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On symplectic hypersurfaces

M. Lehn, Y. Namikawa, Ch. Sorger, and D. van Straten

§1. Introduction

A symplectic variety is a normal complex variety X with a holomorphic
symplectic form ω on the regular part Xreg and with rational Gorenstein sin-
gularities. Affine symplectic varieties arise in many different ways such as
closures of nilpotent orbits of a complex simple Lie algebra, as Slodowy slices
to such nilpotent orbits or as symplectic reductions of holomorphic symplec-
tic manifolds with Hamiltonian actions. Many examples of affine symplectic
varieties tend to require large embedding codimensions compared to their di-
mensions.

In this article we treat the rarest case, namely affine symplectic hypersur-
faces. For technical reasons we also impose the condition that X admit a good
C∗-action, i.e. that its affine coordinate ring A = C[X] is positively graded,
A = ⊕i≥0Ai with A0 = C, and that ω is also homogeneous of positive weight
s. This condition is satisfied in all examples we know. Finally, such a ho-
mogeneous symplectic hypersurface X is called indecomposable if the unique
fixed point of the C∗-action is a Poisson subscheme of X . As the term in-
decomposable indicates, such singularities are essential factors of more gen-
eral hypersurfaces in the sense that every homogeneous hypersurface (X,ω)

equivariantly decomposes into a product W1 × ...×Wk ×X ′, where X ′ is an
indecomposable homogeneous hypersurface and each Wi is isomorphic to C2

with a standard symplectic form of the same weight s as ω (Lemma 2.5).
Indecomposable homogeneous hypersurfaces X = {f = 0} ⊂ C2n+1

have the remarkable property that the Poisson structure {−,−} : A×A→ A

defined on the coordinate ring A by the symplectic structure extends to the
ambient space (Lemma 2.7). Consequently, the deformationXt = {f = t} is a
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Poisson deformation, from which it follows that X admits a crepant resolution
(Theorem 2.8).

Since homogeneous symplectic hypersurfaces have no local moduli (cf.
[9], Proposition (3.5)), they arise in a discrete way. As is well known, an
indecomposable homogeneous hypersurface of dimension 2 is a Kleinian sin-
gularity of type A, D or E. In higher dimensions, the classification is an open
problem. At this moment we know of a series Xn, n ≥ 2, of 4-dimensional
examples and of a single 6-dimensional example X̂ . We found them originally
as the transversal slices to certain nilpotent orbits in complex simple Lie al-
gebras [6]. In this article, we give several different descriptions of the same
hypersurfaces.

Given that these constructions all lead to the same examples it might be
natural to ask: Is every indecomposable homogeneous symplectic hypersur-
face isomorphic to an ADE surface singularity, one of the 4-dimensional hy-
persurfaces Xn, or the 6-dimensional hypersurface X̂?

In the final section we look atXn from the view point of contact geometry.
Let Y ⊂ P(2n − 1, 2n − 1, 2, 2, 2) be the 3-dimensional projective variety
defined by the same equation as Xn. The symplectic structure on Xn induces
a contact structure on the regular part Y 0 of Y with the contact line bundle
O(2) := OP(2)|Y 0 . We construct an explicit birational map between Y and
the projectivised cotangent bundle P(T ∗P1×P1) so that this contact structure is
transformed to the canonical contact structure on P(T ∗P1×P1). More exactly,
we take a resolution µ : Ỹ → Y by blowing up the singular locus of Y
and construct a birational contraction map ν : Ỹ → P(T ∗P1×P1). The pull-
back of both contact structures by µ and ν then determine the same contact
structure on Ỹ outside some divisor F with F ⊂ Exc(µ) ∩ Exc(ν). Now
this construction tells us that if we start from P(T ∗P1×P1), then after a suitable
birational modification we can reach a singular contact Fano 3-fold Y . It would
be interesting to know if such phenomena occur more generally.

§2. The Poisson matrix

A symplectic variety in the sense of Beauville [1] is a normal complex
variety X with a symplectic form ω on the regular part Xreg and the property
that for some proper resolution of singularities π : X ′ → X the form π∗ω
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extends to a regular form on X ′. One can show that the same property then
holds for any proper resolution. Equivalently, it is sufficient to require that X
have rational Gorenstein singularities [7].

A C∗-action on an affine variety X = Spec(A) is called good if the ho-
mogeneous components of the corresponding grading of the coordinate ring
A = C[X] satisfy A0 = C and Ad = 0 for d < 0. In this case we write
m :=

⊕
d>0Ad for the maximal ideal corresponding to the unique fixed point

O ∈ X . Then m/m2 is a finite dimensional C∗-representation. We may choose
homogeneous elements x̄1, . . . , x̄m ∈ A whose residue classes form a basis of
eigenvectors for the action and who therefore generate the ring A. This yields
an equivariant embedding X → Cm of minimal codimension, with C∗ acting
linearly and contracting on Cm.

Definition 2.1. — A 2n-dimensional homogeneous symplectic hypersur-
face is a symplectic variety (X,ω) with a good C∗-action λ : C∗ × X → X

such that

(1) ω is homogeneous of degree s, i.e. λ(t)∗ω = tsω, and
(2) dimTOX = 2n+ 1, where O ∈ X is the unique fixed point of X .

Lemma 2.2. — Let (X,ω) be homogeneous symplectic hypersurface.
Then the degree s of ω is positive.

Proof. Let π : X ′ → X be a C∗-equivariant resolution of the singulari-
ties of X . The fixed point locus for the induced C∗-action on X ′ consists of a
finite number of smooth projective varieties Fi lying above the origin 0 ∈ X .
We prove that there is a fixed point q such that the action of C∗ on the cotangent
space T ∗qX

′ has only non-negative weights.
For each fixed point q, we define T ∗q (X ′)≥0 to be the subspace of T ∗qX

′

spanned by eigenvectors with non-negative weights. By Theorem 4.1 of [2],
for each Fi there exists a locally closed, smooth and C∗-invariant subvariety
X ′i of X ′ containing Fi such that T ∗q (X ′i) = T ∗q (X ′)≥0 for all q ∈ Fi. Let
p ∈ X ′ be a point such that π(p) 6= 0. Then the closure of the C∗-orbit
passing through p is contained in some X ′i by Theorem 4.2 of [2]. This means
that there is a locally closed C∗-invariant decomposition of X ′, X ′ = ∪X ′i .
In particular, dimX ′i0 = dimX ′ for some i0. Then T ∗q (X ′)≥0 = T ∗qX

′ for
q ∈ Fi0 .
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Let us take such a fixed point q. Then at least one weight must be positive,
as the action on X ′ in non-trivial. By assumption ωn extends to a regular
2n-form ψ of degree ns on X ′. At q it can be expressed in terms of local
coordinates as ψ = g(z1, . . . , z2n)dz1 ∧ . . . ∧ dz2n, so that ns = deg(ψ) ≥∑
i deg(zi) > 0. Q.E.D.

Every symplectic variety (X,ω) carries a canonical Poisson structure: On
the open regular part Xreg there is an isomorphism ω−1 : ΩX → TX , and
the Poisson bracket is defined by {f, g} := df(ω−1(dg)) for f, g ∈ OX(U),
U ⊂ Xreg. As X is normal, this bracket can be uniquely extended for any
two regular functions on X . If X is affine with coordinate ring A, the Poisson
bracket is completely determined by its values on a set x̄1, . . . , x̄m of genera-
tors of A. The matrix Θ̄ ∈ Am×m with entries

(2.1) Θ̄ij := {x̄i, x̄j}

is skew-symmetric and satisfies the Jacobi identity

(2.2)
∑
m

(
Θ̄im

∂Θ̄jk

∂x̄m
+ Θ̄jm

∂Θ̄ki

∂x̄m
+ Θ̄km

∂Θ̄ij

∂x̄m

)
= 0.

In the following, we will refer to Θ̄ as the Poisson matrix of X . Assume now
that (X,ω) is a homogeneous symplectic hypersurface of dimension 2n with
an equivariant embedding X → C2n+1 such that the coordinates x1,. . . ,x2n+1

of the ambient space have degree di := deg(xi) > 0 and X is defined by a
homogeneous polynomial f ∈ C[x1, . . . , x2n+1] of degree d := deg(f) > 0.
As ω is homogeneous of degree s > 0, the Poisson structure is homogeneous
of degree −s and

(2.3) deg(Θ̄ij) = deg(xi) + deg(xj)− s = di + dj − s.

There exists a direct explicit relation between the Poisson matrix of X and its
defining equation f , which we will explain next.

Recall that the pfaffian of a skew-symmetric 2n×2n-matrix B is a homo-
geneous polynomial pf(B) of the entries of B of degree n such that pf(B)2 =

det(B). Explicitly,

(2.4) pf(B) =
∑
π

sgn(π)Bπ(1)π(2) · · ·Bπ(2n−1)π(2n),
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where π runs through a subset of permutations in S2n such that the collections
Tπ := {{π(1), π(2)}, . . . , {π(2n−1), π(2n)}} represent every decomposition
of {1, . . . , 2n} into n unordered pairs exactly once.

If B is a skew-symmetric (2n + 1) × (2n + 1)-matrix let pf(B) denote
the vector whose i-th entry is given as pf(B)i = (−1)i−1 pf(Bi), where Bi

is obtained from B by deleting the i-th row and column. It is well-known that
B pf(B) = 0.

Lemma 2.3. — Let X ⊂ C2n+1 be a homogeneous symplectic hypersur-
face defined by a homogeneous polynomial f ∈ C[x1, . . . , x2n+1] and let Θ̄

denote its Poisson matrix. Then there is a non-zero constant c such that

(2.5) pf(Θ̄) = c grad(f)

as vectors with values in C[X].

Proof. As f = 0 in C[X], it follows that

(2.6) 0 = {xi, f} =
∑
j

Θ̄ij
∂f

∂xj
∈ C[X],

or briefly: Θ̄ grad(f) = 0. On the other hand Θ̄ pf(Θ̄) = 0. Now over
the regular part of X , the derivative grad(f) vanishes nowhere according to
the Jacobian criterion for smoothness. Moreover, Θ̄ has rank 2n since X is
symplectic so that the kernel of Θ̄ is one-dimensional and at least one of the
pfaffians pf(Θ̄i) is non-zero. So pf(Θ̄) also vanishes nowhere on Xreg. As
both grad(f) and pf(Θ̄) span the kernel of Θ̄ there is an invertible regular
function c on Xreg such that pf(Θ̄) = c grad(f) on Xreg. Since X is normal
the function c extends to an invertible regular function on X , and pf(Θ̄) =

c grad(f) holds everywhere on X . As c is homogeneous of some weight, it
must be constant. Q.E.D.

Replacing f by some scalar multiple, we can and will assume from now
on that for every homogeneous symplectic hypersurface the following funda-
mental relation between the defining equation and the Poisson matrix holds:

(2.7) pf(Θ̄) = grad(f)

Definition 2.4. — A homogeneous symplectic hypersurface X is inde-
composable if its unique fixed point is a Poisson subscheme of X .
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Using the previous notations this is equivalent to saying that the homoge-
neous maximal ideal m satisfies {m, A} ⊂ m which in turn is equivalent to the
condition that Θ̄ij ∈ m for all i, j.

The following decomposition lemma is due to Weinstein [10] if the under-
lying variety is smooth. For singular Poisson varieties an analogous statement
in the formal category has been proved by Kaledin. In the weighted homoge-
neous situation the argument of Weinstein extends easily. In fact, the proof is
easier than both in Weinstein’s and Kaledin’s situation as the choice of new
coordinates can be carried out in finitely many steps.

Lemma 2.5. — Let (X,ω) be a homogeneous symplectic hypersurface.
Then there is an equivariant symplectic isomorphismX ∼= W1×. . .×Wk×X ′,
where X ′ is an indecomposable homogeneous symplectic hypersurface and
eachWi is isomorphic to C2 with symplectic form dz1∧dz2 and homogeneous
coordinates with deg(z1) + deg(z2) = s.

Proof. Let X → C2n+1 be a homogeneous embedding with linear co-
ordinates xi of degree di > 0, and let Θ̄ denote the corresponding Poisson
matrix. If Θ̄ij ∈ m for all index pairs, X is indecomposable, and we are done.
Otherwise there are indices i, j such that Θ̄ij is a non-zero constant, and after
an appropriate linear coordinate change, we may assume that Θ̄12 = 1.

For every i > 1 we may expand Θ̄1i =
∑
m x

m
2 um as a polynomial in

x2 and put x̃i := xi −
∑
m x

m
2 am with a0 = 0. Here the coefficients am

are polynomials in the coordinates x1, x3, . . . , x2n+1 that have to be chosen in
such a way so as to give

(2.8) 0
!
= {x1, x̃i} =

∑
m

xm2 (um − {x1, am} − (m+ 1)am+1).

Thus we may set recursively am+1 = 1
m+1 (um − {x1, am}). As deg(am) is

strictly decreasing for m = 1, 2, . . ., all sums are in fact finite.
Hence, after renaming our variables we may assume that {x1, xi} = 0 for

all i 6= 2. In a similar way, we may now consider the expansion {x2, xi} =∑
m vmx

m
1 and new coordinates x̃i = xi −

∑
m amx

m
1 with recursively de-

fined polynomials am. In order that the new coordinate change should not
destroy the just achieved orthogonality property {x1, xi} = 0 for i > 2 it is
important to note that the coefficients vm do not contain positive powers of x2.
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Indeed this is a consequence of the Jacobi identity:
(2.9)
{x1, {x2, xi}} = {{x1, x2}, xi}+ {x2, {x1, xi}} = {1, xi}+ {x2, 0} = 0,

so that

(2.10) 0 = {x1,
∑
m

vmx
m
1 } =

∑
m

{x1, vm}xm1 =
∑
m

∂vm
∂x2

xm1 .

Hence repeating the argument of the first step and renaming the variables we
arrive at a set of coordinates satisfying {x1, x2} = 1 and {xi, xj} = 0 for
i ≤ 2 < j.

Let Θ̄ij be the Poisson matrix with respect to this new set of homogeneous
generators so that Θ̄ij = 0 if i ≤ 1 and j ≥ 2 and Θ̄12 = 1. It follows from
the Jacobi identity that

(2.11)
Θ̄ij

∂x̄1
= −{x2, Θ̄ij} = 0

and analogously that Θ̄ij

x̄2
= 0. This implies that Θ̄ij ∈ C[x̄2, . . . , x̄2n+1].

Similarly, f̄ = 0 implies ∂f
x1

= −{x2, f} = 0 and so on, so that f ∈
C[x2, . . . , x2n+1]. This shows that there is a graded Poisson isomorphism
A ∼= C[x1, x2] × A′ with A′ = C[x2, . . . , x2n+1]/(f) where the symplec-
tic form on the first factor is dx1 ∧ dx2 and where deg(x1) + deg(x2) = s.

The assertion follows by induction on the dimension of X . Q.E.D.

Lemma 2.6. — Let X ⊂ C2n+1 be an indecomposable homogeneous
symplectic hypersurface defined by a polynomial f ∈ C[x1, . . . , x2n+1].

(1) f ∈ nn+1 where n = (x1, . . . , x2n+1).
(2) All partial derivatives ∂f/∂xi are non-zero polynomials.

Proof. 1. As X is indecomposable all entries of the Poisson matrix are
contained in the maximal ideal m = (x1, . . . , x2n+1) ⊂ C[X]. Hence all
coefficients of its pfaffian are contained in nm as each summand of pf(Θ̄)i is
the product of n entries of the Poisson matrix. The assertion now follows from
identity (2.7).

2. Consider the stratification X = X0 ⊃ X1 ⊃ X2 ⊃ . . ., where Xm+1

is the singular part of Xm with its reduced subscheme structure. Kaledin has
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shown that each Xm is a Poisson subscheme of X , and that the canonically in-
duced Poisson structure on its normalisation X̃m → Xm turns X̃m into a sym-
plectic variety. In particular, all Xm are even-dimensional (possibly reducible)
varieties. Let Xk denote the last non-empty piece of the stratification. It is
a smooth symplectic variety and contains the origin as a Poisson subscheme.
According to Kaledin [4], Lemma 1.4 and Theorem 2.5, this is impossible un-
less Xk = {O}. Now if ∂f/∂xi were identically zero for some index i, i.e. if
f were independent of xi, every stratum Xm, including Xk would contain the
line given by xj = 0 for all j 6= i, a contradiction. Q.E.D.

Lemma 2.7. — Let X ⊂ C2n+1 be an indecomposable homogeneous
symplectic hypersurface. Then the Poisson structure on X can be uniquely
extended to a homogeneous Poisson structure on the ambient space C2n+1. In
particular, if Θ denotes the matrix Θij = {xi, xj}, where x1, . . . , x2n+1 are
linear homogeneous coordinates on C2n+1 then, possibly after rescaling it, the
defining equation f of X satisfies grad(f) = pf(Θ).

Proof. The natural epimorphism C[x1, . . . , x2n+1] → C[X] is an iso-
morphism in all degrees less than d = deg(f). Thus the Poisson matrix Θ̄

of X can be uniquely lifted to a skew-symmetric matrix Θ with values in the
polynomial ring if the degree condition deg(Θ̄ij) = di + dj − s < d is satis-
fied. And the bracket defined by {g, h} :=

∑
ij Θij

∂g
∂xi

∂h
∂xj

will automatically
satisfy the Jacobi-identity provided that all summands in equation (2.2) have
degree < d. Hence it suffices to show that

(2.12) di + dj − s < d and di + dj + dk − 2s < d

for all pairwise distinct indices i, j, k.
For any finite subset I ⊂ K := {1, . . . , 2n + 1} with an odd number

of elements let Θ̄I denote the skew-symmetric matrix obtained from Θ̄ by
elimination of the i-th row and column for all i ∈ I . Every monomial that
appears in the pfaffian pf(Θ̄I) is of the form ±Θ̄i1i2Θ̄i3i4 · · · Θ̄i`−1i` where
{i1, . . . , i`} = K \ I . Thus if pf(Θ̄I) 6= 0, then

(2.13) deg(pf(Θ̄I)) =
∑
i 6∈I

di −
1

2
(2n+ 1− |I|)s.

We apply this observation to submatrices of the form Θ̄i, Θ̄ijk and Θ̄ijkpq . For
brevity, let δ =

∑
i di. From the connection between the derivatives of f and
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Θ̄ we conclude that

(2.14) d− di = deg

(
∂f

∂xi

)
= deg(pf(Θ̄i)) = δ − di − ns.

Hence δ = d+ ns.
If n = 1, one has d = d1+d2+d3−s, and hence di+dj−s = d−dk < d

and di + dj + dk − 2s = d − s < d for {i, j, k} = {1, 2, 3}. Assume n ≥ 2

for the rest of the proof.
Let i, j be distinct indices and assume that pf(Θ̄ijk) 6= 0 for some k ∈

K \ {i, j}. Then

0 ≤ deg(pf(Θ̄ijk)) = δ−di−dj−dk− (n−1)s = (d−dk)− (di+dj−s),

so that di + dj − s ≤ d− dk < d. If on the other hand we had pf(Θ̄ijk) = 0

for all k, then Θ̄ij would have rank ≤ 2n− 4, and hence rk(Θ̄i) ≤ 2n− 2, so
that pf(Θ̄i) = 0 contradicting the fact that ∂f/∂xi 6= 0 by Lemma 2.6.

Let i, j, k be distinct indices. If n = 2 and {1, 2, 3, 4, 5} \ {i, j, k} =

{p, q}, then di + dj + dk − 2s = d− dp − dq < d. Hence assume that n ≥ 3.
Suppose that pf(Θ̄ijkpq) 6= 0 for some pair of indices p, q ∈ K \ {i, j, k}.
Then

0 ≤ deg(pf(Θ̄ijkpq)) = δ − di − dj − dk − dp − dq − (n− 2)s

= (d− dp − dq)− (di + dj + dk − 2s),

so that di + dj + dk − 2s ≤ d − dp − dq < d. If on the other hand we had
pf(Θ̄ijkpq) = 0 for all p, q, then Θ̄ijk would have rank ≤ 2n − 6, and hence
rk Θi ≤ 2n− 2, leading to the same contradiction as before. Q.E.D.

Theorem 2.8. — Let X ⊂ C2n+1 be an indecomposable homogeneous
symplectic hypersurface. Then X admits a crepant resolution.

Proof. The equation of X defines a flat deformation f : C2n+1 →
C. By Lemma 2.7, the Poisson structure on X uniquely extends to a ho-
mogeneous Poisson structure on the polynomial ring, and since {xi, f} =∑
j Θij∂f/∂xj = 0, the deformation is in fact a Poisson deformation. For

any t 6= 0, the fibre f−1(t) is smooth. Hence it follows from Corollary 5.6 in
[8] that X admits a crepant resolution. Q.E.D.
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§3. Examples

The following indecomposable symplectic hypersurfaces are known to us:

(1) ADE-surface singularities. These come in two seriesAn andDn and
three exceptional examples E6, E7 and E8.

(2) A series of four-dimensional hypersurfaces Xn, n ≥ 2, with equa-
tions fn = a2x+ 2aby + b2z + (xz − y2)n ∈ C[a, b, x, y, z].

(3) A single six-dimensional example X̂ .

If we search for higher-dimensional symplectic hypersurfaces, relation
(2.7) suggests to start from a skew-symmetric (2n + 1) × (2n + 1)-matrix
Θ with values in the polynomial ring C[x1, . . . , x2n+1]. It is then easy to re-
construct the polynomial f from the pfaffian minors of Θ. Of course, this puts
quite strong differential conditions on Θ: It must satisfy the Jacobi identity
(2.2), and its pfaffian minors must satisfy the Schwarz integrability conditions

(3.1) (−1)i−1 ∂ pf(Θi)

∂xj
= (−1)j−1 ∂ pf(Θj)

∂xi
.

And finally one has to check that X = {f = 0} is indeed symplectic.
Conversely, if f ∈ A = C[x1, . . . , x2n+1] defines a symplectic hypersur-

face X = {f = 0} ⊂ C2n+1, the Poisson matrix is determined as the middle
part of a skew-symmetric minimal resolution of the Jacobian ideal J :

(3.2) 0 −→ A
df−−→ A⊕2n+1 Θ−−→ A⊕2n+1 df−−→ J

3.1. Two-dimensional examples

Two-dimensional symplectic surface singularities are classical and well
studied mathematical objects ever since Klein discussed the invariants of finite
subgroupsG ⊂ SL2(C) and computed the equation of the embedding C2/G ⊂
C3. For a two-dimensional symplectic hypersurface X = {f = 0} ⊂ C3,
relation (2.7) is equivalent to saying that

(3.3) {xi, xj} =
∑
k

εijk
∂f

∂xk
.

Here εijk denotes the totally skew-symmetric tensor that equals the sign of the
permutation (1, 2, 3) 7→ (i, j, k) if i, j and k are pairwise distinct and 0 else.
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The corresponding symplectic form is obtained as the residue

(3.4) ω = resf
dx1 ∧ dx2 ∧ dx3

f
.

Note that any choice of a homogeneous polynomial f defines a Poisson struc-
ture. But X will be symplectic if and only if it is isomorphic to one of the
quotient singularities C2/G in the following list:

group G type equation f
cyclic Cn An−1 x2 + y2 + zn

binary dihedral D∗n Dn+2 x2 + y2z + zn+1

binary tetrahedral T∗ E6 x2 + y3 + z4

binary octahedral O∗ E7 x2 + y3 + yz3

binary icosahedral I∗ E8 x2 + y3 + z5

3.2. Four-dimensional examples

We know three constructions to obtain the hypersurfaces Xn:
The first construction establishes Xn as the transversal slice to the orbit of

certain nilpotent elements x in a simple Lie algebra g. We only sketch the con-
struction and refer to [6] for details. By the theorem of Jacobson-Morosov, one
may choose elements h, y such that the map sl2 → g, ( 0 1

0 0 ) 7→ x, ( 1 0
0 −1 ) 7→ h,

( 0 0
1 0 ) 7→ y, defines a Lie algebra homomorphism. The so-called Slodowy slice
S := x+ ker(ad y) intersects the orbit of x for the adjoint action transversely.
Let N ⊂ g denote the cône of nilpotent elements. Then S0 := S∩N is a sym-
plectic variety. If g = sp2n is the Lie algebra of type Cn and x is a nilpotent
element of Jordan type [2n−2, 1, 1], then S0 is isomorphic to the hypersurface
Xn defined by the vanishing of fn := a2x+ 2aby + b2z + (xz − y2)n.

The second construction is based on the following ansatz: Let V denote an
even-dimensional representation of the Lie algebra sl2. A Poisson bracket on
the symmetric algebra A = S∗(sl2⊕V ) is determined by its value on pairs of
vectors in sl2⊕V : it then extends uniquely to A by its biderivative properties.
We put {x, x′} := [x, x′] and {x, v} := x.v for x, x′ ∈ sl2 and v ∈ V using
the Lie bracket on sl2 and the action of sl2 on V . It remains to choose a
skew-symmetric map ϕ := {−,−}|Λ2V : Λ2V → A which we assume to
take values in the subring S∗(sl2). The Jacobi relation can be thought of as a
homomorphism J : Λ3(sl2⊕V )→ A. Its restriction to Λ3(sl2)⊕Λ2(sl2)⊗V
vanishes since [−,−] is a Lie bracket and V is a representation. The vanishing
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of J |sl2⊗Λ2V forces ϕ to be equivariant. So it remains to verify that J |Λ3V

vanishes.
Assume now that V = C2 is the two-dimensional standard representation.

As Λ3V = 0, the Jacobi condition is automatically satisfied for any equivariant
homomorphism ϕ : Λ2V = C → S∗(sl2). So ϕ has to be a homogeneous
element in the invariant subring S∗(sl2)sl2 . As is well-known, this subring is
freely generated by the Casismir element ∆. Explicitly, one obtains in terms
of a standard basis x, h, y of sl2 and a basis e0, e1 of C2 the following Poisson
matrices

(3.5) Θn =


0 −2x h 0 e0

2x 0 −2y e0 −e1

−h 2y 0 e1 0

0 −e0 −e1 0 2n∆n−1

−e0 e1 0 −2n∆n−1 0

 ,

where ∆ = h2 + 4xy. Integrating the pfaffian vector dfn = cn pf(Θn) yields
the expression

(3.6) fn = −ye2
0 + he0e1 + xe2

1 + ∆n.

Up to a rescaling of the coordinates this is the same equation as in the first con-
struction. The weights of the coordinates in this case are deg(x) = deg(h) =

deg(y) = 2 and deg(e0) = deg(e1) = 2n− 1.
The third construction is due to Hanany and Mekareeya [3]. Let Γ denote

a unitrivalent graph. This means that Γ is an undirected graph, possibly with
loops, such that each vertex is the end point of exactly one or three edges.
Here loops are counted twice. Attaching to each edge e a two-dimensional
symplectic vector space Ve and to each inner vertex i the 8-dimensional Wi =⊗

e→i Ve, where the tensor product is taken over the three edges that end in
i, we may form the symplectic vector space W (Γ) :=

⊕
iWi, where i runs

through the set of inner vertices. The groupG(Γ) :=
∏
e SL(Ve), where e runs

through the set of inner edges, acts on W (Γ) preserving the symplectic form.
Let X(Γ) := W (Γ) ///G(Γ) denote the symplectic reduction. Based on phys-
ical considerations Hanany and Mekareeya argue that X(Γ) is a symplectic
variety that up to symplectic isomorphism depends only on the number e(Γ)

of exterior edges of Γ and its first Betti number g(Γ). If Γ is read as the dual
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graph of a stable curve, g(Γ) is the genus of that curve. Hanany and Meka-
reeya give the formula dim(X(Γ)) = 2(1 + e(Γ)), deduce from a calculation
of the equivariant Hilbert series that X(Γ) is a four-dimensional hypersurface
if e(Γ) = 1, and state its defining equation.

For completeness sake and in order to see that graphs with e(Γ) = 1 and
g(Γ) = n lead to our hypersurfaces Xn, we carry out the necessary invariant
theoretic calculations in detail for the following graphs:

(3.7) • • • • • · · · •

For each loop of the form

(3.8) •A
B

C

• D

we need to consider the vector space ABC ⊕ BCD, where we have dropped
the tensor sign. We may consider BC = C2 ⊗ C2 = C4 as the fundamental
representation of SL(B) × SL(C)/(−I,−I) = SO4. This allows to simplify
the diagram above to • • where the double line indi-
cates the fundamental representation of SO4. Similarly, a loop

(3.9) •A
B

leads to the vector space ABB. Again we consider BB = C2 ⊗ C2 ∼= C ⊕
C3 as the sum of the trivial and the fundamental representation for the group
SL(B)/(−I) = SO3. We indicate this by a wriggled line • /o/o/o • .
Thus we may replace the graph (3.7) by

(3.10) • • • • • · · · • /o/o/o •

It follows from this reasoning that W (Γ) is the space of representations for the
following quiver:

(3.11) • x1 // ◦
y1 // • x2 // ◦

y2 // · · ·
yn−1 // • xn // � ,

where • correspond to copies of the fundamental representation C2 of SL2, ◦
correspond to copies of the fundamental representation C4 of SO4, and � cor-
responds to the representation C ⊕ C3 of SO3. Using the symplectic and or-
thogonal forms on these representations we reinterpret tensor products as Hom
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spaces associated to the arrows. Then W (Γ) = {(x1, y1, . . . , yn−1, xn)},
where xi ∈ Hom(C2,C4) for i = 1, . . . , n and yi ∈ Hom(C4,C2) for
i = 1, . . . , n − 1. Let x∗i = J−1xtiQ ∈ Hom(C4,C2) and y∗i = Q−1ytiJ ∈
Hom(C2,C4) denote the associated adjoint homomorphisms. Here J and Q
denote the symplectic and quadratic form on C2 and C4, respectively. Then
the ideal I defined by momentum maps for the action of G(Γ) is generated
by the components of the elements xix∗i + y∗i yi and yiy

∗
i + x∗i+1xi+1 for

i = 1, . . . , n − 1 and π(xnx
∗
n), where π : so4 → so3 denotes the projec-

tion dual to the inclusion so3 → so4 associated to the representation of SO3

on the vector space C⊕C3 at the end of the quiver. We calculate the symplec-
tic reduction in three steps, taking invariants for the the groups SO4 first, then
for the groups SL2, and finally for SO3.

The invariant ring for the groups SO4 is generated by xn and the elements

ai := x∗i xi, bi := yixi, ci := yiy
∗
i , di := det(xi|y∗i ), for i = 1, . . . , n− 1.

The intersection with the momentum ideal is generated by

π(xnx
∗
n), ci+ai+1, a

2
i +b∗i bi, biai+cibi, bib

∗
i +c2i , di, for i = 1, . . . , n−1,

where we have put an := x∗nxn to simplify notations. This allows us to ignore
the invariants di and ci. We are left with the following set of generators

ai ∈ sl2, bi ∈ Hom(C2,C2), for i = 1, . . . , n− 1, and xn ∈ Hom(C2,C4),

with relations

π(xnx
∗
n), biai − ai+1bi, a2

i + b∗i bi, bib
∗
i + a2

i+1.

Since a2
i , bib∗i , b∗i bi are multiples of the identity, the corresponding relations

can be rephrased as a2
1 = a2

i = −bib∗i = −b∗i bi. The generators ai, bi, xn
define a representation of the shortened quiver

(3.12) • b1 //

a1

��
• b2 //

a2

��
· · ·

bn−1 // • xn //

an

��
�

The invariant ring for the action of the groups SL2 is generated by the com-
ponents of all maps that are compositions of arrows forming a path from one
end of the quiver to another or traces of compositions of arrows forming a
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closed loop. We can use the relations to move aside any of the loops a2
i , bib∗i

or b∗i bi. This reduces the number of generators to a1, u := xnbn−1 · · · b1 and
v := xnx

∗
n,

(3.13) • u //a1 99 � vee

satisfying the relations

ua1− vu, uu∗−det(a1)n−1v, u∗u−det(a1)n−1a1, tr(a2
1)− tr(v2), π(v).

It remains to take invariants for the action of SO3. The decomposition C4 =

C⊕ C3 yields corresponding decompositions

(3.14) u =

(
u1

u2

)
, v =

(
0 −w∗

w z

)
.

As z = π(v) is a relation, we may ignore z and continue to calculate with
the SO3-invariant generators a1 and u1 and the vector valued generators u2 ∈
Hom(C2,C3) and w ∈ Hom(C,C3). The remaining relations translate into

(3.15) u1a1 + w∗u2, u2a1 − wu1, u2u
∗
2, det(a1)− w∗w.

(3.16) u2u
∗
1 − det(a1)n−1w, u∗1u

∗
1 + u∗2u2 − det(a1)n−1a1.

The invariants for the SO3 action are generated by a1, u1: the further invariants

(3.17) w∗w, w∗u2, u∗2u2, det(w|u2),

can be expressed in terms of a1 and u1 due to the given relations. So we end
up with five generators x, y, z, a and b that are the components of

(3.18) a1 =

(
y x

−z −y

)
∈ sl2 and u1 =

(
a

b

)
∈ Hom(C2,C)

and satisfy the single equation

(3.19) 0 = det(a1)n + u1a1u
∗
1 = a2x− 2aby + b2z + (xz − y2)n.
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3.3. The six-dimensional example

At present we know only one six-dimensional indecomposable hypersur-
face, denoted X̂ . It looks rather special, and the following discussion might
indicate that it is an exceptional example that is not contained in a series. We
first encountered X̂ as the slice to the six-dimensional nilpotent orbit in the
nilpotent cone of the simple Lie algebra g2 [6]. Its defining equation f̂ is
rather complicated, and it is easier to obtain it indirectly. X̂ has the interesting
property that it is completely determined by its singular locus Σ ⊂ C7, and we
will explain how to recover X̂ starting from Σ.

Let V denote the irreducible two-dimensional representation of the sym-
metric group S3, realised as the kernel of the linear form x1 + x2 + x3 in
C3. The invariant ring C[V ⊕ V ∗]S3 is generated by 3 polynomials a1, a2, a3

of degree 2 that are obtained by the process of polarisation from the second
elementary symmetric polynomial x1x2 + x2x3 + x3x1 and by 4 polynomi-
als b1, . . . , b4 of degree 3 that are obtained by similarly polarising the third
elementary symmetric polynomial x1x2x3. This is a classical result treated
for example by Weyl in [11, p. 36 ff.]. These invariants are explicitly given
as follows: a1 =

∑
i<j xixj , a2 =

∑
i,j xiyj , a3 =

∑
i<j yiyj and b1 =

x1x2x3, b2 = x1x2y3 + x1y2x3 + y1x2x3, b3 = x1y2y3 + y1x2y3 + y1y2x3,
b4 = y1y2y3 for the dual coordinates y1, y2, y3 on V ∗.

These polynomials define an embedding Σ := (V ⊕ V ∗)/S3 → C7. The
relations among the invariants are generated by the following 2 polynomials of
weighted degree 5 and 3 polynomials of degree 6:

(3.20)

t1 = a3b2 − a2b3 + 3a1b4,

t2 = 3a3b1 − a2b2 + a1b3,

t3 = a3(a2
2 − 4a1a3)− 3b23 + 9b2b4,

t4 = a2(a2
2 − 4a1a3)− 3b2b3 + 27b1b4,

t5 = a1(a2
2 − 4a1a3)− 3b22 + 9b1b3;

We note in passing that the same quotient variety Σ can also be obtained as
symplectic reduction for the action of SL2 on S4C2 ⊕ (S4C2)∗ or as the sym-
plectic reduction for the action of SL3 on sl3⊕ sl∗3.

As subring of C[V ⊕V ∗] the graded coordinate ring C[Σ] inherits a canon-
ical Poisson structure. The Poisson brackets {ai, aj}, {ai, bj} and {bi, bj}will
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have degrees 2, 3 and 4 respectively. But since the smallest degree of a rela-
tion among the ai’s and bi’s has degree 5 it follows that the Poisson structure
uniquely extends to a homogeneous Poisson structure on the ambient space
C7. Calculation gives the following Poisson matrix:



0 −2 a1 −a2 0 −3 b1 −2 b2 −b3
2 a1 0 −2 a3 3 b1 b2 −b3 −3 b4
a2 2 a3 0 b2 2 b3 3 b4 0

0 −3 b1 −b2 0 2
3a

2
1

2
3a1a2

1
3a

2
2 − 2

3a1a3
3 b1 −b2 −2 b3 − 2

3a
2
1 0 10

3 a1a3 −
1
3a

2
2

2
3a2a3

2 b2 b3 −3 b4 − 2
3a1a2

1
3a

2
2 − 10

3 a1a3 0 2
3a

2
3

b3 3 b4 0 2
3a1a3 −

1
3a

2
2 − 2

3a2a3 − 2
3a

2
3 0



If we denote this matrix by Θ̂, its pfaffian pf(Θ̂) allows to determine the hyper-
surface equation f̂ via df̂ = cpf(Θ̂), up to some normalising constant c. The
equation is rather complicated. One can express it using the relations between
the invariants, i.e. the equations of Σ, as follows:

(3.21) f̂ = a1t
2
1 − a2t1t2 + a3t

2
2 +

1

12
(t24 − 4t3t5).

Since f̂ ∈ (t1, . . . , t5)2, the singular locus of X̂ = {f̂ = 0} contains Σ, and
an explicit calculation shows that Σ actually equals the reduced singular locus
of X̂ .

One can also describe the Poisson matrix Θ̂ by the Poisson algebra ap-
proach described in the four-dimensional case: consider the four-dimensional
irreducible representation V = S3C2 of sl2. The choice of an equivari-
ant map ϕ : Λ2V → S∗(sl2) gives rise to a Poisson structure on A =

S∗(sl2⊕V ) if certain conditions imposed by the Jacobi identity are are satis-
fied: As there are equivariant decompositions Λ2V = C⊕S4C2 and S∗(sl2) =

C[∆] ⊗
⊕

m≥0 S
2m(C2), the space of homogeneous equivariant maps ϕ :

Λ2V → S∗(sl2)N is two-dimensional for each even N ≥ 2, generated by
maps C → C · ∆N/2 and S4C2 → S4C2 · ∆N/2−1. However, and in con-
trast to the four-dimensional case, only for the degree N = 2 there is a map ϕ
leading to a non-degenerate hypersurface: the one described above.

§4. Contact Fano 3-folds

Consider the 3-dimensional projective varieties Y ⊂ P := P(2n−1, 2n−
1, 2, 2, 2) defined by the weighted homogeneous polynomial a2x + 2aby +
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b2z + (xz − y2)n = 0 for each n ≥ 2 . Here the coordinates are given
the degrees |a| = |b| = 2n − 1 and |x| = |y| = |z| = 2. As before, let
Xn denote the symplectic hypersurface in C5 defined by the same equation.
In this section we introduce a contact structure on Y and relate it with the
projectivised cotangent bundle P(T ∗P1×P1) by explicit birational maps.

The singular locus of Y has two components: Y has quotient singularities
of type 1

2n−1 (1, 1) along the smooth rational curve C = {x = y = z = 0} and
Du Val singularities of type D2n along the smooth rational curve D = {a =

b = 0, xz−y2 = 0}. The projection map p : C5\{0} → P(2n−1, 2n−1, 13)

is a C∗-bundle outside C and D. Define Y 0 := Y \ (C ∪ D) and X0
n :=

p−1(Y 0).
Recall that a contact structure on a complex manifold M of dimension

2d+ 1 is an exact sequence of vector bundles

0 −→ D −→ TM
θ−→ L −→ 0,

with rk(D) = 2d and rk(L) = 1 so that dθ|D induces a non-degenerate pairing
on D. By using the formula for exterior derivation

dθ(x, y) = x(θ(y))− y(θ(x))− θ([x, y])

one can check that this is equivalent to saying that [−,−] : D × D → L =

TM/D is non-degenerate. We call L the contact line bundle.
We shall introduce a contact structure on Y 0 with the contact line bundle

O(2) := OP(2)|Y 0 . Let ω be a symplectic 2-form on X0
n of weight 2. By

construction, the projection p : X0
n → Y 0 is a C∗-bundle, and X0

n is in fact
isomorphic to the complement of the zero section of the line bundleO(−1) on
Y 0. There is a canonical trivialisation p∗O(1) ∼= OX0

n
, and hence a trivialisa-

tion p∗O(i) ∼= OX0
n

for any i ∈ Z. Let ζ be the vector field which generates
the C∗-action. Since ω has weight 2, one can write ω(ζ, ·) = p∗θ for some ap-
propriate element θ ∈ H0(Y 0,Ω1

Y 0 ⊗O(2)). This θ gives a contact structure
on Y 0 with contact line bundle O(2).

The rational map

P((2n− 1)2, 23) 99K P2 = P(23), (a : b : x : y : z)→ (x : y : z)

induces a rational map Y 99K P2. To eliminate the indeterminancy of the
rational map, we take the blow-up Y1 of Y along C. Let F1 ⊂ Y1 be the
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exceptional divisor of the blowing-up. Notice that F1 is a P1-bundle over C.
Then the rational map actually becomes a morphism f1 : Y1 → P2. Let us
consider the fibres of f1. For (1 : µ : λ) ∈ P2, the fibre f−1

1 (1 : µ : λ) is
isomorphic to the quasi-homogeneous hypersurface of P((2n − 1, 2n − 1, 2)

defined by

a2 + 2abµ+ b2λ+ (λ− µ2)nx2n−1 = 0.

If (1 : µ : λ) ∈ {xz−y2 = 0}, then it is a multiple fibre with multiplicity 2. If
(1 : µ : λ) /∈ {xz− y2 = 0}, then the fibre is a smooth rational curve. In other
words, f1 is a conic bundle whose discriminant locus D′ is {xz−y2 = 0} and
all singular fibres are non-reduced.

Set S1 := f−1
1 (D′)red. Then S1 is a P1-bundle over D′. Since the

blowing-up Y1 → Y does not change an open neighborhood of D ⊂ Y , its
inverse image D1 by the blowing-up is isomorphic to D. Moreover, D1 is a
section of the P1-bundle S1 → D′. The singular locus of Y1 coincides with
D1. As Y1 has Du Val singularities of type D2n along D1, one can take its
minimal resolution Ỹ → Y1. The exceptional locus of the minimal resolution
consists of 2n divisors E(1),. . . , E(2n) intersecting each other according to the
following D2n-configuration:

c
E(1)

c
E(2n−2)@

@

�� c
cE(2n−1)

E(2n)

Here the vertices correspond to the exceptional surfaces and the edges corre-
spond to the intersection curves. Each surface E(i) is a P1-bundle over D and
each intersection curve is a section of the P1-bundle map.

Let S and F be respectively the proper transforms of S1 and F1 by the
map Ỹ → Y1. Then S intersects with F along a section of the P1-bundle
structure. There are no intersetion of F with E(i)’s. On the other hand, S
intersects with only E(1). Notice that E(1) ∩S is a section of the ruled surface
E(1), which is disjoint from E(1) ∩ E(2):

c c c
E(1)

c
E(2n−2)@@

�� c
cE(2n−1)

E(2n)F S
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One can blow down successively these divisors along their rulings in the fol-
lowing order: S, E(1), . . . , E(2n−3), and finally F . We call the resulting vari-
etyZ. The existence of such birational contraction maps are justified in the fol-
lowing way. Let us consider Y1 and S1. Let `1 be a fibre of S1 → D′. We prove
that (KY1

, `1) = −1. Let ` ⊂ Y be the image of `1 by the map π1 : Y1 → Y .
By an explicit calculation we see that (O(1), `) = 1

2 ·
1

2n−1 . Since KY =

OY (−4), one has (KY , `) = − 2
2n−1 . Since KX1 = (π1)∗KY − 2n−3

2n−1 · F1

and (F1, `1) = 1, we see that (KY1 , `1) = −1. Denote by π2 the minimal
resolution Ỹ → Y1. The proper transform S of S1 by π2 is isomorphic to S1;
hence there is a P1-bundle map S → D′. Let ˜̀ be a fibre of this map. Then,
since KỸ = (π2)∗KY1

, we see that

(KỸ ,
˜̀) = −1.

Let mi be a fibre of the P1-bundle structure of E(i). Then we have

(KỸ ,mi) = 0.

By Nakano-Fujiki criterion one has a bimeromorphic map ν1 : Ỹ → Z1 to a
Moishezon manifold Z1, where ν1 contracts all rulings of S to points. As S
intersects with E(1) along a section, we have

(KZ1 , ν1(m1)) = (KỸ ,m1)− 1 = −1.

Then we get a bimeromorphic map ν2 : Z1 → Z2, where ν2 contracts all
rulings of ν1(E(1)) to points. We can further continue the same procedures
in the order of E(2),. . . , E(2n−3) and finally F . As a consequence we have a
sequence of birational contraction maps

Ỹ → Z1 → Z2 → . . .→ Z.

In the remainder we denote by ν the map Ỹ → Z and by µ the map Ỹ → Y .

Lemma 4.1. — Z has a contact structure.

Proof. The birational map π : Ỹ → Y is a crepant resolution of Y
aroundD. As remarked above, Y 0 has a contact form η ∈ Γ(Y 0,Ω1

Y 0⊗O(2))

with a contact line bundle O(2). Take a point x ∈ D. Since O(2) is a line
bundle around D, one can trivialiseO(2) on an open neighbourhood x ∈ U ⊂
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Y . Then η is regarded as a 1-form on Ureg such that η ∧ dη is a nowhere-
vanishing 3-form on Ureg. This 3-form extends to a generator of the invertible
dualising sheaf ωU . Set Ũ := π−1(U) and πU := π|Ũ . Then (πU )∗(η ∧ dη)

is a nowhere-vanishing 3-form on Ũ because πU gives a crepant resolution of
U . This shows that (πU )∗η is a contact 1-form on Ũ with the contact line
bundle (πU )∗(O(2)|U ). As a consequence, Ỹ has a contact structure outside
F = π−1(C).

Let β ⊂ Z be the image of F by the birational morphism ν : Ỹ → Z.
Note that dimβ = 1. Let us consider the birational morphism

Ỹ − ν−1(β)→ Z − β.

There is an open subset Z0 of Z−β such that ν−1(Z0) ∼= Z0 and such that the
complement of Z0 in Z − β has at least codimension 2. The restriction of the
contact structure on Ỹ − F to ν−1(Z0) gives a contact structure of Z0. Since
the complement of Z0 in Z has at least codimension 2, the contact structure
uniquely extends to a contact structure on Z. Q.E.D.

Lemma 4.2. — Z is isomorphic to P(T ∗P1×P1).

Proof. We cover D by three orbifold charts Wx → Y , Wy → Y and
Wz → Y , where Wx := {x = 1} ⊂ C5, Wy := {y = 1} and Wz := {z =

1}. Note that each map is a Z2-cover onto its image. Let V be the union of
these images. The blowing up of each chart along the singular locus is Z2-
equivariant, and three pieces W̃x/Z2, W̃y/Z2 and W̃z/Z2 are glued together
to give a partial resolution V ′ → V . Since it does not change anything outside
D, it gives a partial resolution Y ′ → Y . The exceptional locus E′ of the
partial resolution is a P1-bundle over D and Y ′ has A2n−1-singularities along
a section of this P1-bundle. Note that the partial resolution Y ′ → Y eliminate
the indeterminancy of the rational map

Y −− → P1, (a : b : x : y : z)→ (a : b)

and gives a morphism Y ′ → P1. Each fibre of E′ is isomorphically mapped
onto P1 by the morphism. This, in particular, shows that E′ has two P1-bundle
structures. Hence we see that E′ ∼= P1×P1. By the definition, Ỹ → Y factors
through Y ′ : Ỹ → Y ′ → Y . The proper transform of E′ by the birational map
Ỹ → Y is nothing but E(2n−1). By the argument above, E(2n−1) ∼= P1 × P1.
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Next look at E(2n−2) . It has a P1-bundle structure whose fibres cor-
respond to exceptional curves of the map Ỹ → Y . Since it has three dis-
joint sections (corresponding to the intersections with E(2n−3), E(2n−1) and
E(2n)), we also see that E(2n−2) ∼= P1×P1. Define σ := E(2n−2)∩E(2n−3).

We write E(2n−2), E(2n−1) and E(2n) for their images in Z by the map
Ỹ → Z.

Pick a fibre α of E(2n−2) ⊂ Z. Since (E(2n−2), α)Z = 0, the curve α
can move aside E(2n−2) in a parameter space of dimension 2. We prove that
there is a morphism Z → P1 × P1 whose fibres are all deformation equivalent
to α. The linear system which gives the morphism is |OZ(E(2n−2))|. To
prove that this linear system is free from base points, it suffices to show that
|OE(2n−2)(E(2n−2))| is free from base points by the exact sequence

0→ H0(Z,OZ)→ H0(Z,OZ(E(2n−2)))→ H0(E(2n−2),OE(2n−2)(E(2n−2)))→ 0.

Note that
KỸ = µ∗KY −

2n− 3

2n− 1
F.

We can also write KỸ by a linear combination of ν∗KZ , S, F and E(1), . . . ,
E(2n−3). By using the two expression of KỸ , one can write

ν∗KZ = µ∗KY − 2E(2n−3) + other terms.

Restricting this to E(2n−2) we get KZ |E(2n−2) = −4α− 2σ since (KY , D) =

−4, which easily follows from the fact that KY = O(−4) and (O(1), D) = 1.
Now, by the adjunction formula KE(2n−2) = KZ + E(2n−2)|E(2n−2) we

see that E(2n−2)|E(2n−2) ∼ 2α. The corresponding linear system is free from
base points.

Since h0(Z,OZ(E(2n−2))) = 4, we have a morphism Z → P3. Since
(E(2n−2))3 = 0 and (E(2n−2))2 ∼ 2α, the image has 2 dimension. Moreover,
since (E(2n−1), α) = 1 and E(2n−1) ∼= P1×P1, the morphism is a P1-bundle
over P1 × P1 with a section E(2n−1). As we have seen in Lemma 4.1, Z
has a contact structure. Moreover the morphism defined here is a Legendre
P1-bundle. By [5], it then follows that Z is a projectivised cotangent bundle
P(T ∗P1×P1). Q.E.D.

Remark 4.3. — Let X ′n be a Slodowy slice to a niloptent orbitO[4n−3,13]

of so4n with n ≥ 2. Then one can check that X ′n is isomorphic to the complete
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intersection of C6(α, β, γ, x, y, z) defined by two equations f = g = 0 with

f = αx+2βy+γz = 0 and g = αγ−β2 +1/4(xz−y2)2n−1 = 0.

With the new coordinatesA = α− 1
2z(xz−y

2)n−1,B = β+ 1
2y(xz−y2)n−1

and C = γ − 1
2x(xz − y2)n−1 the equations f = 0 and g = 0 respectively

become

Ax+ 2By + Cz + (xz − y2)n = 0 and AC −B2 = 0.

It follows from this description that τ(a, b, x, y, z) := (a2, ab, b2, x, y, z) de-
fines a double covering τ : Xn → X ′n. Note that τ is ramified precisely over
the singular locus of X ′n. Moreover, X ′n is equipped with the Kostant-Kirillov
2-form ω′ on the regular locus. Then τ∗ω′ is equivalent to the Kostant-Kirillov
2-form ω on Xn by Theorem (3.1) in [9].

Let Y ′ be the 3-dimensional projective variety in P(2n− 1, 2n− 1, 2n−
1, 1, 1, 1) defined by f = g = 0. The degrees of the coordinates are |α| =

|β| = |γ| = 2n− 1 and |x| = |y| = |z| = 1. Then Y ′ admits a contact struc-
ture on its regular part. Moreover, by the observation above, we immediately
see that Y ∼= Y ′ as contact varieties.
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