Statistical evaluation for quality of experience prediction based on quality of service parameters - Archive ouverte HAL Access content directly
Conference Papers Year : 2016

Statistical evaluation for quality of experience prediction based on quality of service parameters

S. Aroussi
  • Function : Author
A Mellouk
  • Function : Author
CIR

Abstract

Machine Learning (ML) provides a theoretical and methodological framework that allows to quantify the relationship between the user's Quality of Experience (OoE) and the network's Quality of Service (QoS). In the literature, several ML-based QoS/QoE correlation models have been proposed. All of those models use inductive supervised learning techniques and most of them are built in an offline batch manner using different ML methods such as: Least Squares Regression, Artificial Neural Netwcorks, Naive Bayes classifier, Support Vector Machines, k-Nearest Neighbors, Decision Trees, and Random Forest. This paper aims to evaluate these different ML methods and determine the most suitable one for the task of establishing the QoS/QoE correlation. The comparisons show that the Decision Trees and Random Forest models give the best results to this end.
Not file

Dates and versions

hal-01676583 , version 1 (05-01-2018)

Identifiers

  • HAL Id : hal-01676583 , version 1

Cite

S. Aroussi, A Mellouk. Statistical evaluation for quality of experience prediction based on quality of service parameters. Proc. Of the 23rd International Conference on Telecommunication, ICT 2016, 2016, Thessaloniki, Greece. pp.1-5. ⟨hal-01676583⟩

Collections

LISSI UPEC
15 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More