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2Institut National de la Recherche en Agronomie, Unité de Mathématique, Informatique et
Génome UR 1077, France
3Ecole Centrale de Lyon, Laboratoire Ampére UMR CNRS 5005, France

This paper is concerned with the application of linear parameter-varying (LPV) methods.
Its purpose is to investigate the interest of a new information structure for the LPV controllers.

The proposed improvement consists in extending the traditional information structure by
introducing, beside the signals usually measured, special signals supposed available for control.
This enhances the design in two directions: first, the performance of the obtained controller
is improved by a more accurate adjustment to the LPV system parameter value; second, this
structure enables the implementation of a controller of reduced complexity in relation to the
LPV system parameter.

The advantages of the proposed structure are illustrated on the single-axis missile control

problem proposed by Reichert which has been intensively studied in the existing literature.

I. Introduction

A linear parameter-varying (LPV) system is defined as:

a(t) = A(0@)x(t) + B(6(t) w(t)
z=Grpy(w) 2(t) = C(0)x(t) + D (6(t) w(t) (1)
LL‘(tQ) = X9

where z(t) € R™ is the state vector, w(t) € R™ is the disturbance input, z(t) € R™= is the output and 6(¢t) € RP
is a time-varying exogenous parameter vector valued in a hypercube (each parameter 6;(t) ranges between
known extremal values 6, and 6;).

The interest of these systems lies in the fact that they can model linear time-varying (LTV) and nonlinear
plants. Assuming that the parameter is measured, the idea is to use the parameter measurements to improve
the design compared to a linear time-invariant (LTT) strategy.

A customary method for finding a parameter-dependent controller (also denoted by gain-scheduled controller)
was developed heuristically by engineers from LTI methods, see reference.! It consists in designing LTI con-
trollers using linearizations of the plant associated to frozen values of the parameter. The parameter-dependent

controller is then obtained by interpolating these LTI controllers as functions of the parameter. Although this
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method is largely and quite successfully applied, it cannot a priori guarantee the obtained closed-loop perfor-
mance and even stability, so that in practice engineers need to a posteriori test the performance by intensive
dynamical simulations.

These serious drawbacks motivated the search for a systematic approach to construct a gain-scheduled con-
troller, see e.g. references.'? Important contributions in this field are dated from the beginning of the 90’s
and are due to Packard.®> The LPV problem was formulated as the problem of minimizing the L5 gain of a
system augmented with weighting functions, known as the Lo gain LPV control problem, which is an extension
of the H, control problem. Indeed, an LTI plant is a very specific case of LPV plant and moreover, the £,
gain of an LTT system is equal to its Hy, norm so that in the case of an LTT plant, the £5 gain LPV control
problem reduces to the H,, control problem. The issue was then to obtain tractable conditions to solve the
problem. The L5 gain LPV control problem turned out to be difficult: indeed, so far, in the general case
only sufficient conditions could be written as a convex LMI optimization problem, hence tractable. These
methods may therefore be over conservative. Numerous approaches were proposed. The simplest are based on
quadratic Lyapunov functions and are therefore conservative in the case where parameters have bounded rates
of variation: Packard® or Apkarian and Gahinet* recast the problem as a robust synthesis problem and solved
it using a scaled version of the small-gain theorem, leading to convex conditions expressed as Linear Matrix
Inequalities (LMIs). However, since the scaled small-gain theorem is only concerned with symmetric scalings,
these procedures are unable to take into account the fact that the parameters are known to be real. Based on
the exploitation of interconnected systems properties, less conservative results were obtained by Scorletti and
El Ghaoui® by introducing skew-symmetric scalings and by Scherer® using full-block scalings.

Parameter-dependent Lyapunov functions can further reduce conservatism, however they lead to parameter-
dependent LMI optimization problems which are in general not tractable and methods for transforming these
problems into tractable problems usually introduce conservatism, see e.g. references.” 10

Despite these theoretical limitations, in practise these methods yield encouraging results since it has become
possible to obtain a controller that guarantees the closed-loop stability and performance. However, some points
moderate these successes. Indeed, it was observed from the study of frozen linearizations that the obtained con-
troller seems not to adjust much to the parameter value, see e.g. the conclusions in reference.!! Traditionally,
this phenomenon was charged on the account of the conservatism introduced by the methods for solving the £
gain LPV control problem. Another limitation of the LPV synthesis methods is that they produce controllers
of high complexity in the parameter, thus possibly involving heavy computations for implementation.

The present investigation suggests another explanation for the phenomenon. Indeed, because LPV methods
arise from LTI methods (and more precisely from the H,, method), in engineering practise some processes that
are usual and legitimate in an LTI framework have been transposed to the LPV context ad hoc, that is, some-
times without further investigation on the validity of the analogy. In particular, the adequacy of the traditional
LTI information structure (that is, the choice of signals available for control) in the LPV context has not really
been investigated.

This paper focuses on the issue of the selection of control signals and suggests a seemingly more suitable
choice: the idea is to introduce for control, besides the classical measures, two other available signals.

One signal is a system output that gives information about the operating point. This leads to significant
amelioration of the design, as will be demonstrated by comparison with classical results: first, it ameliorates
the performance level and second, the frozen linearizations indicate that the controller adjusts better to the
parameter variations.

The other signal introduced in order to further enhance the design is the signal corresponding to the

parameter-dependent term in the state-space equations, which can be supposed available without making fur-
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ther hypotheses. The idea for this structure was first introduced by Wu and Lu'? and a contribution of the
present, paper is to suggest a way to exploit that idea to improve the design of LPV controllers. The result in

12 implies indeed that the new structure is all the more interesting that incidentally it enables to obtain

reference
a controller of reduced complexity in the parameter, hence involving less computations and thus circumventing

a major limitation of the usual synthesis methods.

The paper is organized as follows. The missile model and the design objectives of the benchmark proposed by
Reichert are presented in Section II. An LPV controller is calculated in Section III using a classical information
structure. A new information structure is proposed in Section IV, where it is shown that the resulting LPV
controller has a better dependence on the parameter and therefore achieves better performance. In Section V,
it is proved that the structure presents moreover the practical interest of permitting the implementation of a

controller of reduced complexity in the parameter. Concluding remarks end the paper in Section VI.

Notations

The notation is fairly standard. M7 is the transpose of matrix M. For a symmetric real matrix M, M > 0

and M < 0 stand respectively for positive definite and negative definite while M > 0 and M < 0 stand

respectively for nonnegative and nonpositive definite. The Laplace variable is denoted by s and & = ‘fl—f is the

time derivative. I,, is used to denote the identity matrix of size n and O, ., the zero matrix of dimensions m xn
but when dimensions are obvious from context, only the notation I and O may be used. The maximal and

minimal singular values of a matrix M are denoted respectively by (M) and o(M). The state-space realization

A| B
of transfer G(s) = D+ C(sI — A)~' B is denoted by G(s) = . The Hs, norm of a stable LTI system

C|D
G with transfer function G(s) is denoted by [|G||w and defined as ||G||sc = sup,,c(o,+00) T (G(JW)).

Next are given some definitions and notations specific to the LPV context. We introduce the augmented
LPV plant Py py:

a(t) = A(0())x(t) + Bu (0(t) w(t) + Bu (0(t)) u(t)
2| _p w z(t) = C:(0(1) 2(t) + Dz (6(1)) w(t) + Dz (6(2)) u(t)
— L'LPV (2)
y u y(t) = Cy(6(1)) x(t) + Dyuw (6(1)) w(?)
I(to) = i)

where u(t) € R™ is the controlled input and y(t) € R™v is the measured output. In the proposed approaches

3,413 the dependence on the parameters of the state-space matrices is supposed to be rational.

of references,
The methods then require the LPV plant Pppy to be written as the interconnection of an LTI plant P(s)
with a so-called parameter block matrix © characterizing the parameter structure. This is called the linear
fractional transform (LFT) representation. For matrices © = Ou | O and M of compatible dimen-
©O21 | O

sions, Fi(M,0) = ©11 + ©12M (I — @22M)71 O21 denotes the lower LFT of the interconnection (M, ©) and
Fu(M,0) =0Og3 + O M (I — @11M)_1 ©15 the upper LFT. In this paper, recall that the parameter vector is
defined as 6 = [f; - --0,]7 and is assumed to be real. The parameter block is then defined as a diagonal matrix
© = diag(011,,,...,0p1,,) where n; is the number of times 6; appears in the LFT. The dimension (or size) of
the parameter block is then ng = ny + - 4 n,,.

In the approaches considered, the LPV controller Ky py is assumed to have the same dependency on the
parameter as the plant, therefore it is also written in LFT form as the interconnection of an LTT system K (s)

and the same parameter block © as the plant. Notice that the closed-loop system from w to z represented in
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Figure 1 denoted by Pppy * Kppy reads in LFT form: F;(F,(P(s),0), Fi(K(s),6)).

q1 p1
M o
- —
PR e ——— P(s) — w
— —
Yy U
K(s)
P2 © a2

Figure 1. Closed-loop LPV system in LFT representation.

The Lo gain of an LPV system z = Grpy (w) defined as in (1) is the smallest v such that for all Ty > ¢,

we have

To To
/ z(t)Tz(t)dt§72/ w(t)Tw(t)dt

tg tO
for any w such that ftfo w(t)Tw(t)dt < oo.
For an LPV augmented plant Pppy defined as in (2), the £ gain LPV control problem can be stated as

follows: Design an LPV controller u = K, py (y) such that, with the closed loop system represented Figure 1
and defined by Prpy * Krpy = Fi(Fu(P(s),0), Fi(K(s),0)):

e Prpy x Ky py is asymptotically stable;
e Prpy x Kppy has a £5 gain less than a given v > 0 (known as level of performance).

Tractable sufficient conditions for this problem were derived by Apkarian and Gahinet? as an LMI feasibility
problem. All the results presented in the next Sections were obtained by implementing the formulae in reference*

which are given in detail in the appendix at Section VII.

II. Model of the missile and design specifications

A. Nonlinear model of the missile

The considered system is the pitch-axis model of a missile, flying at Mach 3 and at an altitude of 20, 000 ft, that
was defined by Reichert.!* The associated control problem was intensively studied, see e.g. references.!!-15-19

The idea is to use the tail deflection § to track an acceleration maneuver. The missile is modeled as a rigid

body, see Figure 2. The control input is 4 and the measured outputs are the acceleration n and the pitch rate q.

The state of the missile involves the angle of attack a and the pitch rate ¢ and the state-space equations are:

a@ = cos(a)KoMCp(a,6, M) +q
i = K,M2Cy(a,8, M)

(3)

4 of 18

American Institute of Aeronautics and Astronautics



The acceleration output 7 is given by:
n = %M2Cn(a,6, M)
where M is the Mach while the functions C,, and C,, are defined by:

Cp(a, 6, M) ana® + bylala + ¢, (2 — M/3)a + d, 8
Con(a,0, M) = ama®+bylaja+ cp(=7+8M/3)a+ dpé.

(4)

For this specific model, these two functions are determined. However in practice, the coefficients are usually
known only poorly and sometimes not at all. It is interesting to emphasize that the approach described below
can be applied even in these cases.

The actuator is modeled as a second order system:

5 = —w?26 — 2 wad + w26,

where ¢ is the actual tail deflection and §. the commanded tail deflection.

Figure 2. Definition of the missile variables.

See Table 1 for the associated numerical data extracted from Reichert’s paper.!

B. Design objectives
The design specifications considered follow from Ferreres et al.'® and were used as well in references:!'! 20

e when applying a step input signal to the reference input 7.(t), the time constant must be less than 0.35 s,

the maximal overshoot less than 20% and the steady state error less than 5%;
e actuator saturation, both in acceleration and in speed, should be avoided;

e due to the presence of non modeled flexible modes, the controller bandwidth must be limited (the transfer

from 7. to n must present an attenuation of 30 dB at 300 rad/s);

e robustness to uncertainties on aerodynamic functions coefficients is demanded.

C. LPV model of the missile

In order to apply LPV synthesis methods to this system, the first task is to derive an LPV model from the

nonlinear model of the missile and to write it in LFT form. Following the lines of reference,?® we use the
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G, 1.0286 10~4 deg=3 Py 973.3 1b/ ft>
b, | —0.944571072 deg~2 S 0.44 ft?
Cn —0.1696 deg™! m 13.98 slugs
d, —0.034 deg™! \% 1036.4 ft/s
Gm 2.1524 104 deg™3 d 0.75 ft
b, —1.9546 1072 deg~2 I, | 182.5 slug.ft?
Cm 0.051 deg™! K, | 0.7PoS/m/V
dm —0.206 deg™* K, | 0.7PoSd/I,
Wa 150 K, 0.7PoS/m
€a 0.7 g 32.2

Table 1. Missile parameters.

approximations cos(a) = 1 for the considered angles. Two polytopic models are introduced: one corresponds
to the original nonlinear model written in quasi-LPV form, that is, considering the nonlinear dependence as
embedded in a parameter. The other corresponds to the non stationary linearizations of the model. Since
A = 20y, b, = 2b,, the equations obtained in these two cases are the same, the difference lying in the
definition of the parameter: thus, if we wish to consider the nonlinear system then 6(t) = ama(t)® + bya(t)?,
whereas if we consider the non stationary linearizations in ag we should take 6(t) = 3a,a0(t)? + 2by|ao(t)].
Since the angle a varies between —0.35 rad and 0.35 rad, a0 + b,,o? varies between 0 and —10 while
3ama?® + 2b;,|a| varies between 0 and —15. Hence by considering that the parameter varies between 0 and —15

we take into account both the nonlinear model and its non stationary linearizations.

The state-space equations are given below, where the state is 2 = [« q]T:
| A+0(t)Ay B T 5)
n C+6(t)Cy D )

where

KoMe,2- 3y 1| KoM,

A|B 5
= | K M2cn(=T+§M) 0| K,M?d,, (6)
C D KzM2 M Kz 2
y KoM 0
"= 2k, 0 | (7)
C —_—
’ LSS VER

The equations can be further written in LFT form by isolating the parameter-dependent signal. Thus in the

LFT representation, the parameter block input is defined as ¢1(t) = «a(t) and the parameter block output is

6 of 18

American Institute of Aeronautics and Astronautics



p1(t) = 0(¢) - q1(t). Then the state-space equations become the following:

T A |4 B T
qu | = |10 0 0 D
n C |cy D ) (8)

pi(t) =0() - a1 (?)

Notice that in this particular example there is a single parameter so that the parameter block © depicted in

Figure 1 and later in Figure 11 is in fact a scalar and therefore will usually be denoted by 6.

ITI. Control with the classical information structure

We first review the results obtained with an information structure that was classically considered in literature,

where the controller inputs are the pitch rate ¢ and the tracking error 7. — 7. More specifically, the information

structure considered is directly inspired from references.!!: 16

A. Criterion and weighting functions for the classical information structure

1

We proceed as for an usual H,, synthesis, see e.g. reference:?! the performance specifications are charac-

terized by LTI weighting functions constraining the closed-loop transfer functions. Thus following the lines of

16

reference,’® we use the 6 blocs criterion described in Figure 3 to specify performance and robustness.

Wy _'_>

A q1

Actuator _’®_’ G

- ws

=
A

Figure 3. H. criterion for the classical information structure (controller inputs: 7. — n and q).

To choose adequate weighting functions, it is in general necessary to do several trials, see reference.?! The
usual method goes as follows: first, weights are sought for one special plant LTI frozen linearization like for an
usual H, synthesis procedure. Next, the functions are modified until they are suitable for the plant LTT frozen
linearizations corresponding to all the parameter values in the definition set. A satisfying result was obtained

1

in reference!! with the weighting functions given below. The corresponding frequency responses for W (s) and
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Wh(s) are displayed in Figure 4.

$/6.93 + 1
Wi (s) = 103
1(s) /346103 + 1’

0 /150° +0.8/150s + 1

Wo(s) =
2(5) = 105 10007 + 2710005 £ 1°

Wi(s) = 0.04, Wi(s) = 0.07.

Singular Values

10

wiks)

0k | _wWks)

10

)/ -

-30 |

Singular Values (dB)

_50 N

-60— -
10" 10°

o
Frequency (rad/sec)

Figure 4. Weighting functions Wi(s) and Wa(s).

B. Results for the classical information structure

The obtained level of performance is v = 1.297. The results that were obtained by performing an LPV syn-
thesis with the classical information structure of Figure 5 are illustrated in Figure 5 (LTI frozen linearizations)
and Figure 6 (LPV simulations for the parameter trajectory corresponding to the nonlinear (quasi-LPV) model
0(t) = ama(t)® + bpma(t)? for several step inputs of different amplitudes).

The results obtained by performing an LPV synthesis using the classical structure are quite satisfying: the
LTT and LPV plots enable indeed to check that the design specifications are respected (time response about 3 s
and overshoot less than 20%). Moreover, contrary to the usual heuristic gain-scheduled methods, LPV methods
guarantee that the stability and performance properties are achieved for any parameter trajectory remaining in
the definition set.

A question nevertheless arises from the study of the LTT plots. Theoretically, we expect here to obtain a
parameter-dependent controller. However, the frequency responses of the controller LTI frozen linearizations
seem to indicate that the influence of the parameter is weak. This is confirmed by the fact that the frequency
responses of the closed-loop LTI frozen linearizations still depend on the parameter. As an undesirable conse-
quence, the step responses of the LTT frozen linearizations and of the LPV simulations of the controlled system
are not homogeneous enough (e.g. tsoy € [0.3,0.5] s).

Having recalled these classical results, we next propose a modified information structure that leads to better

results.

IV. Control with the new information structure

First, a new structure is presented and the interest of the signal newly introduced is justified empirically.
An LPYV synthesis is then carried out while the weighting functions are kept the same as previously, in order to
highlight the potential by comparing the level of performance obtained. Next, the structure is further modified
by introducing another signal supposed available, which presents another interest.

Next, the weights are modified accurately to improve the performance. An LPV synthesis is carried out and
a comparative study of the LTI frozen plots and the LPV simulations is presented, emphasizing the advantages

of the new structure.
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Frequency (rad/sec)

Figure 5. Frozen LTI plots for the classical information structure (controller inputs: 7. —n and ¢): Step response

from 7. to n (1), Closed-loop step response of dominant poles from 7. to n (2), Controller Bode (3), Open-loop
Bode (4), Open-loop Black-Nichols (5), Closed-loop Bode from w3 to (n. —n) (6).

LPV simulation. Classical structure (measures ) -1, q); system output n(t); y=1.297
50 T T T T T T T T T

40

30

20

10

0

Figure 6.

LPV

simulation. Classical structure (measures n -, q); system output n(v; y=1.297

LPV simulation for the classical information structure (controller inputs: 7. —n and ¢) with 6(t) =

ama(t)® + bma(t)? : Step response 7(t) for different step sizes (1) and brought to the same scale (2).
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A. Criterion and weighting functions for the new information structure

Wa ’

Actuator 'G; > G

A

LY S Wa

Figure 7. Ho criterion for the new information structure (controller inputs: n. — 7, ¢ and 7).

The new control criterion considered is given in Figure 7. The difference with the classical structure lies in
the fact that here besides the tracking error and the pitch rate, the acceleration 7 is explicitly fed back as a
controller input. It is clear that by adding an extra measure the level of performance will be at least as good
as previously, however this is not the only reason why we suggest adding this signal. Indeed, in the classical
structure, the fact that only the tracking error is measured implies that potentially crucial information about the
operating point is lacking. Therefore, by using 7 not only better performance is expected but also a controller

that can adjust better to the parameter value.

Using the same weighting functions as for the usual information structure (see Section IIT), we obtain with
this new structure a performance level v = 1.19. This suggests that the performance can be further improved
by an adequate choice of the weighting functions. However, we are not yet interested in this issue at this stage.
Rather, we seek to further improve the design by adding another signal that also proves useful: it is the output
0(t) - q1(t) of the parameter block in the LFT representation of the plant.

In the specific case of the considered missile model it corresponds to the parameter-dependent term in the
plant state-space equations. We do not make a strong assumption by supposing that this signal is available
for control: indeed, to design an LPV controller of the missile it is already assumed that the parameter 6(t) is
available in real time. However, recall that 6(¢) is a polynomial in «a(t) and that in the LPV model, the system
output ¢ (¢) is simply a(t). Therefore, supposing that the output of the parameter block (which is here simply
the parameter-dependent term) is available for control is a “realistic hypothesis“. The new structure considered
is depicted in Figure 8. Performing an LPV synthesis leads to a level of performance v = 1.18 (which is not
much different than the level obtained with only the measures n. — 7, ¢, ). In order to enable an accurate

comparison with the classical structure, the weighting function Wj is adjusted so that the time response is
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Wy %

TP qn

Actuator ’C 3 > G

Figure 8. H., criterion for the new information structure (controller inputs: n. —n, ¢, n and 0 - a).

smaller:

5.5-10"1s + 8.35
Wils) = — 31103

B. Results for the new information structure

By performing an LPV synthesis with the new information structure of Figure 8 and the adjusted weighting
functions, the level of performance v = 1.288 is reached. Illustrating plots are displayed in Figure 9 (LTI frozen
linearizations) and Figure 10 (LPV simulations for the parameter trajectory corresponding to the nonlinear
(quasi-LPV) model 0(t) = apma(t)® + bya(t)? for several step inputs of different amplitudes).

The plots point out that significant improvement is achieved with the new structure. The performance is
obviously ameliorated, as highlighted by the fact that while the margins and the level of performance remain
the same, the controlled system follows the reference input much better: from both LTI and LPV plots, it is
clear that the step responses are quicker and more homogeneous (e.g. on the LTT plots, t50, € [0.2,0.3] s). This
is consistent with the LTI Bode plots of the controller indicating that it adjusts much better to the parameter

value.

V. A practical advantage of the new structure

This section focuses on an interesting practical advantage of the new structure from the implementation point
of view. Actually, the fact that the term 6(¢) - «a(t) is supposed available enables to construct a controller of
reduced complexity in the parameter. This interesting property is the consequence of a theorem established by
Wu and Lu.'?

The interpretation of the theorem which is made here is nevertheless quite different: reference!? is actually
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Figure 9.
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Figure 10.

0(t) = ama(t)® + bma(t)?: Step response 7(t) for different step sizes (1) and brought to the same scale (2).

LPV

LPV simulation

New structure (measures n -, , 1, 8a) ; system output n(t); y=1.288

50 T

40

30

20

10

-10

-20

-30

02

simulation for the new information

12 of 18

LPV simulation. New structure (measures n_-1, g, , 80) ; system output n(); y=1.288

0.4

structure (controller inputs: n. — 7, ¢, n and 6 - a) with

American Institute of Aeronautics and Astronautics



concerned with conditions for LTI robust synthesis. These are in the general case nonconvex ones, see e.g.
reference.?? More precisely, in reference,'? the conditions considered are the ones introduced by Apkarian and
Gahinet.* Yet the theorem implies that if the special signal corresponding to the output of the parameter
block of the plant is available for control, then the conditions for LTI robust synthesis are simplified: they turn
into an LMI feasibility problem, thus becoming convex. In fact, it is proved that in presence of this particular
measure, the (generally nonconvex) LTI robust synthesis problem becomes equivalent to the (convex) Lo gain

LPV control problem.

In our context, the theorem implies a very interesting result if it is interpreted in the following manner: if the
output of the parameter block of the plant is available for control, then the conditions of the L5 gain LPV control
problem are equivalent to the conditions of the robust LTI control problem. This means that if the £, gain LPV
control problem is solvable, then it is possible to construct a controller that has an LTI structure, as depicted
in Figure 11. It is important to notice that it does not make it an LTT controller in the usual sense because here
one input of the controller is a parameter-varying signal (since it is the output of the plant parameter block i.e.
the signal 6(¢) - ¢1(t)). Equivalently, this can be summarized by saying that if the parameter-dependent signal is
available for control, then it is possible to construct an LPV controller whose LFT block parameter dimension

is zero. A sketch of the proof of this theorem is provided in Section VII.

' ©
q1 D1
] j—
2z P(s) —— w
Opi| Y u
o K(s)

Figure 11. Closed-loop LPV system with controller of reduced complexity in the parameter.

This property has a great advantage from a practical point of view. Indeed, the controller complexity is
one of the main limitations of the implementation of LPV methods. Rewriting the system equations in a
lower fractional manner often leads to defining a parameter block of great dimension ny. While an usual LPV
synthesis would lead to a controller having the same complexity as the plant (that is, having a parameter block
of dimension ny), the new structure enables to construct a controller having a parameter block of dimension

Z€ero.
Here the controller can be constructed as:
Ne =1

u:[ Kopymu(s) Kqouls) Kyou(s) Kg.ay—u(s)
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The structure of the controller and its dependence on the parameter in thus clear: the controller is LTI with an
input that is parameter-dependent. The Bode plots of to each transfer function are given separately in Figure 12
(see also Figure 9 (3)).

Singular Values Singular Values
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Singular Values (dB)
5
Singular Values (dB)

30 S~ -- 15
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10 10 107 107 10° 10 10 10 10 10°
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Figure 12. Frozen LTI plots of the controller: K, _,)_., (1), Kg—u (2), Kn—u (3), 0 Ka—u (4).

A simplified expression of the transfer functions (after model reduction by truncation to the order 4) is given

below:

(s + 38.03)(s + 19.82)(s2 — 1.48 - 1025 + 2 - 105)
(s +7.79-10%)(s + 1.95 - 10%)(s + 24.46)(s + 8.15 - 10~9)

K(e—n)—u(s) = 2.65-107°

(s +27.17)(s +8.16 - 1073) (s> — 2.96 - 10%s + 1.17 - 10°)

Kquls) = 005020109 (s 1 1.95 - 10%)(s + 24.46) (5 + 8.15 - 10-%)

s —206.50)(s+3.10-1077)(s* — 3.38 - 10°s 4 &.10 -
26.56 8.15-1073)(s? — 3.38 - 102 8.10 - 106

_ 10-2
Kyuls) = 215 107020109905 1 1.95 - 10%) (s + 24.46)(5 + 8.15 - 10-%)

(s —43.1)(s +8.15 - 107)(s2 — 3.35 - 10%s + 7.53 - 10°)

_ 10-2
Kp-0)uls) = =7:30-10 (s+7.79-102)(s + 1.95 - 10%)(s + 24.46)(s + 8.15- 10 9)

VI. Conclusions

In this paper, the interest of a new information structure for LPV synthesis is investigated and illustrated on
the Reichert’s missile control problem. The proposed improvement consists in augmenting the classical structure
by supposing that besides the usually considered measures of the acceleration tracking error and the pitch rate,
two other signals are used for control: first, the actual acceleration and second, the parameter-dependent signal.
It is shown on this demonstrative example that the new structure yields improved performance and leads to a
controller that adjusts better to the parameter value. Furthermore, it enables to construct a controller that has
reduced complexity in relation to the parameter.

The proposed solution supposes nevertheless that the measure of the parameter block output 6(t) - g1 () is
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directly available. A more realistic hypothesis would be that this signal is not perfectly measured or, worse, has
to be estimated. Robustness of the proposed solution to uncertainties on the measure of the parameter block

output 6(t) - ¢1(¢) is under investigation.

VII. Appendix: Draft of proof of the reduction of the controller complexity in

the parameter

This section proposes a sketch of an alternative proof of the interesting result established by Wu and Lu.'2

12 a5 the result is interpreted here in the context of LPV

The proof somehow differs from that in reference
control. Recall indeed that in reference,'? the aim was to show that the presence of the plant parameter block
output enables a relaxation of the nonconvex LTI robust control conditions, which then become convex and in
fact equivalent to the conditions of the £, gain LPV control problem.

Here the base is the classical LPV problem considered e.g. in references.>® The proof goes as follows: first
are recalled the LMI conditions for the L5 gain LPV control problem as they are introduced by Apkarian and
Gahinet.* Next it is shown that these conditions are simplified if the plant parameter block output is available
for control, thus yielding some freedom in the decision variables. These variables can then be chosen such that

the complexity of the controller in relation to the parameter is reduced, that is, more precisely, such that the

parameter block in the LFT representation of the controller is of dimension zero.

Denote by P the system formed by the original plant augmented with the weighting functions of Figure 3.

The augmented system matrices are defined in LFT form as follows:

T A By By DB T
@ Co Deg Dg1 Dy D1 9)
z Ci1 Dy Dui1 Dio w
Yy Co Dy D21 O u

Sufficient conditions for the L5 gain LPV control problem are obtained by Apkarian and Gahinet* as the
following LMI feasibility problem: Find, if they exist, symmetric positive definite matrices R, S € R"*",
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Js, L3 € R"*" gatisfying the LMIs (10), (11), (12), (13):

AR+RAT  R[ci cf | | Byt By ]
D D
NT | o Co R . Jz 0 00J3 01 NT | o o o)
I D D
o |1 _ Cy 0 103 11 o |1
Js BT JsDL, DT, Js 0
-
BY pr DY, 0 I
ATS+SA S| By B | | crr, o |
—BT Lz 0 DI L, DT
Ng: 0 0 S _7 3 06 3 16 Ng' 0 O 11
T | BT 0 I DLL; DT, .y < (11)
L3Cy L3Dgg L3Dg1 . Ly 0
| a Dy Du 0o 1| |
R I
>0 (12)
I S
L I
3 >0 (13)
I Js

with NR:Ker([ BI DI, DI, D stKer([ Cy Dy Doy D
Recall that the rank k of matrix I — RS defines the number of states of the controller while the rank r of

the matrix I — L3J3 defines the dimension of the parameter block in the LFT representation of the controller.

In the special case where the output of the parameter block is measured as in Figure 8, the matrices Cs, D2y

and Ds; can be partitioned so that:

Co Doy Doy 0

[02 Dyy Doy 0 | =
0 I 0 0

Wy 0
. 0 0 .
Consequently, one can write Ng = where the matrices W7 and W3 are such that
Ws 0
0 I
. W) Co T owy |
Ng = € Ker ) and . is full-rank.
W3 D21 Dle W3

After rewriting the LMI (11) and applying the elimination lemma (see reference®®) followed by the Schur
lemma to eliminate the decision variable L3, the LMI feasibility problem ((10), (11), (12), (13)) in (R, S, J3, L3)

becomes the LMI feasibility problem ((14), (15), (16), (17)) in (R, S, J3):
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AR+ RAT R[ cr cr } [ BoJs B
Cy Js 0 DyoJs Dgy
NT B = Ng <0 (14)
Js BT JsDE JsDT) J; 0
—
BT prL DT, 0 I
[ ATS+s4 SB[ cf o] ]
. BTS —I T T R
NT ! W | op of | Ng <0 (15)
Cy Doy J; 0
-
Cy Dy, 0 I
R I
>0 (16)
I S
J3 >0 (17)

where N = Ker([ BT DI, DL, 0 }), Ng = Ker([ Co Dy O })

The elimination lemma implies that if there exists a solution (R, S, J3) of the LMI feasibility problem ((14),
(15), (16), (17)), then there exists Lg such that (R, S, J3, L3) is a solution of the LMI feasibility problem ((10)
(11), (12), (13)).

The next step is to notice that Ls = ng is a suitable choice. Recalling that the dimension of the parameter

3

block in the LFT representation of the controller is defined as the rank of matrix I — L3J3 concludes the proof.
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