs,m(I) :=

{
f ∈ Hs(I),

s∑
α=0

∫
I

(
1 + z2

)m ∣∣∣f (α)(z)
∣∣∣2 dz < +∞

}
, (4.1)

which we endow with their natural norm. We will use this definition with I = R or I = R+.

Lemma 4.1. Let T > 0, s, n ∈ N and h ∈ C∞(R,R) satisfying (3.9) and (3.11). We
consider V the solution to (3.14). For any 0 ≤ m ≤ 2n+ 1, there exists a constant C such
that the following estimate holds:

|V (t, ·)|Hs,m(R+) ≤ C
∣∣∣∣ ln(2 + t)

2 + t

∣∣∣∣ 14+ 2n+1
2
−m

2

. (4.2)

Proof. Estimate (4.2) is straightforward up to time T because its right-hand side is bounded
from below for t ∈ [0, T ]. Thus, we focus on large time estimates. We start by explicit
computations in the frequency domain using Fourier transform. We consider the auxiliary
system {

∂tf − ∂zzf = (h(t)− ḣ(t)) · sgn(z)e−|z|, t ≥ 0, z ∈ R,
f(0, z) = 0, t = 0, z ∈ R.

(4.3)

Since the source term in (4.3) is odd, its unique solution f satisfies f(t, 0) = 0 for all
t ∈ R+. Hence, thanks to the uniqueness property for the heat equation on the half-line,
there holds V (t, z) = f(t, z) + h(t)e−z for t, z ≥ 0 because both sides of this equality solve
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the same heat equation. Therefore, proving estimates on f will provide estimates on V .
After Fourier transform and solving the ODE, we obtain the formula:

f̂(t, ζ) :=

∫
R
f(t, z)e−iζzdz = − 2iζ

1 + ζ2

∫ t

0
e−(t−s)ζ2

(
h(s)− ḣ(s)

)
ds. (4.4)

Since h vanishes after T (see (3.9)), the behavior of f (and thus V ) after time T is en-
tirely determined by the “initial” data fT (z) := f(T, z). Thanks to [9, Lemma 6], to
establish (4.2), it suffices to check that, for 0 ≤ j ≤ 2n,

∂jζ f̂T (0) = 0. (4.5)

Thanks to (4.4) and to the Leibniz rule, for j ∈ N, one has:

∂jζ f̂T (ζ) = −i
j∑

k=0

(
j

k

)
∂j−kζ

{
2ζ

1 + ζ2

}∫ T

0

(
h(t)− ḣ(t)

)
∂kζ

{
e−(T−t)ζ2

}
dt. (4.6)

First, since ζ 7→ 2ζ/(1 + ζ2) is an odd function, only its odd derivatives don’t vanish at
zero. Second, thanks to the Arbogast rule for the iterated differentiation of composite
functions (also known as Faà di Bruno’s formula), one has:

∂kζ

{
e−(T−t)ζ2

}
=

∑
m1+2m2=k

k!

m1!m2!

(−2ζ(T − t)
1!

)m1
(−2(T − t)

2!

)m2

e−(T−t)ζ2 . (4.7)

Hence, this derivative is non null at zero only if k is even, say k = 2k′ and the only non-
vanishing term in the right-hand side of (4.7) is the one corresponding to (m1,m2) = (0, k′)
and is proportional to (T − t)k′ . From (4.6) and (4.7) we deduce that ∂jζ f̂T (0) is a linear
combination of the moments ∫ T

0

(
h(t)− ḣ(t)

)
(T − t)k′dt, (4.8)

where 0 ≤ 2k′ ≤ j−1. Thanks to (3.9) and (3.11), the integrals (4.8) vanish for 0 ≤ k′ < n.
So (4.5) holds for j ≤ 2n− 1. Last, (4.5) also holds for j = 2n because, when j is even, all
the terms vanish. Indeed, in (4.6), either k is odd or j−k = 2n−k is even. This concludes
the proof of the lemma.

4.2 Fast variable scaling and Lebesgue norms

Let us prove the following lemma, which is a simpler version of [19, Lemma 3, page 150].

Lemma 4.2. Let γ ∈ C0([−1, 1]) with γ ≡ 0 on
(
−1

3 ,
1
3

)
. For V ∈ L2(R+) and ε > 0:

‖γ{V}‖L2(−1,1) ≤ 2ε
1
4 ‖γ‖∞‖V‖L2(R+). (4.9)

Proof. For −1 ≤ y ≤ −1
4 , we assumed ϕ′ = 1. Thus, ϕ(y) = 1 + y. Recalling the fast

variable notation (3.16) and performing an affine change of variables gives∫ − 1
3

−1
γ2(y)V2

(
ϕ(y)√
ε

)
dy =

√
ε

∫ 2
3
√
ε

0
γ2(
√
εz − 1)V2(z) dz ≤ √ε‖β‖2∞‖γ‖2L2(R+). (4.10)

Proceeding likewise for 1
3 ≤ y ≤ 1 and bounding

√
2 by 2 yields (4.9),
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4.3 Estimates for the technical profile

Lemma 4.3. Assume that (3.11) holds for some n ≥ 3. There exists CW such that, for
every ε ∈ (0, 1), the solution W ε to (3.21) satisfies, for every t ≥ 0,

‖W ε(t)‖L∞(−1,1) + ‖∂yW ε(t)‖L∞(−1,1) ≤ ε−
3
4CW . (4.11)

Proof. Differentiating (3.21) with respect to time, multiplying by ∂tW ε and integrating by
parts, we obtain the energy estimate

‖∂tW ε‖L∞(R+;L2(−1,1)) ≤ 2‖∂tf εW ‖L1(R+;L2(−1,1)). (4.12)

Plugging this estimate in the equation (3.21) yields

‖∂yyW ε‖L∞(R+;L2(−1,1)) ≤
1

ε

(
‖f εW ‖L∞(R+;L2(−1,1)) + 2‖∂tf εW ‖L1(R+;L2(−1,1))

)
, (4.13)

Thanks to estimate (4.9) from Lemma 4.2 applied to the definition (3.20) of f εW , we obtain,
for t ≥ 0,

‖f εW (t)‖L2(−1,1) ≤ 2ε
1
4 ‖χ′′/ϕ4‖∞‖z4V (t, z)‖L2(R+)

+ 2ε
1
4 ‖2χ′ϕ′/ϕ5‖∞‖z5∂zV (t, z)‖L2(R+)

≤ Cε 1
4 ‖V (t)‖H1,5(R+),

(4.14)

where C is a finite constant because, by construction, χ′ and χ′′ vanish for |y| ≥ 2
3 , so that

the division by ϕ which vanishes at y = ±1 is not singular. Proceeding similarly and using
the equation (3.14) on V , we obtain

‖∂tf εW (t)‖L2(−1,1) ≤ Cε
1
4 ‖V (t)‖H3,5(R+). (4.15)

Combining (4.14) with Lemma 4.1 applied to m = 5, n = 3, s = 1, we obtain

‖f εW (t)‖L2(−1,1) ≤ Cε
1
4

∣∣∣∣ ln(2 + t)

2 + t

∣∣∣∣ 54 ≤ Cε 1
4 (4.16)

Combining (4.15) with Lemma 4.1 applied to m = 5, n = 3, s = 3, we obtain

‖∂tf εW ‖L1(R+;L2(−1,1)) ≤ Cε
1
4

∫ +∞

0

∣∣∣∣ ln(2 + t)

2 + t

∣∣∣∣ 54 dt ≤ 26Cε
1
4 . (4.17)

Eventually, plugging (4.16) and (4.17) into (4.13) proves (4.11) thanks to the boundary
conditions W ε(t,±1) = 0 and the Poincaré-Wirtinger inequality for ∂yW ε.

4.4 Proof of the decay of approximate trajectories

We prove Proposition 3.1. Recalling the definition (3.4) of uεapp, we estimate the size of
each term at the time T/εκ.

• Thanks to (3.9) and (3.12), u0(T/εκ) = 0.
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• Thanks to (4.9) from Lemma 4.2 and (4.2) from Lemma 4.1, there holds

‖χ{v0(T/εκ)}‖L2
y
≤ 2ε

1
4 ‖χ‖∞‖V (T/εκ)‖L2(R+)

≤ 2ε
1
4C

∣∣∣∣ ln(2 + T/εκ)

2 + T/εκ

∣∣∣∣ 34+n

≤ C̃ε1+κ(n− 3
4

( 1
κ
−1))| ln ε|n+ 3

4 ,

. (4.18)

for some constant C̃ > 0.

• Thanks to (3.18),
u1(T/εκ) = ∇⊥[(1− χδ)ψb]. (4.19)

Moreover, since ub satisfies (1.12), ub ∈ L1(B). In particular, since ub is divergence-
free, this implies that, for all x ∈ R,∫ +1

−1
ub(x, y) · ex dy = 0, (4.20)

so that ψb, which was defined as (3.17) can equivalently be written as

ψb(x, y) =

∫ 1

y
ub · ex dy. (4.21)

Thanks to (4.19), this implies that there exists a constant Cδ > 0 which only depends
on the norm of χδ in H1(−1, 1) such that

ε‖u1(T/εκ)‖L2(B) ≤ εCδ‖ub|{|y|≥1−2δ}‖L2(B). (4.22)

• Thanks to estimate (4.11) from Lemma 4.3,

ε2‖wε(T/εκ)‖L∞y ≤ ε1+ 1
4CW . (4.23)

Gathering these estimates concludes the proof of estimate (3.25) of Proposition 3.1.

5 Estimates on the remainder

This section is devoted to the proof of Proposition 3.2. An important difficulty to obtain
some uniform energy estimates of rε from system (3.26) is that the term (rε · ∇)uεapp

contains a term with a factor 1/
√
ε due to the fast variation of the boundary layer term in

the normal variable (see the expansion (3.4) of uεapp). To deal with this difficulty we use a
reformulation of this term where the singular factor is traded against a loss of derivative on
rε in the tangential direction x (see Section 5.1). Then, we establish a long-time nonlinear
Cauchy-Kovalevskaya estimate (see Section 5.3) thanks to some tools from Littlewood-
Paley theory which are recalled in Section 5.2.

Remark 5.1. The well-posedness of the Prandtl equations as well as the convergence of
the Navier-Stokes equations to the Prandtl equations in the analytic setting dates back to
[34, 35, 27]. The seminal results of Caflisch and Sammartino require analyticity in both
spatial directions, and only imply well-posedness of the Prandtl equations on a small time
interval. Analytic techniques have been later used in [20, 37] to obtain large-time well-
posedness for Prandtl equations by requiring analyticity only in the tangential direction.
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5.1 Singular amplification to loss of derivative

On the one hand, we use the expansion (3.4) of uεapp to expand

(rε · ∇)uεapp =
1√
ε
ϕ′χrε2{∂zv0}+ rε2(χ′{v0}+ε2∂yw

ε) + ε (rε · ∇)u1. (5.1)

Let M be the operator which associates with any function a ∈ L2(−1, 1), the function
M [a] defined for y in (−1, 1) by

(M [a])(y) := −χ(y)

∫ 1

0
a(±1∓ s(1∓ y)) ds, (5.2)

where the signs are chosen depending on whether ±y ≥ 0. Using the null boundary
condition and the divergence-free condition in (3.26) and the fact that |ϕ′| = 1 where
χ 6= 0, we obtain that the first term in the right-hand side of (5.1) can be recast as

1√
ε
ϕ′χrε2{∂zv0} = (M [∂xr

ε
1]){z∂zv0}. (5.3)

On the other hand we decompose the term (uεapp · ∇)rε of (3.26), thanks to (3.4), into(
uεapp · ∇

)
rε = (h− χ{V }+ε2W ε)∂xr

ε + ε
(
u1 · ∇

)
rε, (5.4)

Thus, using (5.3) and (5.4), the system (3.26) now reads
∂tr

ε + (h− χ{V }+ε2W ε)∂xr
ε − ε∆rε +∇πε = f εr in (0, T/εκ)×B,

div rε = 0 in (0, T/εκ)×B,

rε = 0 on (0, T/εκ)× ∂B,
rε|t=0 = 0 on B,

(5.5)

where we introduce

−f εr := f εapp + (M [∂xr
ε
1]){z∂zv0}+ rε2(χ′{v0}+ε2∂yw

ε)

+ ε (rε · ∇)u1 + ε
(
u1 · ∇

)
rε + ε (rε · ∇) rε.

(5.6)

5.2 A few tools from Littlewood-Paley theory

To perform analytic estimates, we use Fourier analysis and Littlewood-Paley decomposi-
tion. We refer to [1, Chapter 2] for a detailed course on Littlewood-Paley theory. Although
all the functions we consider in this section are defined on the band B = Rx × [−1, 1]y,
we only perform Fourier analysis and Littlewood-Paley decomposition in the tangential
direction x ∈ Rx. When a confusion is possible, we will use the subscripts x or y to stress
the variable involved in the functional spaces.
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Dyadic partition of unity. We recall that, for a ∈ L2(B), we defined its Fourier
transform Fa in the tangential direction as (2.1). We fix χlp, ϕlp ∈ C∞(R, [0, 1]) such that

suppϕlp ⊂
{
τ ∈ R;

3

4
≤ |τ | ≤ 8

3

}
, (5.7)

suppχlp ⊂
{
τ ∈ R; |τ | ≤ 4

3

}
, (5.8)

∀τ ∈ R∗,
∑
j∈Z

ϕlp(2−jτ) = 1, (5.9)

∀τ ∈ R, χlp(τ) +
∑
j∈N

ϕlp(2−jτ) = 1, (5.10)

∀τ ∈ R∗,
1

2
≤
∑
j∈Z

ϕ2
lp(2−jτ) ≤ 1, (5.11)

The existence of such a dyadic partition of unity is proved in [1, Proposition 2.10]. For
k ∈ Z, we introduce the Fourier multipliers ∆̇k and Ṡk by defining, for any a ∈ L2(B),

∆̇ka := F−1
(
ϕlp(2−kξ)Fa(ξ, y)

)
, (5.12)

Ṡka := F−1
(
χlp(2−kξ)Fa(ξ, y)

)
. (5.13)

The operators ∆̇k and Ṡk are with respect to the horizontal variable only. For a ∈ L2(B),
one has, thanks to (5.9) and (5.10),

Ṡka =
∑
j≤k−1

∆̇ja. (5.14)

Homogeneous Besov spaces. For a ∈ L2(B), we will use for s = 0 and s = 1
2 the

following quantity corresponding to a homogeneous Besov norm

‖a‖Ḃs :=
∑
k∈Z

2ks‖∆̇ka‖L2(B). (5.15)

Since we will use such norms for functions whose Fourier transforms in x are compactly
supported, we do not provide more details on the definition of the corresponding functional
spaces, referring for more to [1].

Classical estimates. We recall the following classical estimates, for which we track the
constants. First, we will use the following Bernstein type lemma from [1, Lemma 2.1].

Lemma 5.2. There exists a universal constant CB ≥ 2 such that the following properties
hold. Let 1 ≤ p ≤ q ≤ +∞, α ∈ {0, 1}, k ∈ Z and a ∈ L2(B).

• If the support of Fa is included in {(ξ, y); 2−k|ξ| ≤ 100}, then

‖∂αx a‖Lqx(L2
y) ≤ CB2

k
(
α+

(
1
p
− 1
q

))
‖a‖Lpx(L2

y). (5.16)
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• If the support of Fa is included in {(ξ, y); 1
100 ≤ 2−k|ξ| ≤ 100}, then

‖a‖Lpx(L2
y) ≤ CB2−kα‖∂αx a‖Lpx(L2

y). (5.17)

Lemma 5.3. Let a ∈ H1
0 ([−1, 1]y). Then

‖a‖L∞y ≤ ‖a‖
1
2

L2
y
‖∂ya‖

1
2

L2
y
. (5.18)

Proof. This is a classical Gagliardo-Nirenberg interpolation inequality (see [30]). The fact
that (5.18) holds with a unit constant for this particular choice of exponents is proved for
example in [29, Corollary 5.12] (which in fact yields a constant 2−

1
2 ).

As a consequence of Lemma 5.2, we have the following embedding. Indeed this is the
main motivation for considering the `1 norm rather than the `2 norm in the definition of
the homogeneous Besov norms Ḃs.

Lemma 5.4. Let a ∈ H1
0 (B). There holds,∑

k∈Z
2
k
2 ‖∆̇ka‖L2

x(L∞y ) ≤ CB‖∇a‖Ḃ0 , (5.19)∑
k∈Z
‖∆̇ka‖L∞(B) ≤ C2

B‖∇a‖Ḃ0 . (5.20)

Proof. Let a ∈ H1
0 (B). Hence, for almost every x ∈ Rx, a(x, ·) ∈ H1

0 ([−1, 1]y) and we can
apply Lemma 5.3. Using (5.18), Cauchy-Schwarz then (5.17) yields

2
k
2 ‖∆̇ka‖L2

x(L∞y ) ≤ 2
k
2 ‖∆̇ka‖

1
2

L2‖∆̇k∂ya‖
1
2

L2

≤ C
1
2
B‖∆̇k∂xa‖

1
2

L2‖∆̇k∂ya‖
1
2

L2

≤ C
1
2
B‖∆̇k∇a‖L2 ,

(5.21)

Hence, since CB ≥ 1, (5.21) proves (5.19) by the definition (5.15) of the norm Ḃ0. Moreover,
thanks to (5.16),

‖∆̇ka‖L∞x (L∞y ) ≤ CB2
k
2 ‖∆̇ka‖L2

x(L∞y ). (5.22)

Gathering (5.19) and (5.22) proves (5.20).

Lemma 5.5. Let a ∈ H1
0 (B) such that div a = 0. For each k ∈ Z,

‖∆̇ka2‖L2
x(L∞y ) ≤ CB2

k
2 ‖∆̇ka‖L2(B), (5.23)

Proof. Let a ∈ H1
0 (B). Hence, for almost every x ∈ Rx, a(x, ·) ∈ H1

0 ([−1, 1]y) and we can
apply Lemma 5.3. Using (5.18) and Cauchy-Schwarz, we obtain

‖∆̇ka2‖L2
x(L∞y ) ≤ ‖∆̇ka2‖

1
2

L2‖∆̇k∂ya2‖
1
2

L2 . (5.24)

Then, using that div a = 0 and Lemma 5.2, we observe that

‖∆̇k∂ya2‖L2 = ‖∆̇k∂xa1‖L2 ≤ CB2k‖∆̇ka1‖L2 . (5.25)

Gathering (5.24) and (5.25) proves (5.23) since CB ≥ 1.
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Paraproduct decomposition. We shall use the Bony’s decomposition (see [2]) for the
horizontal variable:

fg = Tfg + Tgf + R(f, g), (5.26)
where

Tfg :=
∑
k

Ṡk−1f∆̇kg, (5.27)

R(f, g) :=
∑
k

∆̇kf
˜̇∆kg (5.28)

˜̇∆kg :=
∑

|k−k′|≤1

∆̇k′g. (5.29)

Thanks to the support properties (5.7) of ϕlp and (5.8) of χlp, the following lemma holds.

Lemma 5.6. For any f , g and h in L2(B),

〈Tfg, ∆̇kh〉 =
∑

k′∈Z/ |k′−k|≤4

〈(Ṡk′−1f)(∆̇k′g), ∆̇kh〉, (5.30)

〈R(f, g), ∆̇kh〉 =
∑

k′∈Z/ k′≥k−3

〈(∆̇k′f)( ˜̇∆k′g), ∆̇kh〉. (5.31)

Analyticity by Fourier multipliers. Let |∂x| denote the Fourier multiplier with sym-
bol |ξ|. We associate with any positive C1 function of time ρ, the operator eρ|∂x| mapping
any reasonable function f(t, x, y) (say such that f ∈ L1

loc(L
2
N (B)), for some N ∈ N), to

(eρ|∂x| f)(t, x, y) := F−1
(
eρ(t)|ξ|Ff(t, ξ, y)

)
(x). (5.32)

Recall that F denotes the Fourier transform with respect to the tangential variable x,
see (2.1). The function ρ describes the evolution of the radius of analyticity of the consid-
ered function. Below we establish a long-time Cauchy-Kovalevskaya estimate, for which
the function ρ decays in time but not linearly.

Product estimates for analytic functions. For a ∈ L2(B), we introduce the notation

a+ := F−1|Fa|. (5.33)

Lemma 5.7. Let N ∈ N∗ and a, b, c ∈ L2
N (B). There holds

‖a+‖L2 = ‖a‖L2 , (5.34)∣∣∣〈eρ|∂x|PN (ab), c〉
∣∣∣ ≤ ∣∣∣〈(eρ|∂x| a+)(eρ|∂x| b+), c+〉

∣∣∣ . (5.35)

Proof. Equality (5.34) is an immediate consequence of the definition (5.33) and Plancherel’s
theorem. Moreover, by Plancherel’s theorem, the normalization (2.1), the triangle inequal-
ity and Plancherel’s theorem once more, we have that∣∣∣〈eρ|∂x|PN (ab), c〉

∣∣∣ =
1

2π

∣∣∣∣∣
∫
y

∫
|ξ|≤N

Fc(ξ)eρ|ξ|
∫
η
Fa(ξ − η)Fb(η) dη dξ dy

∣∣∣∣∣
≤ 1

2π

∫
y

∫
ξ∈R
|Fc(ξ)|

∫
η
eρ|ξ−η||Fa(ξ − η)|eρ|η||Fb(η)| dη dξ dy

= 〈(eρ|∂x| a+)(eρ|∂x| b+), c+〉.

(5.36)
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This scalar product is positive and this concludes the proof of (5.35).

5.3 Long-time weakly nonlinear Cauchy-Kovalevskaya estimate

In this paragraph, we explain how we will prove a long-time weakly nonlinear Cauchy-
Kovalevskaya estimate on the remainder. We start by defining quantities that will enable
us to define the expected profile of analyticity ρ(t). Then, we close the estimate relying
on a Grönwall-type argument. In the following paragraphs, we will prove the required
estimates.

Remark 5.8. The idea of closing an estimate on a nonlinear function of the solution to
control the loss of analyticity dates back to Chemin in [3]. It was later used in the context of
anisotropic Navier-Stokes equations (see [4, 32]) and, more recently, for Prandtl equations
in [37], using only analyticity in the tangential direction.

5.3.1 Friedrichs’ regularization scheme

In order for our manipulations to make sense, we will restrict (5.5) to a bounded range of
frequencies. Then, we establish estimates which are independent on the considered range
and we pass to the limit. This process was introduced by Friedrichs in [12] (see also [31]
for a recent example of the passage to the limit). Let N ∈ N. Instead of (5.5), we consider
the modified equation

∂tr
ε
N + (h− χ{V }+ε2W ε)∂xr

ε
N − ε∆rεN +∇πεN = f εN in (0, T/εκ)×B,

div rεN = 0 in (0, T/εκ)×B,

rεN = 0 on (0, T/εκ)× ∂B,
rεN |t=0 = 0 on B,

(5.37)

where we introduce

−f εN := PNf
ε
app + (M [∂xr

ε
N,1]){z∂zv0}+ rεN,2(χ′{v0}+ε2∂yw

ε)

+ εPN (rεN · ∇)u1 + εPN

(
u1 · ∇

)
rεN + εPN (rεN · ∇) rεN .

(5.38)

In the sequel, to lighten the notations, we will write r instead of rεN and we will omit the
projections PN . It will be clear from our proof that we perform a priori estimates which
are independent of N . Therefore, using usual compactness arguments, our proof will also
yield the same energy estimate for the initial equation (5.5). Since this argument is quite
classical, we will only detail the a priori estimates. Even though this regularization process
is transparent in the proof, it is necessary to ensure that all the quantities are well defined.

5.3.2 Definition of the analyticity profile

We start by defining the analyticity radius that we will require on the coefficients and the
source terms of the equation for the remainder

ρ0 := 2 + 102CB

∫ +∞

0
‖z∂zv0(t, z)‖L∞(R+) dt. (5.39)
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Recalling the definition (4.1) of the space H2,2(R+), one has, for t ≥ 0,

‖z∂zV (t, z)‖L∞(R+) ≤ 2‖V (t)‖H2,2(R+). (5.40)

Hence, since n ≥ 2, thanks to the decay estimate (4.2) from Lemma 4.1, ρ0 < +∞. Up to
a normalization constant due to Bernstein-type estimates, this radius corresponds to the
total amount of the loss of derivative that we expect. Then, we set, for t ≥ 0,

αε(t) := εκ + (1 + t2)−1, (5.41)

`1(t) :=
∑
k∈Z

2
|k|
4 ‖eρ0|∂x|∆̇k(∇u1(t))+‖L∞(B) (5.42)

`2(t) :=
∑
k∈Z

2
|k|
2 ‖eρ0|∂x|∆̇k(u

1(t))+‖2L∞(B), (5.43)

`3(t) :=
∑
k∈Z

2
|k|
2 ‖eρ0|∂x|∆̇k(u

1(t))+‖L∞x (L∞y )‖eρ0|∂x|∆̇k(u
1(t))+‖L2

x(L∞y ). (5.44)

These quantities will help us to control the (non singular but long-time) amplification
terms in the evolution of the remainder. We set

β(t) :=

∫ t

0

(
5‖χ′{v0}+ε2∂yw

ε‖L∞(B) + 107ε`1 + 1011ε`2 + 1013C2
Bε`3 + 10αε

)
. (5.45)

Proposition 5.9 (Proof in Section 6.2). If ub satisfies (1.11) for a constant Cb > 0 and
ρb > ρ0, there exists β? > 0 such that, for ε, κ ∈ (0, 1),

sup
t∈[0,T/εκ]

β(t) = β(T/εκ) ≤ β?. (5.46)

We consider the local solution ρN (t) to the following nonlinear ODE:{
ρ̇N (t) = −102CB‖z∂zv0(t, z)‖L∞(R+) − 107C4

Bεe
β?‖eρN (t)|∂x|−β(t)∇rεN (t)‖Ḃ0 ,

ρN (0) = ρ0.
(5.47)

Since, for almost every t, rεN (t) ∈ L2
N (B), the right-hand side is Lipschitz continuous

with respect to ρN (with constants that may depend on N). Hence, we can apply the
Cauchy-Lipschitz theorem and consider the maximal solution of (5.47). We set

T ∗N := sup {t ∈ [0, T/εκ]; ρN (t) ≥ 1} (5.48)

and consider for t ≤ T ∗N ,
r := eρN |∂x|−βrεN . (5.49)

In the sequel, we simply write ρ instead of ρN and T ∗ instead of T ∗N and we prove estimates
which are uniform with respect to N .
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5.3.3 Grönwall-type energy estimate

We start with deducing from (5.37) that:

∂tr− ρ̇|∂x|r + β̇r + (h− χ{V }+ε2W ε)∂xr

−ε∆r +∇eρ|∂x|−βπ = eρ|∂x|−βf εN on (0,
T

εκ
)×B,

div r = 0 on (0,
T

εκ
)×B,

r = 0 on (0,
T

εκ
)× Γ±,

r|t=0 = 0 on B.

(5.50)

We apply the dyadic operator ∆̇k to (3.26) and take the L2(B) inner product of the
resulting equation with ∆̇kr. We observe, by integration by parts, that the contributions
due to the fourth and sixth terms vanish, so that

1

2

d

dt
‖∆̇kr(t)‖2L2 − ρ̇ 〈|∂x|∆̇kr, ∆̇kr〉+ β̇‖∆̇kr(t)‖2L2 + ε‖∇∆̇kr‖2L2

= 〈∆̇ke
ρ|∂x|−βf εN , ∆̇kr〉.

(5.51)

Above and below we simply denote by L2 the space L2(B). Using the definition (5.12) of
∆̇k and the support property (5.7) of ϕlp, we know that

〈|∂x|∆̇kr, ∆̇kr〉 ≥
1

2
2k‖∆̇kr‖2L2 . (5.52)

Then, integrating over [0, t], we obtain

1

2
‖∆̇kr(t)‖2L2 +

1

2
2k
∫ t

0
|ρ̇| ‖∆̇kr‖2L2 +

∫ t

0
β̇‖∆̇kr‖2L2 + ε

∫ t

0
‖∇∆̇kr‖2L2

≤
∫ t

0

∣∣〈∆̇ke
ρ|∂x|−βf εN , ∆̇kr〉

∣∣. (5.53)

We take the square roots and sum the above inequalities for k ∈ Z to deduce that∑
k∈Z
‖∆̇kr(t)‖L2 +

∑
k∈Z

2
k
2

(∫ t

0
|ρ̇| ‖∆̇kr‖2L2

) 1
2

+
√

2
∑
k∈Z

(∫ t

0
β̇‖∆̇kr‖2L2

) 1
2

+
√

2ε
∑
k∈Z

(∫ t

0
‖∆̇k∇r‖2L2

) 1
2

≤ 2
√

2
∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−βf εN , ∆̇kr〉|
) 1

2

.

(5.54)

Proposition 5.10 (Proof in Section 5.4). For t ∈ [0, T ∗], there holds

2
√

2
∑
k∈Z

(∫ t

0

∣∣(∆̇ke
ρ|∂x|−βf εN , ∆̇kr〉

∣∣) 1
2

≤
∑
k′∈Z

2
k′
2

(∫ t

0
|ρ̇| ‖∆̇k′r‖2L2

) 1
2

+
√

2
∑
k∈Z

(∫ t

0
β̇‖∆̇kr‖2L2

) 1
2

+
1

4

√
ε
∑
k∈Z

(∫ t

0
‖∆̇k∇r‖2L2

) 1
2

+
√

2
∑
k∈Z

(∫ t

0

1

αε
‖eρ0|∂x|∆̇kf

ε
app‖2L2

) 1
2

.

(5.55)
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The proof of Proposition 5.10 is given in Section 5.4. Let us admit Proposition 5.10
for the time being and see how to conclude the proof of Proposition 3.2. Combining (5.54)
and (5.55) we deduce that

∑
k∈Z
‖∆̇kr(t)‖L2 +

√
ε
∑
k∈Z

(∫ t

0
‖∆̇k∇r‖2L2

) 1
2

≤
√

2
∑
k∈Z

(∫ t

0

1

αε
‖eρ0|∂x|∆̇kf

ε
app‖2L2

) 1
2

.

(5.56)

Proposition 5.11 (Proof in Section 6.3). If ub satisfies (1.11) and (1.12) for a constant
Cb > 0 and ρb > ρ0, there exists Cf > 0 such that, for ε, κ ∈ (0, 1),

sup
t∈[0,T/εκ]

∑
k∈Z

(∫ t

0

1

αε
‖eρ0|∂x|∆̇kf

ε
app‖2L2

) 1
2

≤ Cf (ε
1
4 + ε1−κ). (5.57)

As long as t ≤ T ∗, (5.56) holds and, thanks to Proposition 5.11, we obtain

∑
k∈Z
‖∆̇kr(t)‖L2 +

√
ε
∑
k∈Z

(∫ t

0
‖∆̇k∇r‖2L2

) 1
2

≤
√

2Cf (ε
1
4 + ε1−κ). (5.58)

Moreover, ∫ t

0
|ρ̇| ≤ 102CB

∫ +∞

0
‖z∂zv0(t, z)‖L∞(R+) + 107C4

Bεe
β?

∫ t

0
‖∇r‖Ḃ0 (5.59)

and, for t ≤ T/εκ,

ε

∫ t

0
‖∇r‖Ḃ0 = ε

∑
k∈Z

∫ t

0
‖∆̇k∇r‖L2

≤
√
εt · √ε

∑
k∈Z

(∫ t

0
‖∆̇k∇r‖2L2

) 1
2

≤
√

2TCf (ε
1
4 + ε1−κ).

(5.60)

Combining these estimates yields

ρ(T/εκ) ≥ 2− 107C4
Be

β?
√

2TCf (ε
1
4 + ε1−κ). (5.61)

Thus, for ε small enough, ρ(T/εκ) ≥ 1 and thus T ∗N = T/εκ and one has

‖rεN‖L∞(L2(B)) +
√
ε‖∇rεN‖L2(L2(B)) ≤

√
2eβ?Cf (ε

1
4 + ε1−κ). (5.62)

This estimate being uniform with respect to N , one can pass to the limit (for fixed ε)
towards rε, and then take ε small enough to conclude the proof of Proposition 3.2.
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5.4 Proof of Proposition 5.10

To prove Proposition 5.10 we estimate separately the terms corresponding to the different
terms of the decomposition of the source term f εN in (5.38). Let us start with the term
corresponding to a loss of derivative.

Lemma 5.12. For t ∈ [0, T ∗], there holds

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β(M [∂xr1]){z∂zv0}, ∆̇kr〉

∣∣) 1
2

≤

∑
k∈Z

2
k
2

(∫ t

0
2CB‖z∂zv0‖L∞z ‖∆̇kr‖2L2

) 1
2

.

Proof. Since {z∂zv0} and the operator M do not depend on the x variable,

∆̇ke
ρ|∂x|−β(M [∂xr1]){z∂zv0} = (M [∆̇k∂xr1]){z∂zv0}. (5.63)

Moreover, using the definition of M in (5.2), Hardy’s inequality, and the fact that |χ| ≤ 1,
we get that, for any a ∈ L2

y(−1, 1),

‖M [a]‖L2
y
≤ 2‖a‖L2

y
. (5.64)

Hence, using (5.16) from Lemma 5.2, we obtain∣∣(∆̇ke
ρ|∂x|−β(M [∂xr1]){z∂zv0}, ∆̇kr〉

∣∣ ≤ 2k+1CB‖z∂zv0‖L∞z ‖∆̇kr‖2L2 . (5.65)

The result follows by integration in time and summation over k ∈ Z of the square roots.

Lemma 5.13. For t ∈ [0, T ∗], there holds

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−βr2(χ′{v0}+ε2∂yw

ε), ∆̇kr〉
∣∣) 1

2

≤
∑
k∈Z

(∫ t

0
‖χ′{v0}+ε2∂yw

ε‖L∞(B)‖∆̇kr‖2L2

) 1
2

.

(5.66)

Proof. Since χ′{v0}+ε2∂yw
ε does not depend on x,

∆̇ke
ρ|∂x|−β(r2(χ′{v0}+ε2∂yw

ε)) = (χ′{v0}+ε2∂yw
ε)∆̇kr2, (5.67)

and therefore the result readily follows by the Cauchy-Schwarz inequality.

Lemma 5.14 (Proof in Section 5.5). For t ∈ [0, T ∗], there holds

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β (r · ∇)u1, ∆̇kr〉

∣∣) 1
2

≤ 103
∑
k∈Z

(∫ t

0
`1‖∆̇kr‖2L2

) 1
2

. (5.68)
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Lemma 5.15 (Proof in Section 5.6). For t ∈ [0, T ∗], there holds

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β (u1 · ∇

)
r, ∆̇kr〉

∣∣) 1
2

≤ 105
∑
k∈Z

(∫ t

0
`2‖∆̇kr‖2L2

) 1
2

+ 106CB

∑
k∈Z

(∫ t

0
`3‖∆̇kr‖2L2

) 1
2

+
1

20

∑
k∈Z

(∫ t

0
‖∆̇k∇r‖2L2

) 1
2

.

(5.69)

Lemma 5.16 (Proof in Section 5.7). For t ∈ [0, T ∗], there holds

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β((r · ∇) r), ∆̇kr〉

∣∣) 1
2

≤ 600C2
B

∑
k′∈Z

2
k′
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖2L2

) 1
2

.

Proposition 5.10 follows from the definition (5.38) of f εN , Lemma 5.12, Lemma 5.13,
Lemma 5.14, Lemma 5.15 and Lemma 5.16. Observe in particular that the sum of the
right hand sides of Lemma 5.12 and of Lemma 5.16 can be bounded by the first term in
the right hand sides of the estimate in Proposition 5.10 thanks to (5.47). On the other
hand the sum of the right hand sides of Lemma 5.13, Lemma 5.14 and Lemma 5.15 can
be bounded by the other terms in the right hand sides of the estimate in Proposition 5.10
thanks to (5.45).

5.5 Estimate of (r · ∇)u1. Proof of Lemma 5.14

By Bony’s decomposition (5.26), we expand the amplification term as

(r · ∇)u1 =
∑
i=1,2

(
Tri∂iu

1 + T∂iu1ri + R(ri, ∂iu
1)
)
. (5.70)

We estimate each term in the right-hand side of (5.70) separately. We proceed in the same
way for i = 1 and for i = 2. We explain the three estimates.

5.5.1 First estimate

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.30), we expand

〈∆̇ke
ρ|∂x| (Tri∂iu

1), ∆̇kr〉 =
∑

|k′−k|≤4

〈eρ|∂x| (Ṡk′−1ri)(∆̇k′∂iu
1), ∆̇kr〉. (5.71)

Thanks to the product estimate (5.35) from Lemma 5.7, and then recalling the definition
of `1 in (5.42), we obtain

|〈eρ|∂x|−β(Ṡk′−1ri)(∆̇k′∂iu
1), ∆̇kr〉|

≤ ‖Ṡk′−1r
+
i ‖L2‖∆̇k′e

ρ|∂x| (∂iu
1)+‖L∞‖∆̇kr

+‖L2

≤ 2−
|k′|
4 `1‖Ṡk′−1r‖L2‖∆̇kr‖L2 .

(5.72)
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Summing these estimates yields

∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β(Tri∂iu
1), ∆̇kr〉|

) 1
2

≤
∑
k∈Z

∑
|k′−k|≤4

2−
|k′|
8

(∫ t

0
`1‖Ṡk′−1r‖2L2

) 1
2

+
∑
k∈Z

∑
|k′−k|≤4

2−
|k′|
8

(∫ t

0
`1‖∆̇kr‖2L2

) 1
2

.

(5.73)

The second sum can be directly bounded by 8/103 times the bound we need. The first
sum is bounded using (5.14) as

∑
k∈Z

∑
|k′−k|≤4

2−
|k′|
8

(∫ t

0
`1‖Ṡk′−1r‖2L2

) 1
2

≤
∑
k∈Z

∑
|k′−k|≤4

∑
j≤k′−2

2−
|k′|
8

(∫ t

0
`1‖∆̇jr‖2L2

) 1
2

.

(5.74)

After reordering, we conclude that it is smaller than 208/103 times the bound we need.

5.5.2 Second estimate

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.30), we expand

〈∆̇ke
ρ|∂x| (T∂iu1ri), ∆̇kr〉 =

∑
|k′−k|≤4

〈eρ|∂x| (Ṡk′−1∂iu
1)(∆̇k′ri), ∆̇kr〉. (5.75)

Thanks to the product estimate (5.35) from Lemma 5.7, and then recalling the definition
of `1 in (5.42), we obtain

|〈eρ|∂x|−β(Ṡk′−1∂iu
1)(∆̇k′ri), ∆̇kr〉|
≤ ‖Ṡk′−1e

ρ|∂x| (∂iu
1)+‖L∞‖∆̇k′r

+
i ‖L2‖∆̇kr

+‖L2

≤ `1‖∆̇k′r‖L2‖∆̇kr‖L2 .

(5.76)

Summing these estimates yields

∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β(T∂iu1ri), ∆̇kr〉|
) 1

2

≤
∑
k∈Z

∑
|k′−k|≤4

(∫ t

0
`1‖∆̇k′r‖L2‖∆̇kr‖L2

) 1
2

.

(5.77)

Hence, we conclude that the sum is smaller than 13/103 times the bound we need.
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5.5.3 Third estimate

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.31), and the definition (5.29) we expand

〈∆̇ke
ρ|∂x|R(ri, ∂iu

1), ∆̇kr〉 =
∑

k′≥k−3

〈eρ|∂x| (∆̇k′ri)(
˜̇∆k′∂iu

1), ∆̇kr〉

=
∑

k′≥k−3

∑
|k′′−k′|≤1

〈eρ|∂x| (∆̇k′ri)(∆̇k′′∂iu
1), ∆̇kr〉.

(5.78)

Thanks to the product estimate (5.35) from Lemma 5.7, and then recalling the definition
of `1 in (5.42), and using Young’s inequality, we obtain

|〈eρ|∂x|−β(∆̇k′ri)(∆̇k′′∂iu
1), ∆̇kr〉|

≤ ‖∆̇k′r
+
i ‖L2‖∆̇k′′e

ρ|∂x| (∂iu
1)+‖L∞‖∆̇kr

+‖L2

≤ 2−
|k′′|
4 `1‖∆̇k′r‖L2‖∆̇kr‖L2

≤ 2−
|k|
4
− |k
′′|
4 `1‖∆̇k′r‖2L2 + 2

|k|
4
− |k
′′|
4 `1‖∆̇kr‖2L2 .

(5.79)

Summing these estimates yields

∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−βR(ri, ∂iu
1), ∆̇kr〉|

) 1
2

≤
∑
k∈Z

∑
k′≥k−3

∑
|k′′−k′|≤1

2−
|k|
8
− |k
′′|
8

(∫ t

0
`1‖∆̇k′r‖2L2

) 1
2

+
∑
k∈Z

∑
k′≥k−3

∑
|k′′−k′|≤1

2
|k|
8
− |k
′′|
8

(∫ t

0
`1‖∆̇kr‖2L2

) 1
2

.

(5.80)

Hence, by reordering the triple sums, we conclude that the first term is bounded by 70/103

times the quantity we need and the second term by 54/103 times the bound we need.

5.6 Estimate of (u1 · ∇)r. Proof of Lemma 5.15

We prove Lemma 5.15, concerning the estimate of the advection term (u1 · ∇)r. First,
using Bony’s decomposition (5.26), we rewrite the term as

(u1 · ∇)r =
∑
i=1,2

(
Tu1i

∂ir + T∂iru
1
i + R(u1

i , ∂ir)
)
. (5.81)

We estimate each term in the right-hand side of (5.81) separately. We proceed in the same
way for i = 1 and i = 2. We explain the three estimates.
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5.6.1 First estimate

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.30), we expand

〈∆̇ke
ρ|∂x| (Tu1i

∂ir), ∆̇kr〉 =
∑

|k′−k|≤4

〈eρ|∂x| (Ṡk′−1u
1
i )(∆̇k′∂ir), ∆̇kr〉. (5.82)

Thanks to the product estimate (5.35) from Lemma 5.7, and then recalling the definition
of `2 in (5.43), we obtain

|〈eρ|∂x|−β(Ṡk′−1u
1
i )(∆̇k′∂ir), ∆̇kr〉|
≤ ‖Ṡk′−1e

ρ|∂x| (u1
i )

+‖L∞‖∆̇k′∂ir
+‖L2‖∆̇kr

+‖L2

≤ `
1
2
2 ‖∆̇k′∂ir‖L2‖∆̇kr‖L2

≤ 5402`2‖∆̇kr‖2L2 +
1

5402
‖∆̇k′∂ir‖2L2 .

(5.83)

Summing these estimates yields

∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β(Tu1i
∂ir), ∆̇kr〉|

) 1
2

≤ 4860
∑
k′∈Z

(∫ t

0
`2‖∆̇k′r‖2L2

) 1
2

+
1

3

1

20

∑
k′∈Z

(∫ t

0
‖∆̇k′∇r‖2L2

) 1
2

.

(5.84)

5.6.2 Second estimate

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.30), we expand

〈∆̇ke
ρ|∂x| (T∂iru

1
i ), ∆̇kr〉 =

∑
|k′−k|≤4

〈eρ|∂x| (Ṡk′−1∂ir)(∆̇k′u
1
i ), ∆̇kr〉. (5.85)

Thanks to the product estimate (5.35) from Lemma 5.7, and then recalling the definition
of `2 in (5.43), we obtain

|〈eρ|∂x|−β(Ṡk′−1∂ir)(∆̇k′u
1
i ), ∆̇kr〉|

≤ ‖Ṡk′−1∂ir
+‖L2‖∆̇k′e

ρ|∂x| (u1
i )

+‖L∞‖∆̇kr
+‖L2

≤ 2−
|k′|
4 `

1
2
2 ‖Ṡk′−1∂ir‖L2‖∆̇kr‖L2

≤ 63002`2‖∆̇kr‖2L2 +
1

63002
2−
|k′|
2 ‖Ṡk′−1∂ir‖2L2 .

(5.86)

Summing these estimates yields

∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β(T∂iru
1
i ), ∆̇kr〉|

) 1
2

≤ 56700
∑
k′∈Z

(∫ t

0
`2‖∆̇k′r‖2L2

) 1
2

+
1

700

∑
k′∈Z

2−
|k′|
4

(∫ t

0
‖Ṡk′−1∇r‖2L2

) 1
2

.

(5.87)

32



Thanks to Minkowski’s inequality and (5.14), the second term is bounded by

1

700

∑
k′∈Z

∑
j≤k′−2

2−
|k′|
4

(∫ t

0
‖∆̇j∇r‖2L2

) 1
2

≤ 1

3

1

20

∑
j∈Z

(∫ t

0
‖∆̇j∇r‖2L2

) 1
2

. (5.88)

5.6.3 Third estimate

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.31), and the definition (5.29) we expand

〈∆̇ke
ρ|∂x|R(u1

i , ∂ir), ∆̇kr〉 =
∑

k′≥k−3

〈eρ|∂x| (∆̇k′u
1
i )(
˜̇∆k′∂ir), ∆̇kr〉

=
∑

k′≥k−3

∑
|k′′−k′|≤1

〈eρ|∂x| (∆̇k′u
1
i )(∆̇k′′∂ir), ∆̇kr〉.

(5.89)

Thanks to the product estimate (5.35) from Lemma 5.7, we obtain

|〈eρ|∂x|−β(∆̇k′u
1
i )(∆̇k′′∂ir), ∆̇kr〉|
≤ ‖∆̇k′e

ρ|∂x| (u1
i )

+‖L∞x (L∞y )‖∆̇k′′∂ir
+‖L2‖∆̇kr

+‖L2
x(L2

y),
(5.90)

|〈eρ|∂x|−β(∆̇k′u
1
i )(∆̇k′′∂ir), ∆̇kr〉|
≤ ‖∆̇k′e

ρ|∂x| (u1
i )

+‖L2
x(L∞y )‖∆̇k′′∂ir

+‖L2‖∆̇kr
+‖L∞x (L2

y).
(5.91)

Thanks to the definition (5.44) of `3, one has

‖∆̇k′e
ρ|∂x| (u1

i )
+‖

1
2

L∞x (L∞y )‖∆̇k′e
ρ|∂x| (u1

i )
+‖

1
2

L2
x(L∞y )

≤ 2−
|k′|
4 `

1
2
3 . (5.92)

Thanks to estimate (5.16) from Bernstein’s Lemma 5.2,

‖∆̇kr
+‖

1
2

L2
x(L2

y)
‖∆̇kr

+‖
1
2

L∞x (L2
y)
≤ C

1
2
B2

k
4 ‖∆̇kr

+‖L2 . (5.93)

Gathering these estimates yields∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−βR(u1
i , ∂ir), ∆̇kr〉|

) 1
2

≤ 3 · 20 · 47CB

∑
k∈Z

∑
k′≥k−3

∑
|k′′−k′|≤1

2−
|k′|
8 2

k
8

(∫ t

0
`3‖∆̇kr‖2L2

) 1
2

+
1

3 · 20 · 47

∑
k∈Z

∑
k′≥k−3

∑
|k′′−k′|≤1

2−
|k′|
8 2

k
8

(∫ t

0
‖∆̇k′′∇r‖2L2

) 1
2

.

(5.94)

For k ∈ Z, one has ∑
k′≥k−3

∑
|k′′−k′|≤1

2−
|k′|
8 2

k
8 ≤ 47. (5.95)

For k′′ ∈ Z, one has ∑
|k′−k′′|≤1

∑
k≤k′+3

2−
|k′|
8 2

k
8 ≤ 47. (5.96)

This concludes the estimate of the third term with a constant of
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5.7 Estimate of (r · ∇)r. Proof of Lemma 5.16.

We prove Lemma 5.16, concerning the estimate of the trilinear term. First, using Bony’s
paraproduct decomposition (5.26) and the divergence free condition in (3.26), we write the
quadratic term as

(r · ∇)r = Tr1∂xr + T∂xrr1 + ∂xR(r1, r) + Tr2∂yr + T∂yrr2 + ∂yR(r2, r). (5.97)

As a shorthand, we set

E :=
∑
k′∈Z

2
k′
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖2L2

) 1
2

, (5.98)

which appears in the right hand side of the estimate given in Lemma 5.16. The proof of
Lemma 5.16 is obtained by summation of the six following estimates:

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β(Tr1∂xr), ∆̇kr〉

∣∣) 1
2

≤ 102C2
BE, (5.99)

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β(T∂xrr1), ∆̇kr〉

∣∣) 1
2

≤ 102C2
BE, (5.100)

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β∂xR(r1, r), ∆̇kr〉

∣∣) 1
2

≤ 102C2
BE, (5.101)

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β(Tr2∂yr), ∆̇kr〉

∣∣) 1
2

≤ 102C2
BE, (5.102)

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β(T∂yrr2), ∆̇kr〉

∣∣) 1
2

≤ 102C2
BE, (5.103)

∑
k∈Z

(∫ t

0

∣∣〈∆̇ke
ρ|∂x|−β∂yR(r2, r), ∆̇kr〉

∣∣) 1
2

≤ 102C2
BE. (5.104)

5.7.1 Proof of (5.99)

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.30), we expand

〈∆̇ke
ρ|∂x| (Tr1∂xr), ∆̇kr〉 =

∑
|k′−k|≤4

〈eρ|∂x| (Ṡk′−1r1)(∆̇k′∂xr), ∆̇kr〉. (5.105)

Thanks to the product estimate (5.35) from Lemma 5.7, we obtain

|〈eρ|∂x|−β(Ṡk′−1r1)(∆̇k′∂xr), ∆̇kr〉| ≤ eβ?‖Ṡk′−1r
+
1 ‖L∞‖∆̇k′∂xr

+‖L2‖∆̇kr
+‖L2 . (5.106)

Thanks to estimate (5.16) from Lemma 5.2,

‖∆̇k′∂xr‖L2 ≤ CB2k
′‖∆̇k′r‖L2 . (5.107)
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Using estimate (5.20) from Lemma 5.4, we obtain that

‖Ṡk′−1r
+
1 ‖L∞ ≤ C2

B‖∇r+1 ‖Ḃ0 ≤ C2
B‖∇r‖Ḃ0 . (5.108)

Gathering our estimates, we obtain∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β(Tr1∂xr), ∆̇kr〉|
) 1

2

≤ C
3
2
B

∑
k∈Z

∑
|k′−k|≤4

2
k′
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖L2‖∆̇kr‖L2

) 1
2

≤ 102C2
B

∑
k′∈Z

2
k′
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖2L2

) 1
2

.

(5.109)

This concludes the proof of (5.99).

5.7.2 Proof of (5.100)

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.30), we expand

〈∆̇ke
ρ|∂x| (T∂xrr1), ∆̇kr〉 =

∑
|k′−k|≤4

〈eρ|∂x| (Ṡk′−1∂xr)(∆̇k′r1), ∆̇kr〉. (5.110)

Thanks to the product estimate (5.35) from Lemma 5.7, we obtain

|〈eρ|∂x|−β(Ṡk′−1∂xr)(∆̇k′r1), ∆̇kr〉|
≤ eβ?‖Ṡk′−1∂xr

+‖L∞x (L2
y)‖∆̇k′r

+
1 ‖L2

x(L∞y )‖∆̇kr
+‖L2 .

(5.111)

Thanks to estimate (5.19) from Lemma 5.4, we get

‖∆̇k′r
+
1 ‖L2

x(L∞y ) ≤ CB2−
k′
2 ‖∇r‖Ḃ0 . (5.112)

Gathering our estimates and using the Peter-Paul inequality,(∫ t

0
‖Ṡk′−1∂xr

+‖L∞x (L2
y)‖∇r‖Ḃ0‖∆̇kr

+‖L2

) 1
2

≤ 2
3k
4

(∫ t

0
‖∇r‖Ḃ0‖∆̇kr‖2L2

) 1
2

+ 2−
3k
4

(∫ t

0
‖∇r‖Ḃ0‖Ṡk′−1∂xr

+‖2L∞x (L2
y)

) 1
2

,

(5.113)

we obtain∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β(T∂xrr1), ∆̇kr〉|
) 1

2

≤ C
1
2
B

∑
k∈Z

2
k
2

∑
|k′−k|≤4

2
k−k′

4

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇kr‖2L2

) 1
2

+ C
1
2
B

∑
k∈Z

2−k
∑

|k′−k|≤4

2
k−k′

4

(∫ t

0
eβ?‖∇r‖Ḃ0‖Ṡk′−1∂xr

+‖2L∞x (L2
y)

) 1
2

.

(5.114)
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The first term is bounded by 10CBE. Using Minkowski’s inequality and (5.14), we estimate
the second term as

∑
k∈Z

2−k
∑

|k′−k|≤4

2
k−k′

4

(∫ t

0
eβ?‖∇r‖Ḃ0‖Ṡk′−1∂xr

+‖2L∞x (L2
y)

) 1
2

≤
∑
k∈Z

2−k
∑

|k′−k|≤4

2
k−k′

4

∑
j≤k′−2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇j∂xr

+‖2L∞x (L2
y)

) 1
2

.

(5.115)

Now we deduce from Bernstein’s Lemma 5.2, estimate (5.16), that

‖∆̇j∂xr
+‖2L∞x (L2

y) ≤ C2
B23j‖∆̇jr‖2L2 . (5.116)

We deduce from these estimates that the second term of (5.114) is bounded by 80C2
BE.

This concludes the proof of (5.100).

5.7.3 Proof of (5.101)

First, using integration by parts in the horizontal direction, we get

〈∆̇ke
ρ|∂x| ∂xR(r1, r), ∆̇kr〉 = −〈∆̇ke

ρ|∂x|R(r1, r), ∆̇k∂xr〉. (5.117)

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.31), and the definition (5.29) we expand the term as

〈∆̇ke
ρ|∂x|R(r1, r), ∂x∆̇kr〉 =

∑
k′≥k−3

〈eρ|∂x| (∆̇k′r1)( ˜̇∆k′r), ∆̇k∂xr〉

=
∑

k′≥k−3

∑
|k′′−k′|≤1

〈eρ|∂x| (∆̇k′r1)(∆̇k′′r), ∆̇k∂xr〉.
(5.118)

Thanks to the product estimate (5.35) from Lemma 5.7, we obtain

|〈eρ|∂x|−β(∆̇k′r1)(∆̇k′′r), ∆̇k∂xr〉|
≤ eβ?‖∆̇k′r

+
1 ‖L2

x(L∞y )‖∆̇k′′r
+‖L2

x(L2
y)‖∆̇k∂xr

+‖L∞x (L2
y).

(5.119)

Thanks to estimate (5.19) from Lemma 5.4, we have

‖∆̇k′r
+
1 ‖L2

x(L∞y ) ≤ CB2−
k′
2 ‖∇r‖Ḃ0 . (5.120)

Thanks to estimate (5.16) from Lemma 5.2, we have

‖∆̇k∂xr
+‖L∞x (L2

y) ≤ CB2
3k
2 ‖∆̇kr‖L2 . (5.121)
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Gathering our estimates, we obtain∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β∂xR(r1, r), ∆̇kr〉|
) 1

2

≤ CB

∑
k∈Z

∑
k′≥k−3

∑
|k′′−k|≤1

2
3k
4
− k
′
4

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇kr‖L2‖∆̇k′′r‖L2

) 1
2

≤ CB

∑
k∈Z

∑
k′≥k−3

∑
|k′′−k|≤1

2
3k
4
− k
′
4

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇kr‖2L2

) 1
2

+ CB

∑
k∈Z

∑
k′≥k−3

∑
|k′′−k|≤1

2
3k
4
− k
′
4

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′′r‖2L2

) 1
2

(5.122)

Up to reordering the sums, one gets that the first term is bounded by 32CBE and that the
second term is bounded by 51CBE. This concludes the proof of (5.101).

5.7.4 Proof of (5.102)

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.30), we expand

〈∆̇ke
ρ|∂x| (Tr2∂yr), ∆̇kr〉 =

∑
|k′−k|≤4

〈eρ|∂x| (Ṡk′−1r2)(∆̇k′∂yr), ∆̇kr〉. (5.123)

Thanks to the product estimate (5.35) from Lemma 5.7, we obtain

|〈eρ|∂x|−β(Ṡk′−1r2)(∆̇k′∂yr), ∆̇kr〉| ≤ eβ?‖Ṡk′−1r
+
2 ‖L∞‖∆̇k′∂yr

+‖L2‖∆̇kr
+‖L2 . (5.124)

From the definition (5.15) of Ḃ0,

‖∆̇k′∂yr‖L2 ≤ ‖∇r‖Ḃ0 . (5.125)

Summing over k ∈ Z and using Young’s inequality, we obtain∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β(Tr2∂yr), ∆̇kr〉|
) 1

2

≤
∑
k∈Z

∑
|k′−k|≤4

2−
k
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖Ṡk′−1r

+
2 ‖2L∞

) 1
2

+
∑
k∈Z

∑
|k′−k|≤4

2
k
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇kr‖2L2

) 1
2

(5.126)

Using Minkowski’s inequality and (5.14), the first sum is bounded as∑
k∈Z

∑
|k′−k|≤4

2−
k
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖Ṡk′−1r

+
2 ‖2L∞

) 1
2

≤
∑
k∈Z

∑
|k′−k|≤4

2−
k
2

∑
j≤k′−2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇jr

+
2 ‖2L∞

) 1
2

(5.127)

37



Thanks to estimates (5.23) from Lemma 5.5 and (5.16) from Lemma 5.2, we get

‖∆̇jr2‖L∞ ≤ C2
B2j‖∆̇jr‖L2 . (5.128)

Gathering these two estimates and reordering the sums we conclude that the first term in
the right hand side of (5.127) is bounded by 36C2

BE. Since the second term is bounded by
9E this concludes the proof of (5.102).

5.7.5 Proof of (5.103)

Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.30), we expand

〈∆̇ke
ρ|∂x| (T∂yrr2), ∆̇kr〉 =

∑
|k′−k|≤4

〈eρ|∂x| (Ṡk′−1∂yr)(∆̇k′r2), ∆̇kr〉. (5.129)

Thanks to the product estimate (5.35) from Lemma 5.7, we obtain

|〈eρ|∂x|−β(Ṡk′−1∂yr)(∆̇k′r2), ∆̇kr〉| ≤ eβ?‖Ṡk′−1∂yr
+‖L2‖∆̇k′r

+
2 ‖L∞‖∆̇kr

+‖L2 . (5.130)

On the one hand, thanks to estimate (5.23) from Lemma 5.5 and estimate (5.16) from
Lemma 5.2, we have

‖∆̇k′r
+
2 ‖L∞ ≤ C2

B2k
′‖∆̇k′r‖L2 . (5.131)

On the other hand, from the definition (5.15) of Ḃ0,

‖Ṡk′−1∂yr‖L2 ≤ ‖∇r‖Ḃ0 . (5.132)

Gathering our estimates, we obtain

∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β(T∂yrr2), ∆̇kr〉|
) 1

2

≤ CB

∑
k∈Z

∑
|k′−k|≤4

2
k′
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖L2‖∆̇kr‖L2

) 1
2

≤ 102CB

∑
k′∈Z

2
k′
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖2L2

) 1
2

.

(5.133)

This concludes the proof of (5.103).

5.7.6 Proof of (5.104)

First, using integration by parts in the vertical direction, and the null boundary condition
in (5.50), we get

〈∆̇ke
ρ|∂x| ∂yR(r2, r), ∆̇kr〉 = −〈∆̇ke

ρ|∂x|R(r2, r), ∆̇k∂yr〉 (5.134)
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Using the support properties of the paraproduct decomposition as in Lemma 5.6, equality
(5.31), and the definition (5.29) we expand the term as

〈∆̇ke
ρ|∂x|R(r2, r), ∆̇k∂yr〉 =

∑
k′≥k−3

〈eρ|∂x| (∆̇k′r2)( ˜̇∆k′r), ∆̇k∂yr〉

=
∑

k′≥k−3

∑
|k′′−k′|≤1

〈eρ|∂x| (∆̇k′r2)(∆̇k′′r), ∆̇k∂yr〉
(5.135)

Thanks to the product estimate (5.35) from Lemma 5.7, we obtain

|〈eρ|∂x|−β(∆̇k′r2)(∆̇k′′r), ∆̇k∂yr〉|
≤ eβ?‖∆̇k′r

+
2 ‖L2

x(L∞y )‖∆̇k′′r
+‖L2

x(L2
y)‖∆̇k∂yr

+‖L∞x (L2
y).

(5.136)

Thanks to estimates (5.23) from Lemma 5.5 and (5.16) from Lemma 5.2, we get

|〈eρ|∂x|−β(∆̇k′r2)(∆̇k′′r), ∆̇k∂yr〉| ≤ eβ?C2
B2

k
2

+ k′
2 ‖∆̇k′r‖L2‖∆̇k′′r‖L2‖∆̇k∂yr‖L2 . (5.137)

We use the following crude estimate, which follows from definition (5.15).

‖∆̇k∂yr‖L2 ≤ ‖∇r‖Ḃ0 . (5.138)

Gathering our estimates, we obtain

∑
k∈Z

(∫ t

0
|〈∆̇ke

ρ|∂x|−β∂yR(r2, r), ∆̇kr〉|
) 1

2

≤ CB

∑
k∈Z

∑
k′≥k−3

∑
|k′′−k′|≤1

2
k
4

+ k′
4

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖L2‖∆̇k′′r‖L2

) 1
2

≤ 6CB

∑
k∈Z

∑
k′≥k−3

2
k
4

+ k′
4

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖2L2

) 1
2

≤ 6CB

∑
k′∈Z

2
k′
2

 ∑
k≤k′+3

2
k−k′

4

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖2L2

) 1
2

≤ 102CB

∑
k′∈Z

2
k′
2

(∫ t

0
eβ?‖∇r‖Ḃ0‖∆̇k′r‖2L2

) 1
2

.

(5.139)

This concludes the proof of (5.104).

6 Analytic estimates for the approximate trajectories

6.1 Preliminary estimates

We introduce notations and prove preliminary estimates that will be used in the sequel.
In this paragraph, a denotes a function in L2(B) for which all the norms and sums that
we manipulate are finite.
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• For s ∈ N, ρ > 0 and p ∈ {2,+∞}, we introduce the tangential analytic-type norm

Gρs,p(a) :=
∑

0≤α+β≤s
sup
m≥0

ρm

m!
‖∂mx ∂αx ∂βy a‖L2

x(Lpy). (6.1)

In particular, thanks to condition (1.11), one has Gρb3,2(ub) ≤ Cb.

• We introduce the notations u1
i = ∇⊥[χδψb] and u1

o := ∇⊥[(1 − χδ)ψb]. Hence,
recalling the translation notation (3.13), the definition (3.18) of u1 can be recast as

u1 = βτhu
1
i + τhu

1
o. (6.2)

From the definition (3.17) of ψb, the smoothness of χδ and the conditions (1.11) we
deduce that there exists C1 such that,

Gρb3,2(u1
i ) + Gρb3,2(u1

o) ≤ C1. (6.3)

Thus, using the relation (6.2), for any t ≥ 0,

Gρb3,2(u1(t)) ≤ C1. (6.4)

• For any ρ > ρ0, there exists Cρ > 0 such that for s ∈ {0, ..., 3},∑
m≥0

(2ρ0)2m

(2m)!
‖∂mx a‖2Hs(B) ≤ Cρ

(
Gρs,2(a)

)2
. (6.5)

This is an immediate consequence of definition (6.1) and the following refinement of
Stirling’s asymptotic formula, which holds for any p ∈ N∗ (see e.g. [33] for a more
precise bound):

ppe−p
√

2πp ≤ p! ≤ eppe−p
√

2πp. (6.6)

• For b ∈ H1
y (−1, 1), not necessarily vanishing at y = ±1, there holds

‖b‖L∞y ≤ 2‖b‖H1
y
. (6.7)

• Using the property (5.11), the support property (5.7) for the operator ∆̇k, the ele-
mentary inequality ex ≤ 2 coshx, the embedding (6.7) and the relation (6.5), there
holds ∑

k∈Z
(1 + 22k)‖eρ0|∂x|∆̇ka‖2L2

x(L∞y )

≤ 1

4π2

∫
(1 + |ξ|2)e2ρ0|ξ|‖Fa(ξ)‖2L∞y dξ

≤ 2

4π2

∑
m≥0

(2ρ0)2m

(2m)!

∫
(1 + |ξ|2)|ξ|2m‖Fa(ξ)‖2L∞y dξ

≤ 8
∑
m≥0

(2ρ0)2m

(2m)!
‖∂mx a‖2H2(B)

≤ 8Cρ

(
Gρ2,2(a)

)2
.

(6.8)
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• Thanks to (5.16) from Bernstein’s Lemma 5.2, equality (5.33) and (6.8),∑
k∈Z

2|k|‖eρ0|∂x|∆̇ka
+‖2L∞(B) ≤ CB

∑
k∈Z

2|k|+k‖eρ0|∂x|∆̇ka‖2L2
x(L∞y )

≤ CB

∑
k∈Z

(1 + 22k)‖eρ0|∂x|∆̇ka‖2L2
x(L∞y )

≤ 8CBCρ

(
Gρ2,2(a)

)2
.

(6.9)

• Let p ∈ {2,+∞}. Thanks to the Peter-Paul inequality, then using the property
(5.11) and the support property (5.7) for the operator ∆̇k,∑

k∈Z
‖eρ0|∂x|∆̇ka‖L2

x(Lpy) ≤
(∑
k∈Z

2−
|k|
2

) 1
2
(∑
k∈Z

2
|k|
2 ‖eρ0|∂x|∆̇ka‖2L2

x(Lpy)

) 1
2

≤ 3

2π2

(∫
(|ξ| 12 + |ξ|− 1

2 )e2ρ0|ξ|‖Fa(ξ)‖2Lpy dξ
) 1

2

(6.10)

For low frequencies, using a uniform bound for the Fourier transform yields∫
|ξ|≤1

(|ξ| 12 + |ξ|− 1
2 )eρ0|ξ|‖Fa(ξ)‖2Lpy dξ ≤ 16

3
eρ0‖a‖2L1

x(Lpy). (6.11)

For high frequencies, using the elementary inequality ex ≤ 2 coshx,∫
|ξ|≥1

(|ξ| 12 + |ξ|− 1
2 )eρ0|ξ|‖Fa(ξ)‖2Lpy dξ ≤ 16π2

∑
m≥0

(2ρ0)2m

(2m)!
‖∂mx ∂xa‖2L2

x(Lpy). (6.12)

Hence, for any ρ > ρ0, there exists C̃ρ > 0 such that,∑
k∈Z
‖eρ0|∂x|∆̇ka‖L2

x(Lpy) ≤ C̃ρ
(
‖a‖L1

x(Lpy) + Gρ1,p(a)
)
. (6.13)

6.2 Estimates for the amplification terms

We prove Proposition 5.9. Recalling the definition (5.45) of β, we proceed term by term.

• Recalling the definition (4.1) of the spaceH1,1(R+) and using the decay estimate (4.2)
for the boundary layer from Lemma 4.1 with n = 1, we get∫ +∞

0
‖χ′{v0(s)}‖L∞(B) ds ≤ ‖χ′‖L∞(−1,1)

∫ +∞

0
‖V (s)‖L∞(R+) ds

≤ 2‖χ′‖L∞(−1,1)

∫ +∞

0
‖V (s)‖H1,1(R+) ds

≤ 2C‖χ′‖L∞(−1,1)

∫ +∞

0

∣∣∣∣ ln(2 + s)

2 + s

∣∣∣∣ 54 ds

≤ 52C‖χ′‖L∞(−1,1).

(6.14)
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• Recalling the definition (3.22) of wε and using estimate (4.11) from Lemma 4.3,

ε2

∫ T/εκ

0
‖∂ywε(t)‖L∞(B) dt ≤ Tε2−κ‖∂yW ε‖L∞(R+;L∞(B)) ≤ CWTε1−κ+ 1

4 . (6.15)

• Recalling the definition (5.42) of `1 and applying successively the Peter-Paul inequal-
ity, estimate (6.9) to a = ∇u1(t) and (6.4), there holds for any t ≥ 0,

`1(t) ≤
(∑
k∈Z

2−
|k|
2

) 1
2
(∑
k∈Z

2|k|‖eρ0|∂x|∆̇k(∇u1(t))+‖2L∞(B)

) 1
2

≤ 3(8CBCρb)
1
2Gρb3,2(u1(t))

≤ 3(8CBCρb)
1
2C1.

(6.16)

• Recalling the definition (5.43) of `2, applying estimates (6.9) to a = u1(t) and (6.4),
there holds for any t ≥ 0,

`2(t) ≤ 8CBCρb

(
Gρb2,2(u1(t))

)2
≤ 8CBCρbC

2
1 . (6.17)

• Recalling the definition (5.44) of `3 and applying the Cauchy-Schwarz inequality,
estimates (6.8) and (6.9) to a = u1(t) and (6.4), there holds for any t ≥ 0,

`3(t) ≤
(∑
k∈Z

2|k|‖eρ0|∂x|∆̇k(u
1(t))+‖2L∞(B)

) 1
2
(∑
k∈Z
‖eρ0|∂x|∆̇ku

1(t)‖2L2
x(L∞y )

) 1
2

≤ 8CρbC
1
2
B

(
Gρb2,2(u1(t))

)2

≤ 8CρbC
1
2
BC

2
1 .

(6.18)

• Recalling the definition (5.41) of αε,∫ T/εκ

0
αε(t) dt ≤ T +

π

2
. (6.19)

Gathering these six estimates concludes the proof of Proposition 5.9.

6.3 Estimates for the source terms

We prove Proposition 5.11. We will use the two following inequalities. First, for g ∈
L2((0, T/εκ)×B), thanks to the first part of the definition (5.41) of αε

∑
k∈Z

(∫ T/εκ

0

1

αε
‖eρ0|∂x|∆̇k(εg)‖2L2(B)

) 1
2

≤ ε1−κ
∑
k∈Z

sup
t≥0
‖eρ0|∂x|∆̇kg(t)‖L2(B). (6.20)
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For g ∈ L2((0, T/εκ)×B) and V ∈ L2(R+×R+), thanks to the second part of the definition
(5.41) of α and estimate (4.9) from Lemma 4.2,

∑
k∈Z

(∫ T/εκ

0

1

αε
‖eρ0|∂x|∆̇k({V}g)‖2L2(B)

) 1
2

≤ 2ε
1
4

(∫
R+

(1 + t2)‖V (t)‖2L2(R+) dt

) 1
2 ∑
k∈Z

sup
t≥0
‖eρ0|∂x|∆̇kg(t)‖L2

x(L∞y ).

(6.21)

Recalling the definition (3.24) of f εapp, we proceed slightly differently for the first four terms
(using (6.20)), and for the last three terms (using (6.21)).

f εapp :=− ε∆u1 + ε(u1 · ∇)u1+ε2W ε∂xu
1 + ε2(u1 · ey)∂ywε

− χ{V }∂xu1 − u1 · ey
ϕ

(√
εχ′{zV }+ χϕ′{z∂zV }

)
ex.

(6.22)

• First term. We apply (6.20) to g := −∆u1. For t ≥ 0, thanks to (6.2),

‖eρ0|∂x|∆̇k∆u
1(t)‖L2(B) = ‖eρ0|∂x|∆̇k∆(β(t)(τhu

1
i )(t) + (τhu

1
o)(t))‖L2(B)

= ‖eρ0|∂x|∆̇k∆(β(t)u1
i + u1

o)‖L2(B)

≤ ‖eρ0|∂x|∆̇k∆u
1
i ‖L2(B) + ‖eρ0|∂x|∆̇k∆u

1
o‖L2(B)

(6.23)

Thanks to (6.13), (6.3) and (1.12), we deduce that∑
k∈N
‖eρ0|∂x|∆̇k∆u

1
i ‖L2(B) + ‖eρ0|∂x|∆̇k∆u

1
o‖L2(B) < +∞. (6.24)

Hence, ∑
k∈Z

sup
t≥0
‖eρ0|∂x|∆̇k∆

1
u(t)‖L2(B) < +∞. (6.25)

• Second term. We apply (6.20) to g := (u1 ·∇)u1. Similarly, we decompose u1 thanks
to (6.2) to get an estimate which is uniform with respect to time. We get four terms.
As an example, let us bound using (6.13), for some ρ ∈ (ρ0, ρb),∑
k∈Z
‖eρ0|∂x|∆̇k(u

1
i ·∇)u1

i ‖L2(B) ≤ C̃ρ
(
‖(u1

i · ∇)u1
i ‖L1

x(L2
y) + Gρ1,2((u1

i · ∇)u1
i )
)
. (6.26)

The first term is finite thanks to (1.12). The second term requires an analytic es-
timate for this quadratic term. For m ≥ 0, and a, b ∈ L2(B), thanks the Leibniz
differentiation rule,

ρm

m!
‖∂mx [(a · ∇)b]‖H1(B) ≤

m∑
j=0

(
m

j

)
ρm

m!
‖((∂jxa) · ∇)(∂m−jx b)‖H1(B)

≤
m∑
j=0

(
m

j

)
ρm

m!

j!

ρjb
Gρb1,2(a)

(m− j)!
ρm−jb

Gρb2,2(b)

≤ (m+ 1)

(
ρ

ρb

)m
Gρb1,2(a)Gρb2,2(b)

≤ CGρb1,2(a)Gρb2,2(b),

(6.27)
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for some C > 0 independent of m because ρ < ρb. Hence,∑
k∈Z

sup
t≥0
‖eρ0|∂x|∆̇k(u

1(t) · ∇)u1(t)‖L2(B) < +∞. (6.28)

• Third and fourth terms. We apply (6.20) to g := εW ε∂xu
1 + ε(u1 · ey)∂ywε. Since

W ε does not depend on x, we use the estimate

‖eρ0|∂x|∆̇kg(t)‖L2(B) ≤ ε(‖W ε‖∞ + ‖∂ywε‖∞)×
(‖eρ0|∂x|∆̇k∂xu

1(t)‖L2(B) + ‖eρ0|∂x|∆̇ku
1(t)‖L2(B))

≤ ε 1
4CW (‖eρ0|∂x|∆̇k∂xu

1(t)‖L2(B) + ‖eρ0|∂x|∆̇ku
1(t)‖L2(B))

(6.29)

thanks to estimate (4.11) from Lemma 4.3. We proceed as above using (6.2) to get
uniform bounds on the sums.

• Fifth term. We apply (6.21) to g := χ∂xu
1 and V := V . The integral in time of the

boundary layer is finite thanks to (4.2) from Lemma 4.1 because n ≥ 3. The sum in
k is also finite using the same techniques as above.

• Sixth term. We apply (6.21) to g := χ′(u1 · ey)/ϕ and V := zV . The integral in time
of the boundary layer is finite thanks to (4.2) from Lemma 4.1 because n ≥ 3. The
sum in k is also finite using the same techniques as above.

• Seventh term. We apply (6.21) to g := χϕ′(u1 ·ey)/ϕ and V := z∂zV . The integral in
time of the boundary layer is finite thanks to (4.2) from Lemma 4.1 because n ≥ 3.
The sum in k is also finite using the same techniques as above.
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