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Abstract

We are interested in developing a numerical method for capturing stationary sheaths,
that a plasma forms in contact with a metallic wall. This work is based on a bi-species
(ion/electron) Vlasov-Ampère model proposed in [3]. The main question addressed in this
work is to know if classical numerical schemes can preserve stationary solutions with bound-
ary conditions, since these solutions are not a priori conserved at the discrete level. In the
context of high-order semi-Lagrangian method, due to their large stencil, interpolation near
the boundary of the domain requires also a specific treatment.

1 Introduction

When a plasma is in contact with a metallic wall, stationary boundary layers, called sheaths,
form. They are due to both the reflexion/absorption properties of the wall and the charge
imbalance coming from the mass difference between electrons and ions: electrons leave the
plasma faster than ions. A drop of the self-consistent potential at the wall is indeed built up to
accelerate ions and decelerate electrons just as to ensure an equal flux of ions and electrons (a
zero current) at the wall. In this work, the starting point is a plasma sheath model proposed by
Badsi et al. [3], for which a so-called kinetic Bohm criterion on the incoming ion distribution
has been found out. Numerically, the sheath potential is computed by a non-linear Poisson
solver.

We here consider the corresponding non-stationary ion/electron Vlasov-Ampère model (note
that the stability of its linearized version has been studied in [2]) and its numerical implemen-
tation through a semi-Lagrangian scheme [6]. Semi-Lagrangian schemes are transport solvers
with no stability conditions on the time step: time step is only constrained by the physical
dynamics that has to be captured. High-order schemes, using high degree interpolation and
time splitting, can be devised and parallel implementation can be considered. We raise here the
following questions:

• Question 1: How do semi-Lagrangian scheme preserve this equilibrium in time ?

• Question 2: How can we treat boundary conditions with large stencil interpolation ?
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We will see that the equilibrium is stable provided that the incoming current, not exactly
zero at the discrete level, is made small. This will be ensured by taking a fine grid in space
and velocity and a time step small enough. For the second question, fictitious values of the
distributions functions will be set at the spatial boundaries. Finally, we emphasize that the
time step is constrained by the electronic dynamics and thus is very small here.

2 Sheath model

2.1 Stationary solution

Following [3], we consider a one-dimensional domain [0, 1]: particles enter the domain on the
left (x = 0) and the metallic wall is located at abscissa x = 1. We consider in this work purely
absorbing boundary conditions at the wall.

Electrons and ions are described by their distribution functions in phase space, denoted
f sh
se (x, v) and f sh

si (x, v) with spatial variable x ∈ [0, 1] and velocity variable v ∈ R, satisfy the
dimensionless stationary Vlasov system:

v ∂xf
sh
se −

1

µ
Esh ∂vf

sh
se = 0, (1)

v ∂xf
sh
si + Esh ∂vf

sh
si = 0, (2)

where µ � 1 is the mass ratio between electrons and ions, and Esh(x) denotes the stationary
electric field. It satisfies the Poisson equation:

Esh = −dφ
dx

sh

, −ε2 d
2φ

dx2

sh

= ρsh, (3)

ρsh(x) =

∫
v∈R

(f sh
si (x, v)− f sh

se (x, v)) dv, (4)

where φsh(x) is the electric potential, ε � 1 is the dimensionless Debye length of the plasma
and ρsh(x) is the charge density.
Boundary conditions. At the entrance of the domain, incoming ions and electrons have
distributions:

∀v > 0, f sh
si (0, v) = f insi (v), f sh

se (0, v) = n0

√
2µ

π
e
−
µv2

2 , (5)

where n0 is an electronic density parameter, that will be determined to have a given charge
density ρ0 at the entrance of the domain. Thus, electrons have a Maxwellian distribution. At
the wall, ions and electrons are supposed here to be totally absorbed:

∀v < 0, f sh
si (1, v) = 0, f sh

se (1, v) = 0,

The boundary conditions of the potential (3) are defined as follows. The potential values at
x = 0 is set to 0 and the potential at the wall, φw = φsh(1), also called floating potential, is
fixed such that the current vanishes at the wall:

φsh(0) = 0, (6)∫
v∈R

vf insi (v) dv =

√
2

πµ
n0e

φw . (7)
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Note that it implies that the current vanishes in the whole domain, since both electron and ion
momentum are constant in space.
Solutions. Using the characteristic lines of the transport equation and under the hypothesis
that the potential is decreasing in the domain, the solution to problem (1)-(2)-(3) is given by:

f sh
si (x, v) =1{

v>
√
−2φsh(x)

} f insi
(√

v2 + 2φsh(x)
)
, (8)

f sh
se (x, v) =1{

v≥−
√

2
µ

(φsh(x)−φsh(1))
} f inse

(√
v2 − 2

µ
φsh(x)

)
, (9)

where the sheath potential is the solution to the following non-linear Poisson equation:

− ε2 d
2φ

dx2

sh

(x) =

[∫
R+

f insi (v)v√
v2 − 2φsh(x)

dv

]
− 2n0√

2π

√2π eφ
sh(x) −

∫ +∞

√
−2φw

e−
v2

2 v√
v2 + 2φsh(x)

dv

 .
(10)

complemented by the boundary conditions (6)-(7).
Let consider a given charge density ρ0 ∈ R at the entrance of the domain. The problem is

solved in two steps:

1. a negative potential drop at the wall φw ≤ 0 is uniquely defined satisfying (7) provided
that the ionic distribution satisfies the relation:∫

R+
f insi (v)v dv∫

R+
f insi (v) dv − ρ0

≤
√

2

µπ
.

It satisfies the following equation:

1
√
µ
eφw

(∫
v∈R

f insi (v) dv − ρ0

)
+

(∫
v∈R

vf insi (v) dv

)(∫ +∞

√
−2φw

e−
v2

2 dv

)
= 0, (11)

and the associated electronic density parameter is given by:

n0 =

√
π

2

∫
v∈R+

f insi (v) dv − ρ0

(
√

2π −
∫ +∞√
−2φw

e−
v2

2 dv)
.

2. then, once this potential wall exists, the non-linear Poisson equation (10), complemented
with the boundary conditions φsh(0) = 0 and φsh(1) = φw, has a unique solution under
the kinetic Bohm criterion:∫

R+

f insi (v)

v2
dv∫

R+

f insi (v) dv

<

√
2π +

∫ +∞

√
−2φw

e−v
2/2

v2
dv

√
2π −

∫ +∞

√
−2φw

e−v
2/2 dv

.

Parameters. The equilibria has been computed by the gradient algorithm described in [3]
with the following parameters:

• the dimensionless Debye length is set to ε = 0.01.

• the charge is zero at the entrance of the domain: ρ0 = 0.
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• the incoming ion distribution is given by

f insi (v) = 1{v>0} min(1, v2/η)
1√

2πσ2
e−

(v−Z)2

2σ2 , η = 10−1, σ =
√
Ti/Te = 0.5, Z = 1.5.

(12)
Z is the macroscopic ion velocity when entering the domain.

• the incoming electronic distribution is Maxwellian as given by (5). For the sake of com-
pleteness, we recall the expression:

f inse (v) = 1{v>0} n0

√
2µ

π
e
−
µv2

2 , µ = 1/3672. (13)

µ is the mass ratio of a deuterium plasma.

Given these parameters, we can compute n0, φw with (11)-(1), and the sheath electric potential
φsh by solving the non-linear Poisson equation (10). In the numerical results, we take:

n0 = 0.50191266314760252, φw = −2.7839395640524267.

In practice, for future use in the non-stationary model, we store the nonlinear potential φsh on
a uniform grid of N = 2048 cells, that is, at points j/N, j = 0, . . . , N .

2.2 Non-stationary model

In the non-stationary setting, electron and ion distribution functions, fse(t, x, v) and fsi(t, x, v),
and the electric field, E(t, x), depend also on time t > 0. They satisfy the non-linear Vlasov-
Ampère system:

∂tfse + v ∂xfse −
1

µ
E ∂vfse = 0, (14)

∂tfsi + v ∂xfsi + E ∂vfsi = 0, (15)

ε2 ∂tE = −J, (16)

where J denotes the current density:

J(t, x) =

∫
v∈R

v (fsi(t, x, v)− fse(t, x, v)) dv.

Initial data. The initial data are given by the stationary solution:

fse(0, x, v) = f sh
se (x, v), fsi(0, x, v) = f sh

si (x, v), E(0, x) = Esh(x).

We note that the initial electric field E(x, 0) satisfies the following Poisson equation:

ε2∂xE(0, x) = nsi(0, x)− nse(0, x), (17)∫ 1

0
E(t, x) dx = −φw, (18)

where the densities nsi and nse are given by:

nse(t, x) =

∫
v∈R

fse(t, x, v) dv, nsi(t, x) =

∫
v∈R

fsi(x, v) dv,

and φw is the floating potential at x = 1.
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3 Numerical scheme

We solve system (14)-(15)-(16) using a semi-Lagrangian scheme. Due to the large mass ratio
between electrons and ions, the computational domain of electrons will be larger than the ion
one and thus velocity meshes have to be different for the two kinds of particles.
Mesh notations. We consider uniform cartesian meshes for both spatial domain [0, 1] and
velocity domain [vmin, vmax]. Considering Nx+1 points in the spatial direction and Nv+1 points
in the velocity one, mesh points are denoted (xi, vj) = (i∆x, vmin + j∆v) for all 0 ≤ i ≤ Nx and
0 ≤ j ≤ Nv with ∆x = 1/Nx and ∆v = (vmax − vmin)/Nv. Note that the definitions relative
to the velocity domain implicitly depend on the particle s ∈ {se, si} under consideration. We
denote by fns,(i,j) the approximate value of the distribution function fs at point (xi, vj) at time
tn = n∆t, with ∆t > 0 and n ∈ N, and Eni the approximate value of the electric field at point
xi.

3.1 Initialization of the electric field

The solution to system (17)-(18) is given by:

E(x) =

∫ x

0

nsi(y)− nse(y)

ε2
dy − φw −

∫ 1

0

∫ x

0

nsi(y)− nse(y)

ε2
dydx. (19)

The charge densities ns, s ∈ {se, si} are computed at grid points xi using the trapezoidal formula
in the velocity direction from the distributions functions 1. We then consider a reconstruction
at any point x = xi + α∆x ∈ [0, 1], with α ∈ [0, 1], by local centered Lagrange interpolation of
degree 2d+ 1 with d ∈ N:

ns,h(x) =
d+1∑
k=−d

ns,i+k Lk(α),

where Lk are the elementary Lagrange polynomials:

Lk(α) =

d+1∏
i=−d
i 6=k

(α− i)/(k − i). (20)

Note that the densities have to be defined at points outside of the domain when d > 0. This will
be done by expanding the definition of the distribution functions. This point will be detailed in
Section 3.3. The discrete electric field at grid points xi is then obtained from (19) in which ns
are replaced by their discrete counterparts ns,h. The involved integrals are computed exactly
and the overall scheme has O(∆x2d+2) accuracy.

3.2 Splitting

To solve the Vlasov-Ampère system, we use a splitting between space and velocity dynamics
and write it as a succession of one-dimensional advections. More precisely, we consider the
following dynamics: the kinetic transport system given by:

(T ) ∂tfse + v ∂xfse = 0, (21)

∂tfsi + v ∂xfsi = 0, (22)

ε2 ∂tE = −J, (23)

1The trapezoidal formula is spectrally accurate for smooth periodic data and remains accurate when the
velocity domain is large enough so that the distribution equals zero at the boundaries (up to machine precision)
and can be considered as periodic. We yet point out that the electron distribution (9) has a discontinuity in
velocity, which deteriorates the accuracy.
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and the electric transport system, given by:

(U) ∂tfse −
1

µ
E ∂vfse = 0, (24)

∂tfsi + E ∂vfsi = 0, (25)

ε2 ∂tE = 0. (26)

Since the electric field is constant in time in this second step, both dynamics T and U are
advections at constant velocities. In practice, to obtain second order accuracy in time, we
consider the Strang splitting which consists in computing for s ∈ {se, si}{(

fn+1
s,(i,j)

)
i,j
, (En+1

i )i

}
=
[
Uh,∆t/2 ◦ Th,∆t ◦ Uh,∆t/2

]{
(fns,(i,j))i,j , (E

n
i )i

}
where Th,τ and Uh,τ are discrete approximations of T and U over a time interval τ .

Each transport equation is solved using a semi-Lagrangian scheme with centered Lagrange
interpolation of degree 2d + 1. We thus consider the discretized version of the kinetic and
electric transport dynamics. Operator Th,τ : ((fs,(i,j)), (Ei)i)→ ((f∗s,(i,j)), (E

∗
i )i) consists in the

following: for any grid points (xi, vj), we define the shifted index i∗ and α ∈ [0, 1] such that
xi − vjτ = xi∗ + α∆x and then the distribution function is given by:

f∗s,(i,j) =
d+1∑
k=−d

fs,(i∗+k,j)Lk(α),

where the (Lk) are defined in (20), and the electric field at point xi is given by:

E∗i = Ei − τ
Ji + J∗i

2
,

where the current density (Ji)i (resp. (J∗i )i) is computed by trapezoidal rule in velocity from the
discrete distribution function (fi,j) (resp. (f∗i,j)). We thus exactly solve in time the transport
equations (21)-(22) at the grid points, starting from the interpolated distribution function in
the spatial direction, while the Ampère equation (23) is computed using a second order Crank-
Nicolson scheme. The interpolation requires values of the distribution function outside the
domain: we explain in the next section how to extrapolate it.

Operator Uh,τ : ((fs,(i,j)), (Ei)i) → ((f∗s,(i,j)), (E
∗
i )i) consists in the following: for any grid

points (xi, vj), we define the shifted indexes j∗si , j
∗
se and αsi , αse ∈ [0, 1] such that vj − Eiτ =

vj∗si
+ αsi∆vsi and vj + 1

µEiτ = vj∗se + αse∆vse and then

f∗s,(i,j) =
d+1∑
k=−d

fs,(i,j∗s+k)Lk(αs),

E∗i = Ei.

For this advection in velocity Uh,τ , periodic boundary conditions are used; we have here made
the presentation for Lagrange interpolation, as it is used for advection in space, but other
advection scheme can be used; in particular, in the numerical results, we will use cubic splines.

3.3 Boundary conditions

In both the initial computation of the electric field and the advection in space Th,τ , the pro-
posed numerical scheme requires to take values of the distribution function outside the physical
domain.
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For any xi = i∆x < 0 and vj , we consider the following extrapolation at the entry x = 0:

fs,(i,j) =

{
fs(0, 0, vj), if vj ≥ 0,

2fs,(0,j) − fs,(−i,j), if vj < 0.

For any xi+Nx = (i + Nx)∆x > 1 and vj , we consider the following extrapolation at the wall
x = 1:

fs,(i+Nx,j) =

{
2fs,(Nx,j) − fs,(Nx−i,j) if vj ≥ 0,

0 if vj < 0
.

This corresponds to a purely Dirichlet condition for incoming velocities and an extension by
imparity for leaving velocities (also called butterfly procedure).

4 Numerical results

4.1 Sheath test-case

We here used the following set of parameters:

d = 8, Nx = 2048, Nv = 4096,

velocity domain [−200, 500] for electrons and [−5, 5] for ions, (27)

∆t = 10−5.

The simulation has run on 256 processors during 24 hours, with final time t = 8.03478, on the
Marconi supercomputer; the distribution function is stored every multiple of 0.01, and the time
diagnostics every time step.

Distribution functions. On Figure 1 (resp. Figure 2), we represent the distribution of
electrons (resp. ions) at time t = 0 (top) and t = 4 (bottom). We clearly see that the equilibrium
is well preserved. We see that the maximum principle is not exactly preserved, as no limiting
procedure is introduced both in space advection (d = 8, i.e. Lagrange interpolation of degree
17) and in velocity advection (cubic splines). However, this seems to be not crucial here, as it
is not far from being preserved and it can be used as a measure of accuracy of the simulation
as other theoretically preserved quantities. We see that the distribution function of electrons
presents a discontinuity; this has the effect that the quadrature in velocity for computing the
current converges slowly, and thus a high number of points in velocity is needed.

For ions, we see that the distribution is not constant in space near the wall (x = 1) for a
given velocity. At this boundary, the butterfly procedure does not destroy the C1 property of the
distribution function and seems to be more adapted than the prolongation by a constant value,
which is used for incoming velocities. Note also that the fictitious boundary values are only
used to interpolate inside the domain, as the sub time step τ is here always positive (negative
time steps, could be however considered when going to higher order splitting schemes in time,
but are not studied in this work).

The space discretization is rather fine; this is needed for the sharp gradient near the wall.
Non-uniform grids could be useful here to save memory and computations [4], but are not tackled
here for simplicity. We mention also that high order interpolation is used, which permits not to
have to refine too much. High order schemes in a non uniform setting could be considered with
a Semi-Lagrangian Discontinuous Galerkin method (SLDG) (see [5], for example), or with non
uniform cubic splines (see for example [1]).

Finally, we note that the time step is chosen very small. In order to capture the oscillations
due to the dynamic of the electrons, it should be indeed smaller than ' 2 · 10−4. However, as
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we are interested in studying the stability of the equilibrium for long times (at least long with
respect to the electron dynamics), we have to reduce the time step to one order of magnitude
in order to reduce the time error (due to the Strang splitting and the Crank-Nicolson scheme
for the Ampère equation). Here again, higher order schemes in time might be useful, in order
to use larger time steps (see for example [1]).

On Figure 3 (resp. 4), we represent the difference between the distribution function of
electrons (resp. ions) at time 0 and at time t = 4 and t = 8. We see that the error for the
electrons is mainly localized near the wall and at the discontinuity of the distribution. As
regards ions, the error is localized near the wall. We see that the error near the wall increases in
time, especially for the ions. We remark also an exceptional value for the electrons, that seems
to be located at v = 0 and x = 1: this might be explained by the fact that the function is not
modified by the space advection (at v = 0), and is thus not diffused.

On Figure 5, we represent 2d views of the distribution function of electrons and ions at time
t = 8. We recognize here the pictures of [3].

Current density at the entry. On Figure 6, we represent the current density at the entry
x = 0 (which is zero at the continuous level). We expect a better behavior on the this boundary
than at the wall, where the convergence is more delicate. We remark an oscillatory behavior
due to the electron dynamics. After a violent behavior at time around 0.01, where the value
can have a peak around 0.02 (that value is guessed to be linked to the space discretization), it
tends to decrease and stabilize, while still oscillating around 0, with the same frequency.

Other diagnostics. On Figure 7, we represent the total energy, whose continuous expres-
sion is

E(t) =
1

2

∫
v∈R

∫ 1

0
v2 (fse(t, x, v) + fsi(t, x, v)) dxdv +

1

2

∫ 1

0
E2(t, x) dx.

We see that it is not exactly conserved. Except at the very beginning, it is decreasing and
reaches a relative error of about 1.4% at final time. We then represent the time evolution of
total density and L1 norm of the distribution function2 for ions and electrons on Figure 8 and
the L2 norm of the distribution function on Figure 9. We see that their time behavior is similar
to the total energy one. Note that the L1 norm and total density are indistinguishable (for both
ions and electrons), which shows that the positivity of the distribution functions is rather well
preserved.

4.2 Comparison with other parameters

On Figure 10, we show how the numerical results change when enlarging the computational
domain in velocity (taking velocity domain [−500, 500] for electrons and [−10, 10] for ions and
Nv = 8192), and then increasing the time step (∆t = 10−4 instead of ∆t = 10−5). We compare
the current density at the entry x = 0 and the total energy. We observe that the change in
velocity domain has no influence, while the change in time step ∆t leads to less accurate results.

On Figure 11, we present the results when taking less discretization points Nx = 256, Nv =
512 and velocity domain [−500, 500] for electrons and [−10, 10] for ions and ∆t = 10−4. This
enables to consider longer time simulation, but we see that the results are degraded especially
in large time.

On Figure 12, we consider low order interpolation d = 0. We consider ∆t = 5 · 10−6 and
Nv = 8192 or Nv = 65536. The velocity domain are [−500, 500] for electrons and [−10, 10] for
ions. We see that the current density at the entry x = 0 is improved when using more points

2Total density is given by:
∫
v∈R

∫ 1

0
fs(t, x, v) dxdv =

∫ 1

0
ns(t, x) dx.

L1 norm of the distribution function is given by:
∫
v∈R

∫ 1

0
|fs(t, x, v)| dxdv.
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Figure 1: Distribution function of electrons at time t = 0 (top) and t = 4 (bottom); X stands
for x, Y for v and Z for f(t, x, v). Parameters given in (27).
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Figure 2: Distribution function of ions at time t = 0 (top) and t = 4 (bottom); X stands for x,
Y for v and Z for f(t, x, v). Parameters given in (27).
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Figure 3: Error on the electron distribution function, fse(0, x, v) − fse(t, x, v), at time t = 4
(left) and t = 8 (right); X stands for x, Y for v and Z for fse(0, x, v)− fse(t, x, v). Parameters
given in (27).

Figure 4: Error on the ion distribution function, fsi(0, x, v) − fsi(t, x, v), at time t = 4 (left)
and t = 8 (right); X stands for x, Y for v and Z for fsi(0, x, v)− fsi(t, x, v). Parameters given
in (27).

Figure 5: Distribution function of electrons (left) and ions (right) at time t = 8. Parameters
given in (27).
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Figure 6: Time evolution of current density J(x, t) at the entry x = 0 and zoom on time intervals
[0, 0.1], [4, 4.01] and [8, 8.01]. Parameters given in (27).

Figure 7: Time evolution of total energy E(t). Parameters given in (27).
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Figure 8: Time evolution of total density and L1 norm of the distribution function for electrons
(left) and ions (right). Parameters given in (27).

in velocity. This is however not true as regards the other diagnostics: for the total energy, the
case d = 0 is really more diffusive and can not compete with the high order scheme.

On Figures 13 and 14, we consider the case d = 0, with ∆t = 10−4 and Nx = 256 or
Nx = 2048 and Nv = 8192 or Nv = 512. Comparing with the previous case with d = 8 (Figure
12), we see that there is no such oscillatory behavior in large time. However, for Nx = 256 and
Nv = 512, we see that diffusion is really important and leads to different behavior: the current
density at entry tends to a value around 0.1 instead of 0.

5 Conclusion

We have studied the behavior of the numerical solution of the Vlasov equation, initialized with
a sheath equilibrium [3]. Thanks to high resolution in velocity, high order interpolation and
very small time steps, we are able to recover the equilibrium accurately for relatively long time.
This work is a first step as regards the numerical method. We mention here several directions
of research:

• to reduce the constraint on the time step, asymptotic preserving schemes could be de-
signed, the fictitious boundary values may be improved and we could consider unsplit
time integration,

• to reduce the constraint on space/velocity grid, adaptive/Discontinuous-Galerkin method
or delta-f method could be considered,

• scheme ensuring a discrete Gauss law could be develop and its impact on the numerical
results could be analyzed,

• we could enhance mixed openmp/mpi parallelization to get full performance on current
and future architectures.
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[6] Eric Sonnendrücker. Numerical methods for the Vlasov equations.

14

http://selalib.gforge.inria.fr/


Figure 10: Comparison of the current density at the entry x = 0 (left) and total energy (right)
changing ∆t = 10−5 to ∆t = 10−4.

Figure 11: Comparison of the current density at the entry x = 0 (left) and total energy (right)
changing ∆t = 10−5 to ∆t = 10−4 and Nx to 256 and Nv to 512.

Figure 12: Comparison of the current density at the entry x = 0 (left) and the total energy
(right) for interpolation degrees d = 8 and d = 0.
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Figure 13: Current density at the entry x = 0 for d = 0, ∆t = 10−4 and different space/velocity
parameters (left: on short time; right: on long time)

Figure 14: Total energy for d = 0, ∆t = 10−4 and different space/velocity parameters.
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