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An Enhaned Information Struture for LinearParameter-Varying Design: Appliation to Reihert'sMissile BenhmarkSafta de Hillerin1, Vinent Fromion2, Gérard Sorletti3, Gilles Du4, and Emmanuel Godoy51,4,5SUPELEC Systems Sienes (E3S), Automati Control Department, Frane2Institut National de la Reherhe en Agronomie, Unité de Mathématique, Informatique etGénome UR 1077, Frane3Eole Centrale de Lyon, Laboratoire Ampère UMR CNRS 5005, FraneThis paper is onerned with the appliation of linear parameter-varying (LPV) methods.Its purpose is to investigate the interest of a new information struture for the LPV ontrollers.The proposed improvement onsists in extending the traditional information struture byintroduing, beside the signals usually measured, speial signals supposed available for ontrol.This enhanes the design in two diretions: �rst, the performane of the obtained ontrolleris improved by a more aurate adjustment to the LPV system parameter value; seond, thisstruture enables the implementation of a ontroller of redued omplexity in relation to theLPV system parameter.The advantages of the proposed struture are illustrated on the single-axis missile ontrolproblem proposed by Reihert whih has been intensively studied in the existing literature.I. IntrodutionA linear parameter-varying (LPV) system is de�ned as:
z = GLPV (w)



















ẋ(t) = A (θ(t)) x(t) + B (θ(t)) w(t)

z(t) = C (θ(t)) x(t) + D (θ(t)) w(t)

x(t0) = x0

(1)where x(t) ∈ R
n is the state vetor, w(t) ∈ R

nw is the disturbane input, z(t) ∈ R
nz is the output and θ(t) ∈ R

pis a time-varying exogenous parameter vetor valued in a hyperube (eah parameter θi(t) ranges betweenknown extremal values θi and θi).The interest of these systems lies in the fat that they an model linear time-varying (LTV) and nonlinearplants. Assuming that the parameter is measured, the idea is to use the parameter measurements to improvethe design ompared to a linear time-invariant (LTI) strategy.A ustomary method for �nding a parameter-dependent ontroller (also denoted by gain-sheduled ontroller)was developed heuristially by engineers from LTI methods, see referene.1 It onsists in designing LTI on-trollers using linearizations of the plant assoiated to frozen values of the parameter. The parameter-dependentontroller is then obtained by interpolating these LTI ontrollers as funtions of the parameter. Although this1 of 18Amerian Institute of Aeronautis and Astronautis



method is largely and quite suessfully applied, it annot a priori guarantee the obtained losed-loop perfor-mane and even stability, so that in pratie engineers need to a posteriori test the performane by intensivedynamial simulations.These serious drawbaks motivated the searh for a systemati approah to onstrut a gain-sheduled on-troller, see e.g. referenes.1, 2 Important ontributions in this �eld are dated from the beginning of the 90'sand are due to Pakard.3 The LPV problem was formulated as the problem of minimizing the L2 gain of asystem augmented with weighting funtions, known as the L2 gain LPV ontrol problem, whih is an extensionof the H∞ ontrol problem. Indeed, an LTI plant is a very spei� ase of LPV plant and moreover, the L2gain of an LTI system is equal to its H∞ norm so that in the ase of an LTI plant, the L2 gain LPV ontrolproblem redues to the H∞ ontrol problem. The issue was then to obtain tratable onditions to solve theproblem. The L2 gain LPV ontrol problem turned out to be di�ult: indeed, so far, in the general aseonly su�ient onditions ould be written as a onvex LMI optimization problem, hene tratable. Thesemethods may therefore be over onservative. Numerous approahes were proposed. The simplest are based onquadrati Lyapunov funtions and are therefore onservative in the ase where parameters have bounded ratesof variation: Pakard3 or Apkarian and Gahinet4 reast the problem as a robust synthesis problem and solvedit using a saled version of the small-gain theorem, leading to onvex onditions expressed as Linear MatrixInequalities (LMIs). However, sine the saled small-gain theorem is only onerned with symmetri salings,these proedures are unable to take into aount the fat that the parameters are known to be real. Based onthe exploitation of interonneted systems properties, less onservative results were obtained by Sorletti andEl Ghaoui5 by introduing skew-symmetri salings and by Sherer6 using full-blok salings.Parameter-dependent Lyapunov funtions an further redue onservatism, however they lead to parameter-dependent LMI optimization problems whih are in general not tratable and methods for transforming theseproblems into tratable problems usually introdue onservatism, see e.g. referenes.7�10Despite these theoretial limitations, in pratise these methods yield enouraging results sine it has beomepossible to obtain a ontroller that guarantees the losed-loop stability and performane. However, some pointsmoderate these suesses. Indeed, it was observed from the study of frozen linearizations that the obtained on-troller seems not to adjust muh to the parameter value, see e.g. the onlusions in referene.11 Traditionally,this phenomenon was harged on the aount of the onservatism introdued by the methods for solving the L2gain LPV ontrol problem. Another limitation of the LPV synthesis methods is that they produe ontrollersof high omplexity in the parameter, thus possibly involving heavy omputations for implementation.The present investigation suggests another explanation for the phenomenon. Indeed, beause LPV methodsarise from LTI methods (and more preisely from the H∞ method), in engineering pratise some proesses thatare usual and legitimate in an LTI framework have been transposed to the LPV ontext ad ho, that is, some-times without further investigation on the validity of the analogy. In partiular, the adequay of the traditionalLTI information struture (that is, the hoie of signals available for ontrol) in the LPV ontext has not reallybeen investigated.This paper fouses on the issue of the seletion of ontrol signals and suggests a seemingly more suitablehoie: the idea is to introdue for ontrol, besides the lassial measures, two other available signals.One signal is a system output that gives information about the operating point. This leads to signi�antamelioration of the design, as will be demonstrated by omparison with lassial results: �rst, it amelioratesthe performane level and seond, the frozen linearizations indiate that the ontroller adjusts better to theparameter variations.The other signal introdued in order to further enhane the design is the signal orresponding to theparameter-dependent term in the state-spae equations, whih an be supposed available without making fur-2 of 18Amerian Institute of Aeronautis and Astronautis



ther hypotheses. The idea for this struture was �rst introdued by Wu and Lu12 and a ontribution of thepresent paper is to suggest a way to exploit that idea to improve the design of LPV ontrollers. The result inreferene12 implies indeed that the new struture is all the more interesting that inidentally it enables to obtaina ontroller of redued omplexity in the parameter, hene involving less omputations and thus irumventinga major limitation of the usual synthesis methods.The paper is organized as follows. The missile model and the design objetives of the benhmark proposed byReihert are presented in Setion II. An LPV ontroller is alulated in Setion III using a lassial informationstruture. A new information struture is proposed in Setion IV, where it is shown that the resulting LPVontroller has a better dependene on the parameter and therefore ahieves better performane. In Setion V,it is proved that the struture presents moreover the pratial interest of permitting the implementation of aontroller of redued omplexity in the parameter. Conluding remarks end the paper in Setion VI.NotationsThe notation is fairly standard. MT is the transpose of matrix M . For a symmetri real matrix M , M > 0and M < 0 stand respetively for positive de�nite and negative de�nite while M ≥ 0 and M ≤ 0 standrespetively for nonnegative and nonpositive de�nite. The Laplae variable is denoted by s and ẋ = dx
dt

is thetime derivative. In is used to denote the identity matrix of size n and Om×n the zero matrix of dimensions m×nbut when dimensions are obvious from ontext, only the notation I and O may be used. The maximal andminimal singular values of a matrix M are denoted respetively by σ(M) and σ(M). The state-spae realizationof transfer G(s) = D + C(sI −A)−1B is denoted by G(s) =





A B

C D



. The H∞ norm of a stable LTI system
G with transfer funtion G(s) is denoted by ||G||∞ and de�ned as ||G||∞ = supω∈[0,+∞) σ (G(jω)).Next are given some de�nitions and notations spei� to the LPV ontext. We introdue the augmentedLPV plant PLPV :





z

y



 = PLPV





w

u



































ẋ(t) = A (θ(t)) x(t) + Bw (θ(t)) w(t) + Bu (θ(t)) u(t)

z(t) = Cz (θ(t)) x(t) + Dzw (θ(t)) w(t) + Dzu (θ(t)) u(t)

y(t) = Cy (θ(t)) x(t) + Dyw (θ(t)) w(t)

x(t0) = x0

(2)where u(t) ∈ R
nu is the ontrolled input and y(t) ∈ R

ny is the measured output. In the proposed approahesof referenes,3, 4, 13 the dependene on the parameters of the state-spae matries is supposed to be rational.The methods then require the LPV plant PLPV to be written as the interonnetion of an LTI plant P (s)with a so-alled parameter blok matrix Θ haraterizing the parameter struture. This is alled the linearfrational transform (LFT) representation. For matries Θ =





Θ11 Θ12

Θ21 Θ22



 and M of ompatible dimen-sions, Fl(M, Θ) = Θ11 + Θ12M (I − Θ22M)
−1

Θ21 denotes the lower LFT of the interonnetion (M, Θ) and
Fu(M, Θ) = Θ22 + Θ21M (I − Θ11M)

−1
Θ12 the upper LFT. In this paper, reall that the parameter vetor isde�ned as θ = [θ1 · · · θp]

T and is assumed to be real. The parameter blok is then de�ned as a diagonal matrix
Θ = diag(θ1In1

, ..., θpInp
) where ni is the number of times θi appears in the LFT. The dimension (or size) ofthe parameter blok is then nθ = n1 + · + np.In the approahes onsidered, the LPV ontroller KLPV is assumed to have the same dependeny on theparameter as the plant, therefore it is also written in LFT form as the interonnetion of an LTI system K(s)and the same parameter blok Θ as the plant. Notie that the losed-loop system from w to z represented in3 of 18Amerian Institute of Aeronautis and Astronautis



Figure 1 denoted by PLPV ⋆ KLPV reads in LFT form: Fl(Fu(P (s), θ),Fl(K(s), θ)).
P (s)

K(s)

Θ

z w

q1 p1

y u

Θ

q2p2Figure 1. Closed-loop LPV system in LFT representation.The L2 gain of an LPV system z = GLPV (w) de�ned as in (1) is the smallest γ suh that for all T0 ≥ t0,we have
∫ T0

t0

z(t)T z(t)dt ≤ γ2

∫ T0

t0

w(t)T w(t)dtfor any w suh that ∫ T0

t0
w(t)T w(t)dt < ∞.For an LPV augmented plant PLPV de�ned as in (2), the L2 gain LPV ontrol problem an be stated asfollows: Design an LPV ontroller u = KLPV (y) suh that, with the losed loop system represented Figure 1and de�ned by PLPV ⋆ KLPV = Fl(Fu(P (s), θ),Fl(K(s), θ)):

• PLPV ⋆ KLPV is asymptotially stable;
• PLPV ⋆ KLPV has a L2 gain less than a given γ ≥ 0 (known as level of performane).Tratable su�ient onditions for this problem were derived by Apkarian and Gahinet4 as an LMI feasibilityproblem. All the results presented in the next Setions were obtained by implementing the formulae in referene4whih are given in detail in the appendix at Setion VII.II. Model of the missile and design spei�ationsA. Nonlinear model of the missileThe onsidered system is the pith-axis model of a missile, �ying at Mah 3 and at an altitude of 20, 000 ft, thatwas de�ned by Reihert.14 The assoiated ontrol problem was intensively studied, see e.g. referenes.11, 15�19The idea is to use the tail de�etion δ to trak an aeleration maneuver. The missile is modeled as a rigidbody, see Figure 2. The ontrol input is δ and the measured outputs are the aeleration η and the pith rate q.The state of the missile involves the angle of attak α and the pith rate q and the state-spae equations are:







α̇ = cos(α)KαMCn(α, δ, M) + q

q̇ = KqM
2Cm(α, δ, M)

(3)4 of 18Amerian Institute of Aeronautis and Astronautis



The aeleration output η is given by:
η = Kz

g
M2Cn(α, δ, M)where M is the Mah while the funtions Cn and Cm are de�ned by:







Cn(α, δ, M) = anα3 + bn|α|α + cn(2 − M/3)α + dnδ

Cm(α, δ, M) = amα3 + bm|α|α + cm(−7 + 8M/3)α + dmδ.
(4)For this spei� model, these two funtions are determined. However in pratie, the oe�ients are usuallyknown only poorly and sometimes not at all. It is interesting to emphasize that the approah desribed belowan be applied even in these ases.The atuator is modeled as a seond order system:

δ̈ = −ω2
aδ − 2ξaωaδ̇ + ω2

aδcwhere δ is the atual tail de�etion and δc the ommanded tail de�etion.
+

x

z

Vxz

α

δ

y

G

Figure 2. De�nition of the missile variables.See Table 1 for the assoiated numerial data extrated from Reihert's paper.14B. Design objetivesThe design spei�ations onsidered follow from Ferreres et al.16 and were used as well in referenes:11, 20
• when applying a step input signal to the referene input ηc(t), the time onstant must be less than 0.35 s,the maximal overshoot less than 20% and the steady state error less than 5%;
• atuator saturation, both in aeleration and in speed, should be avoided;
• due to the presene of non modeled �exible modes, the ontroller bandwidth must be limited (the transferfrom ηc to η must present an attenuation of 30 dB at 300 rad/s);
• robustness to unertainties on aerodynami funtions oe�ients is demanded.C. LPV model of the missileIn order to apply LPV synthesis methods to this system, the �rst task is to derive an LPV model from thenonlinear model of the missile and to write it in LFT form. Following the lines of referene,20 we use the5 of 18Amerian Institute of Aeronautis and Astronautis



an 1.0286 10−4 deg−3

bn −0.94457 10−2 deg−2

cn −0.1696 deg−1

dn −0.034 deg−1

am 2.1524 10−4 deg−3

bm −1.9546 10−2 deg−2

cm 0.051 deg−1

dm −0.206 deg−1

ωa 150

ξa 0.7

P0 973.3 lb/ft2

S 0.44 ft2

m 13.98 slugs

V 1036.4 ft/s

d 0.75 ft

Iy 182.5 slug.ft2

Kα 0.7PoS/m/V

Kq 0.7PoSd/Iy

Kz 0.7PoS/m

g 32.2Table 1. Missile parameters.approximations cos(α) ≈ 1 for the onsidered angles. Two polytopi models are introdued: one orrespondsto the original nonlinear model written in quasi-LPV form, that is, onsidering the nonlinear dependene asembedded in a parameter. The other orresponds to the non stationary linearizations of the model. Sine
am = 2an, bm = 2bn, the equations obtained in these two ases are the same, the di�erene lying in thede�nition of the parameter: thus, if we wish to onsider the nonlinear system then θ(t) = amα(t)3 + bmα(t)2,whereas if we onsider the non stationary linearizations in α0 we should take θ(t) = 3amα0(t)

2 + 2bm|α0(t)|.Sine the angle α varies between −0.35 rad and 0.35 rad, amα3 + bmα2 varies between 0 and −10 while
3amα2 + 2bm|α| varies between 0 and −15. Hene by onsidering that the parameter varies between 0 and −15we take into aount both the nonlinear model and its non stationary linearizations.The state-spae equations are given below, where the state is x = [α q]

T :




ẋ

η



 =





A + θ(t)Aθ B

C + θ(t)Cθ D









x

δ



 (5)where




A B

C D



 =











KαMcn(2 − M
3 ) 1 KαMdn

KqM
2cm(−7 + 8

3M) 0 KqM
2dm

Kz
g M2cn(2 − M

3 ) 0 Kz
g M2dn











(6)




Aθ

Cθ



 =











KαM 0

2KqM
2 0

Kz
g M2 0











. (7)The equations an be further written in LFT form by isolating the parameter-dependent signal. Thus in theLFT representation, the parameter blok input is de�ned as q1(t) = α(t) and the parameter blok output is
6 of 18Amerian Institute of Aeronautis and Astronautis



p1(t) = θ(t) · q1(t). Then the state-spae equations beome the following:




















































ẋ

q1

η











=











A Aθ B

[1 0] 0 0

C Cθ D





















x

p1

δ











p1(t) = θ(t) · q1(t)

. (8)
Notie that in this partiular example there is a single parameter so that the parameter blok Θ depited inFigure 1 and later in Figure 11 is in fat a salar and therefore will usually be denoted by θ.III. Control with the lassial information strutureWe �rst review the results obtained with an information struture that was lassially onsidered in literature,where the ontroller inputs are the pith rate q and the traking error ηc − η. More spei�ally, the informationstruture onsidered is diretly inspired from referenes.11, 16A. Criterion and weighting funtions for the lassial information strutureWe proeed as for an usual H∞ synthesis, see e.g. referene:21 the performane spei�ations are hara-terized by LTI weighting funtions onstraining the losed-loop transfer funtions. Thus following the lines ofreferene,16 we use the 6 blos riterion desribed in Figure 3 to speify performane and robustness.

GAtuator
W4

W3

W1 W2

ηc − η

q

w1

w3

w2

z2z1

p1 q1

+ +
+ ++- δc δ

P

θ

Figure 3. H∞ riterion for the lassial information struture (ontroller inputs: ηc − η and q).To hoose adequate weighting funtions, it is in general neessary to do several trials, see referene.21 Theusual method goes as follows: �rst, weights are sought for one speial plant LTI frozen linearization like for anusual H∞ synthesis proedure. Next, the funtions are modi�ed until they are suitable for the plant LTI frozenlinearizations orresponding to all the parameter values in the de�nition set. A satisfying result was obtainedin referene11 with the weighting funtions given below. The orresponding frequeny responses for W1(s) and7 of 18Amerian Institute of Aeronautis and Astronautis



W2(s) are displayed in Figure 4.
W1(s) = 103 s/6.93 + 1

s/3.46 · 10−3 + 1
, W2(s) = 10

s2/1502 + 0.8/150s + 1

s2/10002 + 2/1000s + 1
, W3(s) = 0.04, W4(s) = 0.07.
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Figure 4. Weighting funtions W1(s) and W2(s).B. Results for the lassial information strutureThe obtained level of performane is γ = 1.297. The results that were obtained by performing an LPV syn-thesis with the lassial information struture of Figure 5 are illustrated in Figure 5 (LTI frozen linearizations)and Figure 6 (LPV simulations for the parameter trajetory orresponding to the nonlinear (quasi-LPV) model
θ(t) = amα(t)3 + bmα(t)2 for several step inputs of di�erent amplitudes).The results obtained by performing an LPV synthesis using the lassial struture are quite satisfying: theLTI and LPV plots enable indeed to hek that the design spei�ations are respeted (time response about 3 sand overshoot less than 20%). Moreover, ontrary to the usual heuristi gain-sheduled methods, LPV methodsguarantee that the stability and performane properties are ahieved for any parameter trajetory remaining inthe de�nition set.A question nevertheless arises from the study of the LTI plots. Theoretially, we expet here to obtain aparameter-dependent ontroller. However, the frequeny responses of the ontroller LTI frozen linearizationsseem to indiate that the in�uene of the parameter is weak. This is on�rmed by the fat that the frequenyresponses of the losed-loop LTI frozen linearizations still depend on the parameter. As an undesirable onse-quene, the step responses of the LTI frozen linearizations and of the LPV simulations of the ontrolled systemare not homogeneous enough (e.g. t5% ∈ [0.3, 0.5] s).Having realled these lassial results, we next propose a modi�ed information struture that leads to betterresults. IV. Control with the new information strutureFirst, a new struture is presented and the interest of the signal newly introdued is justi�ed empirially.An LPV synthesis is then arried out while the weighting funtions are kept the same as previously, in order tohighlight the potential by omparing the level of performane obtained. Next, the struture is further modi�edby introduing another signal supposed available, whih presents another interest.Next, the weights are modi�ed aurately to improve the performane. An LPV synthesis is arried out anda omparative study of the LTI frozen plots and the LPV simulations is presented, emphasizing the advantagesof the new struture. 8 of 18Amerian Institute of Aeronautis and Astronautis
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A. Criterion and weighting funtions for the new information struture
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Figure 7. H∞ riterion for the new information struture (ontroller inputs: ηc − η, q and η).The new ontrol riterion onsidered is given in Figure 7. The di�erene with the lassial struture lies inthe fat that here besides the traking error and the pith rate, the aeleration η is expliitly fed bak as aontroller input. It is lear that by adding an extra measure the level of performane will be at least as goodas previously, however this is not the only reason why we suggest adding this signal. Indeed, in the lassialstruture, the fat that only the traking error is measured implies that potentially ruial information about theoperating point is laking. Therefore, by using η not only better performane is expeted but also a ontrollerthat an adjust better to the parameter value.Using the same weighting funtions as for the usual information struture (see Setion III), we obtain withthis new struture a performane level γ = 1.19. This suggests that the performane an be further improvedby an adequate hoie of the weighting funtions. However, we are not yet interested in this issue at this stage.Rather, we seek to further improve the design by adding another signal that also proves useful: it is the output
θ(t) · q1(t) of the parameter blok in the LFT representation of the plant.In the spei� ase of the onsidered missile model it orresponds to the parameter-dependent term in theplant state-spae equations. We do not make a strong assumption by supposing that this signal is availablefor ontrol: indeed, to design an LPV ontroller of the missile it is already assumed that the parameter θ(t) isavailable in real time. However, reall that θ(t) is a polynomial in α(t) and that in the LPV model, the systemoutput q1(t) is simply α(t). Therefore, supposing that the output of the parameter blok (whih is here simplythe parameter-dependent term) is available for ontrol is a �realisti hypothesis�. The new struture onsideredis depited in Figure 8. Performing an LPV synthesis leads to a level of performane γ = 1.18 (whih is notmuh di�erent than the level obtained with only the measures ηc − η, q, η). In order to enable an aurateomparison with the lassial struture, the weighting funtion W1 is adjusted so that the time response is10 of 18Amerian Institute of Aeronautis and Astronautis
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Figure 8. H∞ riterion for the new information struture (ontroller inputs: ηc − η, q, η and θ · α).smaller:
W1(s) =

5.5 · 10−1s + 8.35

s + 8.4 · 10−3
.B. Results for the new information strutureBy performing an LPV synthesis with the new information struture of Figure 8 and the adjusted weightingfuntions, the level of performane γ = 1.288 is reahed. Illustrating plots are displayed in Figure 9 (LTI frozenlinearizations) and Figure 10 (LPV simulations for the parameter trajetory orresponding to the nonlinear(quasi-LPV) model θ(t) = amα(t)3 + bmα(t)2 for several step inputs of di�erent amplitudes).The plots point out that signi�ant improvement is ahieved with the new struture. The performane isobviously ameliorated, as highlighted by the fat that while the margins and the level of performane remainthe same, the ontrolled system follows the referene input muh better: from both LTI and LPV plots, it islear that the step responses are quiker and more homogeneous (e.g. on the LTI plots, t5% ∈ [0.2, 0.3] s). Thisis onsistent with the LTI Bode plots of the ontroller indiating that it adjusts muh better to the parametervalue. V. A pratial advantage of the new strutureThis setion fouses on an interesting pratial advantage of the new struture from the implementation pointof view. Atually, the fat that the term θ(t) · α(t) is supposed available enables to onstrut a ontroller ofredued omplexity in the parameter. This interesting property is the onsequene of a theorem established byWu and Lu.12The interpretation of the theorem whih is made here is nevertheless quite di�erent: referene12 is atually11 of 18Amerian Institute of Aeronautis and Astronautis



0 0.2 0.4 0.6 0.8 1 1.2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.288: Step response Tη

c
 → η

c
−η

Time (sec)

A
m

pl
itu

de

θ
0
=−15

θ
0
=−12

θ
0
=−9

θ
0
=−6

θ
0
=−3

θ
0
=0

0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

Step Response

Time (sec)

A
m

pl
itu

de

θ
0
=−15

θ
0
=−12

θ
0
=−9

θ
0
=−6

θ
0
=−3

θ
0
=0

10
−1

10
0

10
1

10
2

10
3

−60

−50

−40

−30

−20

−10

0

10

20

30

 

 

New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.2936: Controller Bode

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

Tη
c
−η → u

T
q → u

Tη → u

Tα → u

10
−1

10
0

10
1

10
2

10
3

−60

−40

−20

0

20

40

60

80

 

 

New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.288: Open−Loop Bode

Frequency (rad/sec)
S

in
gu

la
r 

V
al

ue
s 

(d
B

)

θ
0
=−15

θ
0
=−12

θ
0
=−9

θ
0
=−6

θ
0
=−3

θ
0
=0

−270 −225 −180 −135 −90 −45

−40

−20

0

20

40

60

80

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 

 

New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.288: Open−Loop Nichols

Open−Loop Phase (deg)

O
pe

n−
Lo

op
 G

ai
n 

(d
B

)

θ
0
=−15

θ
0
=−12

θ
0
=−9

θ
0
=−6

θ
0
=−3

θ
0
=0

10
−1

10
0

10
1

10
2

10
3

−40

−30

−20

−10

0

10

20

30

 

 

New structure (measures η
c
−η, q, η, θα), Reduced complexity; γ=1.288: σ(T

w
w
 → z

e

), σ(1/W
w

/W
e
)

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

θ
0
=−15

θ
0
=−12

θ
0
=−9

θ
0
=−6

θ
0
=−3

θ
0
=0Figure 9. Frozen LTI plots for the new information struture (ontroller inputs: ηc − η, q, η and θ · α): Stepresponse from ηc to η (1), Closed-loop step response of dominant poles from ηc to η (2), Controller Bode (3),Open-loop Bode (4), Open-loop Blak-Nihols (5), Closed-loop Bode from w3 to (ηc − η) (6).
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Figure 10. LPV simulation for the new information struture (ontroller inputs: ηc − η, q, η and θ · α) with
θ(t) = amα(t)3 + bmα(t)2: Step response η(t) for di�erent step sizes (1) and brought to the same sale (2).12 of 18Amerian Institute of Aeronautis and Astronautis



onerned with onditions for LTI robust synthesis. These are in the general ase nononvex ones, see e.g.referene.22 More preisely, in referene,12 the onditions onsidered are the ones introdued by Apkarian andGahinet.4 Yet the theorem implies that if the speial signal orresponding to the output of the parameterblok of the plant is available for ontrol, then the onditions for LTI robust synthesis are simpli�ed: they turninto an LMI feasibility problem, thus beoming onvex. In fat, it is proved that in presene of this partiularmeasure, the (generally nononvex) LTI robust synthesis problem beomes equivalent to the (onvex) L2 gainLPV ontrol problem.In our ontext, the theorem implies a very interesting result if it is interpreted in the following manner: if theoutput of the parameter blok of the plant is available for ontrol, then the onditions of the L2 gain LPV ontrolproblem are equivalent to the onditions of the robust LTI ontrol problem. This means that if the L2 gain LPVontrol problem is solvable, then it is possible to onstrut a ontroller that has an LTI struture, as depitedin Figure 11. It is important to notie that it does not make it an LTI ontroller in the usual sense beause hereone input of the ontroller is a parameter-varying signal (sine it is the output of the plant parameter blok i.e.the signal θ(t) ·q1(t)). Equivalently, this an be summarized by saying that if the parameter-dependent signal isavailable for ontrol, then it is possible to onstrut an LPV ontroller whose LFT blok parameter dimensionis zero. A sketh of the proof of this theorem is provided in Setion VII.
P (s)

K(s)

z w

q1 p1

Θ

uyΘp1

Figure 11. Closed-loop LPV system with ontroller of redued omplexity in the parameter.This property has a great advantage from a pratial point of view. Indeed, the ontroller omplexity isone of the main limitations of the implementation of LPV methods. Rewriting the system equations in alower frational manner often leads to de�ning a parameter blok of great dimension nθ. While an usual LPVsynthesis would lead to a ontroller having the same omplexity as the plant (that is, having a parameter blokof dimension nθ), the new struture enables to onstrut a ontroller having a parameter blok of dimensionzero.Here the ontroller an be onstruted as:
u =

[

K(ηc−η)→u(s) Kq→u(s) Kη→u(s) K(θ·α)→u(s)

]
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The struture of the ontroller and its dependene on the parameter in thus lear: the ontroller is LTI with aninput that is parameter-dependent. The Bode plots of to eah transfer funtion are given separately in Figure 12(see also Figure 9 (3)).
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Figure 12. Frozen LTI plots of the ontroller: K(ηc−η)→u (1), Kq→u (2), Kη→u (3), θ · Kα→u (4).A simpli�ed expression of the transfer funtions (after model redution by trunation to the order 4) is givenbelow:














































































K(ηc−η)→u(s) = 2.65 · 10−3 (s + 38.03)(s + 19.82)(s2 − 1.48 · 102s + 2 · 106)
(s + 7.79 · 102)(s + 1.95 · 102)(s + 24.46)(s + 8.15 · 10−3)

Kq→u(s) = 0.15
(s + 27.17)(s + 8.16 · 10−3)(s2 − 2.96 · 102s + 1.17 · 106)
(s + 7.79 · 102)(s + 1.95 · 102)(s + 24.46)(s + 8.15 · 10−3)

Kη→u(s) = 2.15 · 10−2 (s − 26.56)(s + 8.15 · 10−3)(s2 − 3.38 · 102s + 8.10 · 106)
(s + 7.79 · 102)(s + 1.95 · 102)(s + 24.46)(s + 8.15 · 10−3)

K(θ·α)→u(s) = −7.30 · 10−2 (s − 43.1)(s + 8.15 · 10−3)(s2 − 3.35 · 102s + 7.53 · 105)
(s + 7.79 · 102)(s + 1.95 · 102)(s + 24.46)(s + 8.15 · 10−3)

.

VI. ConlusionsIn this paper, the interest of a new information struture for LPV synthesis is investigated and illustrated onthe Reihert's missile ontrol problem. The proposed improvement onsists in augmenting the lassial strutureby supposing that besides the usually onsidered measures of the aeleration traking error and the pith rate,two other signals are used for ontrol: �rst, the atual aeleration and seond, the parameter-dependent signal.It is shown on this demonstrative example that the new struture yields improved performane and leads to aontroller that adjusts better to the parameter value. Furthermore, it enables to onstrut a ontroller that hasredued omplexity in relation to the parameter.The proposed solution supposes nevertheless that the measure of the parameter blok output θ(t) · q1(t) is14 of 18Amerian Institute of Aeronautis and Astronautis



diretly available. A more realisti hypothesis would be that this signal is not perfetly measured or, worse, hasto be estimated. Robustness of the proposed solution to unertainties on the measure of the parameter blokoutput θ(t) · q1(t) is under investigation.VII. Appendix: Draft of proof of the redution of the ontroller omplexity inthe parameterThis setion proposes a sketh of an alternative proof of the interesting result established by Wu and Lu.12The proof somehow di�ers from that in referene12 as the result is interpreted here in the ontext of LPVontrol. Reall indeed that in referene,12 the aim was to show that the presene of the plant parameter blokoutput enables a relaxation of the nononvex LTI robust ontrol onditions, whih then beome onvex and infat equivalent to the onditions of the L2 gain LPV ontrol problem.Here the base is the lassial LPV problem onsidered e.g. in referenes.3�6 The proof goes as follows: �rstare realled the LMI onditions for the L2 gain LPV ontrol problem as they are introdued by Apkarian andGahinet.4 Next it is shown that these onditions are simpli�ed if the plant parameter blok output is availablefor ontrol, thus yielding some freedom in the deision variables. These variables an then be hosen suh thatthe omplexity of the ontroller in relation to the parameter is redued, that is, more preisely, suh that theparameter blok in the LFT representation of the ontroller is of dimension zero.Denote by P the system formed by the original plant augmented with the weighting funtions of Figure 3.The augmented system matries are de�ned in LFT form as follows:
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. (9)
Su�ient onditions for the L2 gain LPV ontrol problem are obtained by Apkarian and Gahinet4 as thefollowing LMI feasibility problem: Find, if they exist, symmetri positive de�nite matries R, S ∈ R

n×n,
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J3, L3 ∈ R
nθ×nθ satisfying the LMIs (10), (11), (12), (13):
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]).Reall that the rank k of matrix I − RS de�nes the number of states of the ontroller while the rank r ofthe matrix I − L3J3 de�nes the dimension of the parameter blok in the LFT representation of the ontroller.In the speial ase where the output of the parameter blok is measured as in Figure 8, the matries C2, D2θand D21 an be partitioned so that:
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Ĉ2

D̂21







 and 



ĈT
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 is full-rank.After rewriting the LMI (11) and applying the elimination lemma (see referene23) followed by the Shurlemma to eliminate the deision variable L3, the LMI feasibility problem ((10), (11), (12), (13)) in (R, S, J3, L3)beomes the LMI feasibility problem ((14), (15), (16), (17)) in (R, S, J3):
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).The elimination lemma implies that if there exists a solution (R, S, J3) of the LMI feasibility problem ((14),(15), (16), (17)), then there exists L3 suh that (R, S, J3, L3) is a solution of the LMI feasibility problem ((10),(11), (12), (13)).The next step is to notie that L3 = J−1
3 is a suitable hoie. Realling that the dimension of the parameterblok in the LFT representation of the ontroller is de�ned as the rank of matrix I −L3J3 onludes the proof.Referenes
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