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An Enhan
ed Information Stru
ture for LinearParameter-Varying Design: Appli
ation to Rei
hert'sMissile Ben
hmarkSafta de Hillerin1, Vin
ent Fromion2, Gérard S
orletti3, Gilles Du
4, and Emmanuel Godoy51,4,5SUPELEC Systems S
ien
es (E3S), Automati
 Control Department, Fran
e2Institut National de la Re
her
he en Agronomie, Unité de Mathématique, Informatique etGénome UR 1077, Fran
e3E
ole Centrale de Lyon, Laboratoire Ampère UMR CNRS 5005, Fran
eThis paper is 
on
erned with the appli
ation of linear parameter-varying (LPV) methods.Its purpose is to investigate the interest of a new information stru
ture for the LPV 
ontrollers.The proposed improvement 
onsists in extending the traditional information stru
ture byintrodu
ing, beside the signals usually measured, spe
ial signals supposed available for 
ontrol.This enhan
es the design in two dire
tions: �rst, the performan
e of the obtained 
ontrolleris improved by a more a

urate adjustment to the LPV system parameter value; se
ond, thisstru
ture enables the implementation of a 
ontroller of redu
ed 
omplexity in relation to theLPV system parameter.The advantages of the proposed stru
ture are illustrated on the single-axis missile 
ontrolproblem proposed by Rei
hert whi
h has been intensively studied in the existing literature.I. Introdu
tionA linear parameter-varying (LPV) system is de�ned as:
z = GLPV (w)



















ẋ(t) = A (θ(t)) x(t) + B (θ(t)) w(t)

z(t) = C (θ(t)) x(t) + D (θ(t)) w(t)

x(t0) = x0

(1)where x(t) ∈ R
n is the state ve
tor, w(t) ∈ R

nw is the disturban
e input, z(t) ∈ R
nz is the output and θ(t) ∈ R

pis a time-varying exogenous parameter ve
tor valued in a hyper
ube (ea
h parameter θi(t) ranges betweenknown extremal values θi and θi).The interest of these systems lies in the fa
t that they 
an model linear time-varying (LTV) and nonlinearplants. Assuming that the parameter is measured, the idea is to use the parameter measurements to improvethe design 
ompared to a linear time-invariant (LTI) strategy.A 
ustomary method for �nding a parameter-dependent 
ontroller (also denoted by gain-s
heduled 
ontroller)was developed heuristi
ally by engineers from LTI methods, see referen
e.1 It 
onsists in designing LTI 
on-trollers using linearizations of the plant asso
iated to frozen values of the parameter. The parameter-dependent
ontroller is then obtained by interpolating these LTI 
ontrollers as fun
tions of the parameter. Although this1 of 18Ameri
an Institute of Aeronauti
s and Astronauti
s



method is largely and quite su

essfully applied, it 
annot a priori guarantee the obtained 
losed-loop perfor-man
e and even stability, so that in pra
ti
e engineers need to a posteriori test the performan
e by intensivedynami
al simulations.These serious drawba
ks motivated the sear
h for a systemati
 approa
h to 
onstru
t a gain-s
heduled 
on-troller, see e.g. referen
es.1, 2 Important 
ontributions in this �eld are dated from the beginning of the 90'sand are due to Pa
kard.3 The LPV problem was formulated as the problem of minimizing the L2 gain of asystem augmented with weighting fun
tions, known as the L2 gain LPV 
ontrol problem, whi
h is an extensionof the H∞ 
ontrol problem. Indeed, an LTI plant is a very spe
i�
 
ase of LPV plant and moreover, the L2gain of an LTI system is equal to its H∞ norm so that in the 
ase of an LTI plant, the L2 gain LPV 
ontrolproblem redu
es to the H∞ 
ontrol problem. The issue was then to obtain tra
table 
onditions to solve theproblem. The L2 gain LPV 
ontrol problem turned out to be di�
ult: indeed, so far, in the general 
aseonly su�
ient 
onditions 
ould be written as a 
onvex LMI optimization problem, hen
e tra
table. Thesemethods may therefore be over 
onservative. Numerous approa
hes were proposed. The simplest are based onquadrati
 Lyapunov fun
tions and are therefore 
onservative in the 
ase where parameters have bounded ratesof variation: Pa
kard3 or Apkarian and Gahinet4 re
ast the problem as a robust synthesis problem and solvedit using a s
aled version of the small-gain theorem, leading to 
onvex 
onditions expressed as Linear MatrixInequalities (LMIs). However, sin
e the s
aled small-gain theorem is only 
on
erned with symmetri
 s
alings,these pro
edures are unable to take into a

ount the fa
t that the parameters are known to be real. Based onthe exploitation of inter
onne
ted systems properties, less 
onservative results were obtained by S
orletti andEl Ghaoui5 by introdu
ing skew-symmetri
 s
alings and by S
herer6 using full-blo
k s
alings.Parameter-dependent Lyapunov fun
tions 
an further redu
e 
onservatism, however they lead to parameter-dependent LMI optimization problems whi
h are in general not tra
table and methods for transforming theseproblems into tra
table problems usually introdu
e 
onservatism, see e.g. referen
es.7�10Despite these theoreti
al limitations, in pra
tise these methods yield en
ouraging results sin
e it has be
omepossible to obtain a 
ontroller that guarantees the 
losed-loop stability and performan
e. However, some pointsmoderate these su

esses. Indeed, it was observed from the study of frozen linearizations that the obtained 
on-troller seems not to adjust mu
h to the parameter value, see e.g. the 
on
lusions in referen
e.11 Traditionally,this phenomenon was 
harged on the a

ount of the 
onservatism introdu
ed by the methods for solving the L2gain LPV 
ontrol problem. Another limitation of the LPV synthesis methods is that they produ
e 
ontrollersof high 
omplexity in the parameter, thus possibly involving heavy 
omputations for implementation.The present investigation suggests another explanation for the phenomenon. Indeed, be
ause LPV methodsarise from LTI methods (and more pre
isely from the H∞ method), in engineering pra
tise some pro
esses thatare usual and legitimate in an LTI framework have been transposed to the LPV 
ontext ad ho
, that is, some-times without further investigation on the validity of the analogy. In parti
ular, the adequa
y of the traditionalLTI information stru
ture (that is, the 
hoi
e of signals available for 
ontrol) in the LPV 
ontext has not reallybeen investigated.This paper fo
uses on the issue of the sele
tion of 
ontrol signals and suggests a seemingly more suitable
hoi
e: the idea is to introdu
e for 
ontrol, besides the 
lassi
al measures, two other available signals.One signal is a system output that gives information about the operating point. This leads to signi�
antamelioration of the design, as will be demonstrated by 
omparison with 
lassi
al results: �rst, it amelioratesthe performan
e level and se
ond, the frozen linearizations indi
ate that the 
ontroller adjusts better to theparameter variations.The other signal introdu
ed in order to further enhan
e the design is the signal 
orresponding to theparameter-dependent term in the state-spa
e equations, whi
h 
an be supposed available without making fur-2 of 18Ameri
an Institute of Aeronauti
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s



ther hypotheses. The idea for this stru
ture was �rst introdu
ed by Wu and Lu12 and a 
ontribution of thepresent paper is to suggest a way to exploit that idea to improve the design of LPV 
ontrollers. The result inreferen
e12 implies indeed that the new stru
ture is all the more interesting that in
identally it enables to obtaina 
ontroller of redu
ed 
omplexity in the parameter, hen
e involving less 
omputations and thus 
ir
umventinga major limitation of the usual synthesis methods.The paper is organized as follows. The missile model and the design obje
tives of the ben
hmark proposed byRei
hert are presented in Se
tion II. An LPV 
ontroller is 
al
ulated in Se
tion III using a 
lassi
al informationstru
ture. A new information stru
ture is proposed in Se
tion IV, where it is shown that the resulting LPV
ontroller has a better dependen
e on the parameter and therefore a
hieves better performan
e. In Se
tion V,it is proved that the stru
ture presents moreover the pra
ti
al interest of permitting the implementation of a
ontroller of redu
ed 
omplexity in the parameter. Con
luding remarks end the paper in Se
tion VI.NotationsThe notation is fairly standard. MT is the transpose of matrix M . For a symmetri
 real matrix M , M > 0and M < 0 stand respe
tively for positive de�nite and negative de�nite while M ≥ 0 and M ≤ 0 standrespe
tively for nonnegative and nonpositive de�nite. The Lapla
e variable is denoted by s and ẋ = dx
dt

is thetime derivative. In is used to denote the identity matrix of size n and Om×n the zero matrix of dimensions m×nbut when dimensions are obvious from 
ontext, only the notation I and O may be used. The maximal andminimal singular values of a matrix M are denoted respe
tively by σ(M) and σ(M). The state-spa
e realizationof transfer G(s) = D + C(sI −A)−1B is denoted by G(s) =





A B

C D



. The H∞ norm of a stable LTI system
G with transfer fun
tion G(s) is denoted by ||G||∞ and de�ned as ||G||∞ = supω∈[0,+∞) σ (G(jω)).Next are given some de�nitions and notations spe
i�
 to the LPV 
ontext. We introdu
e the augmentedLPV plant PLPV :





z

y



 = PLPV





w

u



































ẋ(t) = A (θ(t)) x(t) + Bw (θ(t)) w(t) + Bu (θ(t)) u(t)

z(t) = Cz (θ(t)) x(t) + Dzw (θ(t)) w(t) + Dzu (θ(t)) u(t)

y(t) = Cy (θ(t)) x(t) + Dyw (θ(t)) w(t)

x(t0) = x0

(2)where u(t) ∈ R
nu is the 
ontrolled input and y(t) ∈ R

ny is the measured output. In the proposed approa
hesof referen
es,3, 4, 13 the dependen
e on the parameters of the state-spa
e matri
es is supposed to be rational.The methods then require the LPV plant PLPV to be written as the inter
onne
tion of an LTI plant P (s)with a so-
alled parameter blo
k matrix Θ 
hara
terizing the parameter stru
ture. This is 
alled the linearfra
tional transform (LFT) representation. For matri
es Θ =





Θ11 Θ12

Θ21 Θ22



 and M of 
ompatible dimen-sions, Fl(M, Θ) = Θ11 + Θ12M (I − Θ22M)
−1

Θ21 denotes the lower LFT of the inter
onne
tion (M, Θ) and
Fu(M, Θ) = Θ22 + Θ21M (I − Θ11M)

−1
Θ12 the upper LFT. In this paper, re
all that the parameter ve
tor isde�ned as θ = [θ1 · · · θp]

T and is assumed to be real. The parameter blo
k is then de�ned as a diagonal matrix
Θ = diag(θ1In1

, ..., θpInp
) where ni is the number of times θi appears in the LFT. The dimension (or size) ofthe parameter blo
k is then nθ = n1 + · + np.In the approa
hes 
onsidered, the LPV 
ontroller KLPV is assumed to have the same dependen
y on theparameter as the plant, therefore it is also written in LFT form as the inter
onne
tion of an LTI system K(s)and the same parameter blo
k Θ as the plant. Noti
e that the 
losed-loop system from w to z represented in3 of 18Ameri
an Institute of Aeronauti
s and Astronauti
s



Figure 1 denoted by PLPV ⋆ KLPV reads in LFT form: Fl(Fu(P (s), θ),Fl(K(s), θ)).
P (s)

K(s)

Θ

z w

q1 p1

y u

Θ

q2p2Figure 1. Closed-loop LPV system in LFT representation.The L2 gain of an LPV system z = GLPV (w) de�ned as in (1) is the smallest γ su
h that for all T0 ≥ t0,we have
∫ T0

t0

z(t)T z(t)dt ≤ γ2

∫ T0

t0

w(t)T w(t)dtfor any w su
h that ∫ T0

t0
w(t)T w(t)dt < ∞.For an LPV augmented plant PLPV de�ned as in (2), the L2 gain LPV 
ontrol problem 
an be stated asfollows: Design an LPV 
ontroller u = KLPV (y) su
h that, with the 
losed loop system represented Figure 1and de�ned by PLPV ⋆ KLPV = Fl(Fu(P (s), θ),Fl(K(s), θ)):

• PLPV ⋆ KLPV is asymptoti
ally stable;
• PLPV ⋆ KLPV has a L2 gain less than a given γ ≥ 0 (known as level of performan
e).Tra
table su�
ient 
onditions for this problem were derived by Apkarian and Gahinet4 as an LMI feasibilityproblem. All the results presented in the next Se
tions were obtained by implementing the formulae in referen
e4whi
h are given in detail in the appendix at Se
tion VII.II. Model of the missile and design spe
i�
ationsA. Nonlinear model of the missileThe 
onsidered system is the pit
h-axis model of a missile, �ying at Ma
h 3 and at an altitude of 20, 000 ft, thatwas de�ned by Rei
hert.14 The asso
iated 
ontrol problem was intensively studied, see e.g. referen
es.11, 15�19The idea is to use the tail de�e
tion δ to tra
k an a

eleration maneuver. The missile is modeled as a rigidbody, see Figure 2. The 
ontrol input is δ and the measured outputs are the a

eleration η and the pit
h rate q.The state of the missile involves the angle of atta
k α and the pit
h rate q and the state-spa
e equations are:







α̇ = cos(α)KαMCn(α, δ, M) + q

q̇ = KqM
2Cm(α, δ, M)

(3)4 of 18Ameri
an Institute of Aeronauti
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The a

eleration output η is given by:
η = Kz

g
M2Cn(α, δ, M)where M is the Ma
h while the fun
tions Cn and Cm are de�ned by:







Cn(α, δ, M) = anα3 + bn|α|α + cn(2 − M/3)α + dnδ

Cm(α, δ, M) = amα3 + bm|α|α + cm(−7 + 8M/3)α + dmδ.
(4)For this spe
i�
 model, these two fun
tions are determined. However in pra
ti
e, the 
oe�
ients are usuallyknown only poorly and sometimes not at all. It is interesting to emphasize that the approa
h des
ribed below
an be applied even in these 
ases.The a
tuator is modeled as a se
ond order system:

δ̈ = −ω2
aδ − 2ξaωaδ̇ + ω2

aδcwhere δ is the a
tual tail de�e
tion and δc the 
ommanded tail de�e
tion.
+

x

z

Vxz

α

δ

y

G

Figure 2. De�nition of the missile variables.See Table 1 for the asso
iated numeri
al data extra
ted from Rei
hert's paper.14B. Design obje
tivesThe design spe
i�
ations 
onsidered follow from Ferreres et al.16 and were used as well in referen
es:11, 20
• when applying a step input signal to the referen
e input ηc(t), the time 
onstant must be less than 0.35 s,the maximal overshoot less than 20% and the steady state error less than 5%;
• a
tuator saturation, both in a

eleration and in speed, should be avoided;
• due to the presen
e of non modeled �exible modes, the 
ontroller bandwidth must be limited (the transferfrom ηc to η must present an attenuation of 30 dB at 300 rad/s);
• robustness to un
ertainties on aerodynami
 fun
tions 
oe�
ients is demanded.C. LPV model of the missileIn order to apply LPV synthesis methods to this system, the �rst task is to derive an LPV model from thenonlinear model of the missile and to write it in LFT form. Following the lines of referen
e,20 we use the5 of 18Ameri
an Institute of Aeronauti
s and Astronauti
s



an 1.0286 10−4 deg−3

bn −0.94457 10−2 deg−2

cn −0.1696 deg−1

dn −0.034 deg−1

am 2.1524 10−4 deg−3

bm −1.9546 10−2 deg−2

cm 0.051 deg−1

dm −0.206 deg−1

ωa 150

ξa 0.7

P0 973.3 lb/ft2

S 0.44 ft2

m 13.98 slugs

V 1036.4 ft/s

d 0.75 ft

Iy 182.5 slug.ft2

Kα 0.7PoS/m/V

Kq 0.7PoSd/Iy

Kz 0.7PoS/m

g 32.2Table 1. Missile parameters.approximations cos(α) ≈ 1 for the 
onsidered angles. Two polytopi
 models are introdu
ed: one 
orrespondsto the original nonlinear model written in quasi-LPV form, that is, 
onsidering the nonlinear dependen
e asembedded in a parameter. The other 
orresponds to the non stationary linearizations of the model. Sin
e
am = 2an, bm = 2bn, the equations obtained in these two 
ases are the same, the di�eren
e lying in thede�nition of the parameter: thus, if we wish to 
onsider the nonlinear system then θ(t) = amα(t)3 + bmα(t)2,whereas if we 
onsider the non stationary linearizations in α0 we should take θ(t) = 3amα0(t)

2 + 2bm|α0(t)|.Sin
e the angle α varies between −0.35 rad and 0.35 rad, amα3 + bmα2 varies between 0 and −10 while
3amα2 + 2bm|α| varies between 0 and −15. Hen
e by 
onsidering that the parameter varies between 0 and −15we take into a

ount both the nonlinear model and its non stationary linearizations.The state-spa
e equations are given below, where the state is x = [α q]

T :




ẋ

η



 =





A + θ(t)Aθ B

C + θ(t)Cθ D









x

δ



 (5)where




A B

C D



 =











KαMcn(2 − M
3 ) 1 KαMdn

KqM
2cm(−7 + 8

3M) 0 KqM
2dm

Kz
g M2cn(2 − M

3 ) 0 Kz
g M2dn











(6)




Aθ

Cθ



 =











KαM 0

2KqM
2 0

Kz
g M2 0











. (7)The equations 
an be further written in LFT form by isolating the parameter-dependent signal. Thus in theLFT representation, the parameter blo
k input is de�ned as q1(t) = α(t) and the parameter blo
k output is
6 of 18Ameri
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p1(t) = θ(t) · q1(t). Then the state-spa
e equations be
ome the following:




















































ẋ

q1

η











=











A Aθ B

[1 0] 0 0

C Cθ D





















x

p1

δ











p1(t) = θ(t) · q1(t)

. (8)
Noti
e that in this parti
ular example there is a single parameter so that the parameter blo
k Θ depi
ted inFigure 1 and later in Figure 11 is in fa
t a s
alar and therefore will usually be denoted by θ.III. Control with the 
lassi
al information stru
tureWe �rst review the results obtained with an information stru
ture that was 
lassi
ally 
onsidered in literature,where the 
ontroller inputs are the pit
h rate q and the tra
king error ηc − η. More spe
i�
ally, the informationstru
ture 
onsidered is dire
tly inspired from referen
es.11, 16A. Criterion and weighting fun
tions for the 
lassi
al information stru
tureWe pro
eed as for an usual H∞ synthesis, see e.g. referen
e:21 the performan
e spe
i�
ations are 
hara
-terized by LTI weighting fun
tions 
onstraining the 
losed-loop transfer fun
tions. Thus following the lines ofreferen
e,16 we use the 6 blo
s 
riterion des
ribed in Figure 3 to spe
ify performan
e and robustness.

GA
tuator
W4

W3

W1 W2

ηc − η

q

w1

w3

w2

z2z1

p1 q1

+ +
+ ++- δc δ

P

θ

Figure 3. H∞ 
riterion for the 
lassi
al information stru
ture (
ontroller inputs: ηc − η and q).To 
hoose adequate weighting fun
tions, it is in general ne
essary to do several trials, see referen
e.21 Theusual method goes as follows: �rst, weights are sought for one spe
ial plant LTI frozen linearization like for anusual H∞ synthesis pro
edure. Next, the fun
tions are modi�ed until they are suitable for the plant LTI frozenlinearizations 
orresponding to all the parameter values in the de�nition set. A satisfying result was obtainedin referen
e11 with the weighting fun
tions given below. The 
orresponding frequen
y responses for W1(s) and7 of 18Ameri
an Institute of Aeronauti
s and Astronauti
s



W2(s) are displayed in Figure 4.
W1(s) = 103 s/6.93 + 1

s/3.46 · 10−3 + 1
, W2(s) = 10

s2/1502 + 0.8/150s + 1

s2/10002 + 2/1000s + 1
, W3(s) = 0.04, W4(s) = 0.07.
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Figure 4. Weighting fun
tions W1(s) and W2(s).B. Results for the 
lassi
al information stru
tureThe obtained level of performan
e is γ = 1.297. The results that were obtained by performing an LPV syn-thesis with the 
lassi
al information stru
ture of Figure 5 are illustrated in Figure 5 (LTI frozen linearizations)and Figure 6 (LPV simulations for the parameter traje
tory 
orresponding to the nonlinear (quasi-LPV) model
θ(t) = amα(t)3 + bmα(t)2 for several step inputs of di�erent amplitudes).The results obtained by performing an LPV synthesis using the 
lassi
al stru
ture are quite satisfying: theLTI and LPV plots enable indeed to 
he
k that the design spe
i�
ations are respe
ted (time response about 3 sand overshoot less than 20%). Moreover, 
ontrary to the usual heuristi
 gain-s
heduled methods, LPV methodsguarantee that the stability and performan
e properties are a
hieved for any parameter traje
tory remaining inthe de�nition set.A question nevertheless arises from the study of the LTI plots. Theoreti
ally, we expe
t here to obtain aparameter-dependent 
ontroller. However, the frequen
y responses of the 
ontroller LTI frozen linearizationsseem to indi
ate that the in�uen
e of the parameter is weak. This is 
on�rmed by the fa
t that the frequen
yresponses of the 
losed-loop LTI frozen linearizations still depend on the parameter. As an undesirable 
onse-quen
e, the step responses of the LTI frozen linearizations and of the LPV simulations of the 
ontrolled systemare not homogeneous enough (e.g. t5% ∈ [0.3, 0.5] s).Having re
alled these 
lassi
al results, we next propose a modi�ed information stru
ture that leads to betterresults. IV. Control with the new information stru
tureFirst, a new stru
ture is presented and the interest of the signal newly introdu
ed is justi�ed empiri
ally.An LPV synthesis is then 
arried out while the weighting fun
tions are kept the same as previously, in order tohighlight the potential by 
omparing the level of performan
e obtained. Next, the stru
ture is further modi�edby introdu
ing another signal supposed available, whi
h presents another interest.Next, the weights are modi�ed a

urately to improve the performan
e. An LPV synthesis is 
arried out anda 
omparative study of the LTI frozen plots and the LPV simulations is presented, emphasizing the advantagesof the new stru
ture. 8 of 18Ameri
an Institute of Aeronauti
s and Astronauti
s
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Classical structure (measures η
c
−η, q); γ=1.297: Step response Tη
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Classical structure (measures η
c
−η, q); γ=1.297: Controller Bode
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Classical structure (measures η
c
−η, q); γ=1.297: Open−Loop Bode
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Classical structure (measures η
c
−η, q); γ=1.297: Open−Loop Nichols
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Classical structure (measures η
c
−η, q); γ=1.297: σ(T
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lassi
al information stru
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ontroller inputs: ηc − η and q): Step responsefrom ηc to η (1), Closed-loop step response of dominant poles from ηc to η (2), Controller Bode (3), Open-loopBode (4), Open-loop Bla
k-Ni
hols (5), Closed-loop Bode from w3 to (ηc − η) (6).
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Figure 6. LPV simulation for the 
lassi
al information stru
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ontroller inputs: ηc − η and q) with θ(t) =

amα(t)3 + bmα(t)2 : Step response η(t) for di�erent step sizes (1) and brought to the same s
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A. Criterion and weighting fun
tions for the new information stru
ture
GA
tuator

W4

W3
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ηc − η
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w3
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z2z1

p1 q1

++
+ +- δc

δ
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θ

η

w4

W5

+
++

Figure 7. H∞ 
riterion for the new information stru
ture (
ontroller inputs: ηc − η, q and η).The new 
ontrol 
riterion 
onsidered is given in Figure 7. The di�eren
e with the 
lassi
al stru
ture lies inthe fa
t that here besides the tra
king error and the pit
h rate, the a

eleration η is expli
itly fed ba
k as a
ontroller input. It is 
lear that by adding an extra measure the level of performan
e will be at least as goodas previously, however this is not the only reason why we suggest adding this signal. Indeed, in the 
lassi
alstru
ture, the fa
t that only the tra
king error is measured implies that potentially 
ru
ial information about theoperating point is la
king. Therefore, by using η not only better performan
e is expe
ted but also a 
ontrollerthat 
an adjust better to the parameter value.Using the same weighting fun
tions as for the usual information stru
ture (see Se
tion III), we obtain withthis new stru
ture a performan
e level γ = 1.19. This suggests that the performan
e 
an be further improvedby an adequate 
hoi
e of the weighting fun
tions. However, we are not yet interested in this issue at this stage.Rather, we seek to further improve the design by adding another signal that also proves useful: it is the output
θ(t) · q1(t) of the parameter blo
k in the LFT representation of the plant.In the spe
i�
 
ase of the 
onsidered missile model it 
orresponds to the parameter-dependent term in theplant state-spa
e equations. We do not make a strong assumption by supposing that this signal is availablefor 
ontrol: indeed, to design an LPV 
ontroller of the missile it is already assumed that the parameter θ(t) isavailable in real time. However, re
all that θ(t) is a polynomial in α(t) and that in the LPV model, the systemoutput q1(t) is simply α(t). Therefore, supposing that the output of the parameter blo
k (whi
h is here simplythe parameter-dependent term) is available for 
ontrol is a �realisti
 hypothesis�. The new stru
ture 
onsideredis depi
ted in Figure 8. Performing an LPV synthesis leads to a level of performan
e γ = 1.18 (whi
h is notmu
h di�erent than the level obtained with only the measures ηc − η, q, η). In order to enable an a

urate
omparison with the 
lassi
al stru
ture, the weighting fun
tion W1 is adjusted so that the time response is10 of 18Ameri
an Institute of Aeronauti
s and Astronauti
s
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Figure 8. H∞ 
riterion for the new information stru
ture (
ontroller inputs: ηc − η, q, η and θ · α).smaller:
W1(s) =

5.5 · 10−1s + 8.35

s + 8.4 · 10−3
.B. Results for the new information stru
tureBy performing an LPV synthesis with the new information stru
ture of Figure 8 and the adjusted weightingfun
tions, the level of performan
e γ = 1.288 is rea
hed. Illustrating plots are displayed in Figure 9 (LTI frozenlinearizations) and Figure 10 (LPV simulations for the parameter traje
tory 
orresponding to the nonlinear(quasi-LPV) model θ(t) = amα(t)3 + bmα(t)2 for several step inputs of di�erent amplitudes).The plots point out that signi�
ant improvement is a
hieved with the new stru
ture. The performan
e isobviously ameliorated, as highlighted by the fa
t that while the margins and the level of performan
e remainthe same, the 
ontrolled system follows the referen
e input mu
h better: from both LTI and LPV plots, it is
lear that the step responses are qui
ker and more homogeneous (e.g. on the LTI plots, t5% ∈ [0.2, 0.3] s). Thisis 
onsistent with the LTI Bode plots of the 
ontroller indi
ating that it adjusts mu
h better to the parametervalue. V. A pra
ti
al advantage of the new stru
tureThis se
tion fo
uses on an interesting pra
ti
al advantage of the new stru
ture from the implementation pointof view. A
tually, the fa
t that the term θ(t) · α(t) is supposed available enables to 
onstru
t a 
ontroller ofredu
ed 
omplexity in the parameter. This interesting property is the 
onsequen
e of a theorem established byWu and Lu.12The interpretation of the theorem whi
h is made here is nevertheless quite di�erent: referen
e12 is a
tually11 of 18Ameri
an Institute of Aeronauti
s and Astronauti
s
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New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.288: Step response Tη
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New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.2936: Controller Bode
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New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.288: Open−Loop Bode
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New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.288: Open−Loop Nichols
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New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.288: σ(T
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ontroller inputs: ηc − η, q, η and θ · α): Stepresponse from ηc to η (1), Closed-loop step response of dominant poles from ηc to η (2), Controller Bode (3),Open-loop Bode (4), Open-loop Bla
k-Ni
hols (5), Closed-loop Bode from w3 to (ηc − η) (6).
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Figure 10. LPV simulation for the new information stru
ture (
ontroller inputs: ηc − η, q, η and θ · α) with
θ(t) = amα(t)3 + bmα(t)2: Step response η(t) for di�erent step sizes (1) and brought to the same s
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on
erned with 
onditions for LTI robust synthesis. These are in the general 
ase non
onvex ones, see e.g.referen
e.22 More pre
isely, in referen
e,12 the 
onditions 
onsidered are the ones introdu
ed by Apkarian andGahinet.4 Yet the theorem implies that if the spe
ial signal 
orresponding to the output of the parameterblo
k of the plant is available for 
ontrol, then the 
onditions for LTI robust synthesis are simpli�ed: they turninto an LMI feasibility problem, thus be
oming 
onvex. In fa
t, it is proved that in presen
e of this parti
ularmeasure, the (generally non
onvex) LTI robust synthesis problem be
omes equivalent to the (
onvex) L2 gainLPV 
ontrol problem.In our 
ontext, the theorem implies a very interesting result if it is interpreted in the following manner: if theoutput of the parameter blo
k of the plant is available for 
ontrol, then the 
onditions of the L2 gain LPV 
ontrolproblem are equivalent to the 
onditions of the robust LTI 
ontrol problem. This means that if the L2 gain LPV
ontrol problem is solvable, then it is possible to 
onstru
t a 
ontroller that has an LTI stru
ture, as depi
tedin Figure 11. It is important to noti
e that it does not make it an LTI 
ontroller in the usual sense be
ause hereone input of the 
ontroller is a parameter-varying signal (sin
e it is the output of the plant parameter blo
k i.e.the signal θ(t) ·q1(t)). Equivalently, this 
an be summarized by saying that if the parameter-dependent signal isavailable for 
ontrol, then it is possible to 
onstru
t an LPV 
ontroller whose LFT blo
k parameter dimensionis zero. A sket
h of the proof of this theorem is provided in Se
tion VII.
P (s)

K(s)

z w

q1 p1

Θ

uyΘp1

Figure 11. Closed-loop LPV system with 
ontroller of redu
ed 
omplexity in the parameter.This property has a great advantage from a pra
ti
al point of view. Indeed, the 
ontroller 
omplexity isone of the main limitations of the implementation of LPV methods. Rewriting the system equations in alower fra
tional manner often leads to de�ning a parameter blo
k of great dimension nθ. While an usual LPVsynthesis would lead to a 
ontroller having the same 
omplexity as the plant (that is, having a parameter blo
kof dimension nθ), the new stru
ture enables to 
onstru
t a 
ontroller having a parameter blo
k of dimensionzero.Here the 
ontroller 
an be 
onstru
ted as:
u =

[

K(ηc−η)→u(s) Kq→u(s) Kη→u(s) K(θ·α)→u(s)

]
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The stru
ture of the 
ontroller and its dependen
e on the parameter in thus 
lear: the 
ontroller is LTI with aninput that is parameter-dependent. The Bode plots of to ea
h transfer fun
tion are given separately in Figure 12(see also Figure 9 (3)).
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Figure 12. Frozen LTI plots of the 
ontroller: K(ηc−η)→u (1), Kq→u (2), Kη→u (3), θ · Kα→u (4).A simpli�ed expression of the transfer fun
tions (after model redu
tion by trun
ation to the order 4) is givenbelow:
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K(ηc−η)→u(s) = 2.65 · 10−3 (s + 38.03)(s + 19.82)(s2 − 1.48 · 102s + 2 · 106)
(s + 7.79 · 102)(s + 1.95 · 102)(s + 24.46)(s + 8.15 · 10−3)

Kq→u(s) = 0.15
(s + 27.17)(s + 8.16 · 10−3)(s2 − 2.96 · 102s + 1.17 · 106)
(s + 7.79 · 102)(s + 1.95 · 102)(s + 24.46)(s + 8.15 · 10−3)

Kη→u(s) = 2.15 · 10−2 (s − 26.56)(s + 8.15 · 10−3)(s2 − 3.38 · 102s + 8.10 · 106)
(s + 7.79 · 102)(s + 1.95 · 102)(s + 24.46)(s + 8.15 · 10−3)

K(θ·α)→u(s) = −7.30 · 10−2 (s − 43.1)(s + 8.15 · 10−3)(s2 − 3.35 · 102s + 7.53 · 105)
(s + 7.79 · 102)(s + 1.95 · 102)(s + 24.46)(s + 8.15 · 10−3)

.

VI. Con
lusionsIn this paper, the interest of a new information stru
ture for LPV synthesis is investigated and illustrated onthe Rei
hert's missile 
ontrol problem. The proposed improvement 
onsists in augmenting the 
lassi
al stru
tureby supposing that besides the usually 
onsidered measures of the a

eleration tra
king error and the pit
h rate,two other signals are used for 
ontrol: �rst, the a
tual a

eleration and se
ond, the parameter-dependent signal.It is shown on this demonstrative example that the new stru
ture yields improved performan
e and leads to a
ontroller that adjusts better to the parameter value. Furthermore, it enables to 
onstru
t a 
ontroller that hasredu
ed 
omplexity in relation to the parameter.The proposed solution supposes nevertheless that the measure of the parameter blo
k output θ(t) · q1(t) is14 of 18Ameri
an Institute of Aeronauti
s and Astronauti
s



dire
tly available. A more realisti
 hypothesis would be that this signal is not perfe
tly measured or, worse, hasto be estimated. Robustness of the proposed solution to un
ertainties on the measure of the parameter blo
koutput θ(t) · q1(t) is under investigation.VII. Appendix: Draft of proof of the redu
tion of the 
ontroller 
omplexity inthe parameterThis se
tion proposes a sket
h of an alternative proof of the interesting result established by Wu and Lu.12The proof somehow di�ers from that in referen
e12 as the result is interpreted here in the 
ontext of LPV
ontrol. Re
all indeed that in referen
e,12 the aim was to show that the presen
e of the plant parameter blo
koutput enables a relaxation of the non
onvex LTI robust 
ontrol 
onditions, whi
h then be
ome 
onvex and infa
t equivalent to the 
onditions of the L2 gain LPV 
ontrol problem.Here the base is the 
lassi
al LPV problem 
onsidered e.g. in referen
es.3�6 The proof goes as follows: �rstare re
alled the LMI 
onditions for the L2 gain LPV 
ontrol problem as they are introdu
ed by Apkarian andGahinet.4 Next it is shown that these 
onditions are simpli�ed if the plant parameter blo
k output is availablefor 
ontrol, thus yielding some freedom in the de
ision variables. These variables 
an then be 
hosen su
h thatthe 
omplexity of the 
ontroller in relation to the parameter is redu
ed, that is, more pre
isely, su
h that theparameter blo
k in the LFT representation of the 
ontroller is of dimension zero.Denote by P the system formed by the original plant augmented with the weighting fun
tions of Figure 3.The augmented system matri
es are de�ned in LFT form as follows:
















ẋ
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. (9)
Su�
ient 
onditions for the L2 gain LPV 
ontrol problem are obtained by Apkarian and Gahinet4 as thefollowing LMI feasibility problem: Find, if they exist, symmetri
 positive de�nite matri
es R, S ∈ R

n×n,
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J3, L3 ∈ R
nθ×nθ satisfying the LMIs (10), (11), (12), (13):
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





AT S + SA S
[

Bθ B1

] [

CT
θ L3 CT

1

]





BT
θ

BT
1



 S −γ





L3 0

0 I









DT
θθL3 DT

1θ

DT
θ1L3 DT

11









L3Cθ

C1









L3Dθθ L3Dθ1

D1θ D11



 −γ





L3 0

0 I

































NT
S 0

0 I



 < 0 (11)




R I

I S



 ≥ 0 (12)




L3 I

I J3



 ≥ 0 (13)with NR = Ker
([

BT
2 DT

θ2 DT
12

])

, NS = Ker
([

C2 D2θ D21

]).Re
all that the rank k of matrix I − RS de�nes the number of states of the 
ontroller while the rank r ofthe matrix I − L3J3 de�nes the dimension of the parameter blo
k in the LFT representation of the 
ontroller.In the spe
ial 
ase where the output of the parameter blo
k is measured as in Figure 8, the matri
es C2, D2θand D21 
an be partitioned so that:
[

C2 D2θ D21 0

]

=





Ĉ2 D̂2θ D̂21 0

0 I 0 0



 .

Consequently, one 
an write NS =

















W1 0

0 0

W3 0

0 I

















where the matri
es W1 and W3 are su
h that
N̂S =





W1

W3



 ∈ Ker









Ĉ2

D̂21







 and 



ĈT
2 W1

D̂T
21 W3



 is full-rank.After rewriting the LMI (11) and applying the elimination lemma (see referen
e23) followed by the S
hurlemma to eliminate the de
ision variable L3, the LMI feasibility problem ((10), (11), (12), (13)) in (R, S, J3, L3)be
omes the LMI feasibility problem ((14), (15), (16), (17)) in (R, S, J3):
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NT
R

























AR + RAT R
[

CT
θ CT

1

] [

BθJ3 B1

]





Cθ

C1



R −γ





J3 0

0 I









DθθJ3 Dθ1

D1θJ3 D11









J3B
T
θ

BT
1









J3D
T
θθ J3D

T
1θ

DT
θ1 DT

11



 −γ





J3 0

0 I





























NR < 0 (14)
N̂T

S



















AT S + SA SB1

[

CT
θ CT

1

]

BT
1 S −γI

[

DT
θ1 DT

11

]





Cθ

C1









Dθ1

D11



 −γ





J3 0

0 I























N̂S < 0 (15)




R I

I S



 ≥ 0 (16)
J3 ≥ 0 (17)where NR = Ker(

[

BT
2 DT

θ2 DT
12 0

]

), N̂S = Ker(
[

Ĉ2 D̂21 0

]

).The elimination lemma implies that if there exists a solution (R, S, J3) of the LMI feasibility problem ((14),(15), (16), (17)), then there exists L3 su
h that (R, S, J3, L3) is a solution of the LMI feasibility problem ((10),(11), (12), (13)).The next step is to noti
e that L3 = J−1
3 is a suitable 
hoi
e. Re
alling that the dimension of the parameterblo
k in the LFT representation of the 
ontroller is de�ned as the rank of matrix I −L3J3 
on
ludes the proof.Referen
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