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ON THE KÄHLER-EINSTEIN METRIC AT STRICTLY PSEUDOCONVEX

POINTS

SÉBASTIEN GONTARD

Abstract. We prove a local boundary regularity result for the complete Kähler-Einstein metrics of
negative Ricci curvature near strictly pseudoconvex boundary point. We also study the asymptotic
behaviour of their holomorphic bisectional curvatures near such points.

Introduction

In 1980, S.-Y. Cheng and S.-T. Yau proved that every bounded strictly pseudoconvex domain
Ω ⊂ Cn, n ≥ 2, with boundary of class C7, admits a complete Kähler-Einstein metric of negative
Ricci curvature (for convenience, we will only work with Ricci curvature = −(n+1)). Namely, they
proved that there exists a (unique) solution g ∈ Cω (Ω) to the Monge-Ampère equation

(1) Det
(
gij̄
)

= e(n+1)g on Ω,

satisfying the following boundary condition:

(2) g = +∞ on ∂Ω.

By comparing this solution to the approximate solutions constructed by C. Fefferman in [5], they

proved that if Ω is bounded, strictly pseudoconvex with boundary of class Cmax(2n+9,3n+6), then

e−g ∈ Cn+1+δ
(
Ω
)

for every δ ∈
[
0,

1

2

[
, and the holomorphic sectional curvatures of this metric

tend to -2, which are the curvatures of the unit ball equipped with its Bergman-Einstein metric, at
any boundary point. Note that if the boundary is of class C∞, J. Lee and R. Melrose proved that
e−g ∈ Cn+1+δ

(
Ω
)

for every δ ∈ [0, 1[ (see [10]), and this regularity is optimal in general.
We prove a local version of the result of S.-Y. Cheng and S.-T. Yau. Namely, we prove the following
theorem:

Theorem 1. Let Ω ⊂ Cn, n ≥ 2, and q ∈ ∂Ω. Assume that there exists a neighborhood of q on
which ∂Ω is strictly pseudoconvex and of class Ck with k ≥ max(2n+ 9, 3n+ 6). Moreover, assume
that Ω carries a complete Kähler-Einstein metric induced by a function g that satisfies conditions

(1) and (2). Then there exists an open set U ⊂ Cn containing q such that for every δ ∈
[
0,

1

2

[
, we

have:

e−g ∈ Cn+1+δ
(
Ω ∩ U

)
.

Note that J. Bland already obtained this result in the case of “nice” strictly pseudoconvex
boundary points, and also obtained that e−g ∈ C

n
2

+δ
(
Ω ∩ U

)
in the general case (see [1]). Regarding

the curvature behavior, we prove the following:
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Theorem 2. Let Ω ⊂ Cn, n ≥ 2, and q ∈ ∂Ω. Assume that there exists a neighborhood of q on
which ∂Ω is strictly pseudoconvex and of class Ck with k ≥ max (2n+ 9, 3n+ 6). Moreover, assume
that Ω carries a complete Kähler-Einstein metric induced by a function g that satisfies conditions
(1) and (2). Then,

(3) sup
v,w∈S(0,1)

(
Bisg,z(v, w) +

(
1 +

|〈v;w〉g,z|2

〈v; v〉2g,z〈w;w〉2g,z

))
−→
z→q

0.

Here and from now on, Bisg,z(v, w) (respectively 〈v;w〉g,z) stands for the holomorphic bisectional
curvature (respectively the Hermitian scalar product) of the Kähler metric induced by the potential
g, at point z, between the directions v and w (a more precise definition is given in Section 1).

Especially, using the results on the existence of Kähler-Einstein metrics of N. Mok and S.-T. Yau
in the case of bounded pseudoconvex domains (see [11]), and of A. Isaev in the case of pseudoconvex
tube domains with unbounded base (see [7]), we directly deduce:

Corollary 3. Let n ≥ 2. Let Ω ⊂ Cn be either a bounded pseudoconvex domain with boundary
of class C2, or a tube domain whose base is convex and does not contain any straight line. Let
g ∈ Cω (Ω) be the Kähler-Einstein potential on Ω that satisfies conditions (1) and (2). Let q ∈ ∂Ω.
Assume that there exists a neighborhood of q on which ∂Ω is strictly pseudoconvex and of class Ck
with k ≥ max(2n + 9, 3n + 6). Then there exists an open set U ⊂ Cn containing q such that we
have:

∀δ ∈
[
0,

1

2

[
, e−g ∈ Cn+1+δ

(
Ω ∩ U

)
.

Moreover, we have the following curvature behaviour:

sup
v,w∈S(0,1)

(
Bisg,z(v, w) +

(
1 +

|〈v;w〉g,z|2

〈v; v〉2g,z〈w;w〉2g,z

))
−→
z→q

0.

The curvature behavior (3) can also be obtained in pseudoconvex domains, at boundary points
for which the squeezing tends to one (for precise reference about the squeezing function, see for
instance [12]). Namely:

Theorem 4. Let Ω ⊂ Cn be a pseudoconvex domain, n ≥ 2, and q ∈ ∂Ω. Assume that the squeezing
function of Ω tends to one at q. Moreover, assume that Ω carries a complete Kähler-Einstein metric
induced by a function g solving equation (1) with condition (2) on Ω. Then,

sup
v,w∈S(0,1)

(
Bisg,z(v, w) +

(
1 +

|〈v;w〉g,z|2

〈v; v〉2g,z〈w;w〉2g,z

))
−→
z→q

0.

We refer the reader to the proof of Theorem 4 for a more precise statement in terms of the squeezing
function of the domain. In comparison with Theorems 1 and 2, Theorem 4 requires neither regu-
larity assumptions on the boundary of the domain nor the strict pseudoconvexity at q, but gives
no boundary regularity for the Kähler-Einstein potential. However, it is difficult to find geometric
condition ensuring that the squeezing tends to one at a boundary point of a given domain.
We can apply Theorem 4 at C2 strictly pseudoconvex boundary points of a domain admitting a
Stein neighborhood basis (see [8]), at C2 strictly convex boundary points of bounded domains (see
[9]), but also at every boundary point of the Fornaess-Wold domain, which is convex but not strictly
pseudoconvex and has a boundary of class C2 (see [6]).

This paper is organized as follows. In Section 1, we introduce some notations and formulas that
will be used in the other sections. In Section 2, we recall the construction of asymptotically Kähler-
Einstein metrics developped by C. Fefferman in [5]. We provide details about the regularity of the
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functions involved in the construction and on their defining set. In Section 3, we first estimate the
norm of the gradient of the difference between the potential of the Kähler-Einstein metric and the
potential of an asymptotically Kähler-Einstein metric constructed in Section 2. Then we use these
estimates to improve the C0 estimate. We also derive the higher order estimates, and we use these
to prove Theorems 1 and 2 at the end of the Section. In Section 4 we prove Theorem 4.

Acknowledgements. I would like to thank Professor S. Fu and Professor J. Bland for their kind
hospitality during my visit in their institutions and the fruitful discussions.

1. Preliminaries and notations

Throughout the paper, we use Einstein summation notation.

1.1. Algebra. We denote byMn (C) the set of square matrices of size n, with complex coefficients.
In this set, we denote by 0 the null matrix and by I the identity matrix.
Let A =

(
Aij̄
)
, B =

(
Bij̄
)
∈Mn (C), v = (vi) ∈ Cn, w = (wj) ∈ Cn.

If A is invertible, we note
(
Aij̄
)

= A−1. It is characterized by the relations Aik̄Akj̄ = Aik̄A
kj̄ = 1

if i = j, 0 otherwise. Especially, Tr
(
A−1B

)
= Aij̄Bjī, where Tr denotes the trace function. We

denote by Det (A) the determinant of A. We denote by tA =
(
Ajī
)

the transpose matrix of A, and

by A =
(
Aij̄
)

its conjugate.

We denote by Hn := {A ∈Mn (C) /tA = A} the space of Hermitian matrices of order n. If A ∈ Hn,
we note 〈v;w〉A := Aij̄viwj . Recall that 〈v; v〉A ∈ R.
If A,B ∈ Hn, we define the following relations:

B ≥ A ⇐⇒ ∀v ∈ Cn \ {0}, 〈v; v〉B ≥ 〈v; v〉A, B > A ⇐⇒ ∀v ∈ Cn \ {0}, 〈v; v〉B > 〈v; v〉A.
We note H+

n := {M ∈ Hn/M ≥ 0} and H++
n := {M ∈ Hn/M > 0}. If A ∈ H+

n , we note

|v|A := 〈v; v〉
1
2
A.

We will need the following facts that we do not prove:

Proposition 1.1. (1) Let A ∈ H+
n .Then there exists R ∈ H+

n such that R2 = A. The matrix R is
called a square root of A.

(2) Let A ∈ H+
n . Then 0 ≤ A ≤ Tr (A) I.

(3) Let A ∈ H++
n . Then there exist 0 < λ ≤ Λ such that λI ≤ A ≤ ΛI.

1.2. Functions and Kähler geometry in open sets of Cn. We work with the usual topology
on Cn, induced by the usual Euclidean norm, that we note |·|. For p ∈ Cn and r > 0, we note
S(p, r), respectively B(p, r) the Euclidean sphere, respectively the Euclidean open ball, of center p
and radius r.
Let U ⊂ Cn be a non-empty open set, and let z ∈ U . Let k ∈ N, and let ε ∈ [0, 1].

1.2.1. Functions. We denote by Ck+ε (U) the set of real valued functions having derivatives up to
order k and such that all these derivatives are Hölder of exponent ε, and by Cω (U) the set of
analytic functions in U . We simply note Ck (U) := Ck+0 (U).
A function f ∈ Ck+ε (U) is in Ck+ε

(
U
)

if all its derivatives up to order k extend continuously to

the closure U of U .
If f ∈ Ck+ε (U) and (i1, j1, . . . , in, jn) ∈ N2n satisfies s :=

∑n
l=1(il + jl) ≤ k, we denote by

fi1j1...injn :=
∂sf

∂zi11 ∂z1
j1 . . . ∂zinn ∂znjn

. In particular, this notation is consistent with the notation of

complex matrices introduced above. Also, observe that if f ∈ C1 (U), then for every 1 ≤ j ≤ n, we
have fj̄ = fj .

A function f ∈ C2 (U) is plurisubharmonic at z, respectively strictly plurisubharmonic at z, if
3



(
fij̄(z)

)
≥ 0, respectively

(
fij̄(z)

)
> 0. A function f ∈ C2 (U) is (strictly) plurisubharmonic in U if

it is (strictly) plurisubharmonic at every point of U .
We will need the following fact that we do not prove:

Proposition 1.2. Let U ⊂ Cn be an open bounded set and let f ∈ C2
(
U
)

be a strictly plurisub-

harmonic function. Then there exist constants 0 < λ ≤ Λ such that λI ≤
(
fij̄
)
≤ ΛI on U .

1.2.2. Kähler metrics. A Kähler metric in U is an element of C (U,H++
n ), that is, a matrix

(
gij̄
)

with continuous coefficients in U and such that for every z ∈ U ,
(
gij̄(z)

)
∈ H++

n .

We say that a Kähler metric
(
gij̄
)

is induced by a function u ∈ C2 (U), called a (Kähler) potential

for
(
gij̄
)
, if
(
uij̄
)

=
(
gij̄
)

in U .

If v = (vi) ∈ Cn, w = (wj) ∈ Cn, f, g ∈ C2 (U) and g is a Kähler potential in U , we define the
following quantities:
• 〈v;w〉g := 〈v;w〉(gij̄) = gij̄viwj : the scalar product of v and w, for the metric

(
gij̄
)
.

• |v|g := 〈v; v〉
1
2
g : the norm of v for

(
gij̄
)
.

• Ric(g) := −Log
(
Det

(
gij̄
))

: the Ricci form of
(
gij̄
)
.

• |∇f |g := |(fi)|(gij̄) =
(
gij̄fifj̄

) 1
2
: the norm of the complex gradient of f for

(
gij̄
)
.

• ∆gf := Tr
((
gij̄
) (
fij̄
))

= gij̄fjī: the Laplacian of f for
(
gij̄
)
.

Moreover, if g ∈ C4 (U) and v, w 6= 0, we also define:

• ∀1 ≤ i, j, k, l ≤ n, Rij̄kl̄(g) := −gij̄kl̄ +
∑

1≤p,q≤n
gikp̄g

p̄qgqj̄l̄: the curvature coefficients of
(
gij̄
)
.

• Bisg(v, w) :=
Rij̄kl̄(g)vivjwkwl

|v|2g|w|2g
: the holomorphic bisectional curvature of

(
gij̄
)
, between direc-

tions v and w.
• Hg(v) := Bisg(v, v): the holomorphic sectional curvature of

(
gij̄
)
, in the direction v.

If needed, we will specify the point z at which these quantities are computed by using the following
notations: 〈v;w〉g,z, Ric(g)(z), |∇f |g,z, ∆gf(z), Rij̄kl̄(g)(z), Bisg,z(v, w), etc.

In the special case of the usual metric on Cn, that is to say g̃ = |·|2 (or, equivalently,
(
g̃ij̄
)

= I), we
simply note 〈v;w〉, respectively |∇f |, instead of 〈v;w〉g̃, respectively |∇f |g̃. We proceed likewise
with the other notations.
Recall that the metric induces a distance function, that we denote by dg. We say that the metric
is complete if the space (U, dg) is complete.
We say that a Kähler metric induced by a potential g ∈ C4 (U) is Kähler-Einstein if there exists
λ ∈ R such that

(
Ric(g)ij̄

)
= λ

(
gij̄
)
. We point out that in this paper, all the involved Kähler-

Einstein metrics satisfy
(
Ric(g)ij̄

)
= −(n+ 1)

(
gij̄
)
.

Note that by definition every strictly plurisubharmonic function in U induces a Kähler potential
in U . There is another way to construct Kähler potentials from strictly plurisubharmonic negative
functions in U :

Proposition 1.3. Let ψ ∈ C2 (U) be a negative strictly plurisubharmonic function. Set g :=
−Log (−ψ). Then g is a Kähler potential in U , and the following formulas hold in U :

(−ψ)
(
gij̄
)

=
(
ψij̄
)

+
(
ψiψj̄
−ψ

)
,(4) (

gij̄
)

= (−ψ)
(
ψij̄
)
− (−ψ)

(ψij̄)(ψiψj̄)(ψij̄)
−ψ+|∇ψ|2ψ

.(5)
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Proof of Proposition 1.3. The function g is well defined and of class C2 in U by construction, and
formula (4) directly comes from the chain rule.

Let R be a square root of
(
ψij̄
)
. Then R is invertible because Det (R)2 = Det

(
ψij̄
)
6= 0. Set

B := R−1

(
ψiψj̄
−ψ

)
R−1 and A := (−ψ)R−1

(
gij̄
)
R−1 = I + B. Since the rank of B is 1, we have

B2 = Tr (B)B. Since Tr (B) =
|∇ψ|2ψ
−ψ

=
ψij̄ψiψj̄
−ψ

≥ 0 > −1, we can do the following computation:

A

(
I − B

1 + Tr (B)

)
= I +

(
−1

1 + Tr(B)
+ 1− Tr(B)

1 + Tr(B)

)
B = I,

and likewise we have

(
I − B

1 + Tr (B)

)
A = I. Hence A is invertible, and its inverse is A−1 =(

I − B

1 + Tr (B)

)
= I −R−1

(
ψiψj̄

)
−ψ + |∇ψ|2ψ

R−1. Therefore we obtain the formula (5):

(
gij̄
)

= (−ψ)R−1A−1R−1 = (−ψ)
(
ψij̄
)
− (−ψ)

(
ψij̄
) (
ψiψj̄

) (
ψij̄
)

−ψ + |∇ψ|2ψ
.

�

Let Ω ⊂ Cn be a domain, let k ≥ 1 be an integer, and let q ∈ ∂Ω. We say that ∂Ω is of class Ck in
a neighborhood of q if there exists a defining function of class Ck of Ω in a neighborhood of q, that
is, an open set V ⊂ Cn containing q, and a function ψ ∈ Ck (V ) satisfying Ω ∩ V = {ψ < 0} and
∀z ∈ ∂Ω ∩ V = {ψ = 0}, |∇ψ|z 6= 0. If k ≥ 2 and ∂Ω is of class Ck in a neighborhood of q, we say
that ∂Ω is strictly pseudoconvex in a neighborhood of q if there exists a bounded open set V ⊂ Cn
containing q, and a function ψ ∈ Ck (V ) satisfying Ω ∩ V = {ψ < 0}, ∀z ∈ ∂Ω ∩ V = {ψ = 0},
|∇ψ|z 6= 0 and

(
ψij̄
)
> 0 in V . The function ψ is a strictly plurisubharmonic defining function for

∂Ω ∩ V .
The two following results will be needed in Sections 2 and 3:

Proposition 1.4. Let Ω ⊂ Cn be a domain, let n ≥ 2 be an integer, and let q ∈ ∂Ω. Assume that
there exists a neighborhood of q on which ∂Ω is of class C1. Let V ⊂ Cn be an open set containing q,
let ψ ∈ C1 (V ) be a defining function for ∂Ω∩V . Let U ⊂ U ⊂ V be a bounded open set containing
q. Then, there exists a constant ε > 0 such that inf

U∩{|ψ|≤ε}
|∇ψ| > 0.

Proof of Proposition 1.4. We argue by contradiction. Then there exists a sequence (zi)i∈N ∈ U
N

such that lim
i→+∞

ψ(zi) = lim
i→+∞

|∇ψ|zi = 0. Since U is compact, we can assume, up to extracting

a subsequence, that (zi)i∈N converges in U . Denote by z its limit. By continuity of ψ at z, the
condition lim

i→+∞
ψ (zi) = 0 implies ψ(z) = 0, which means that z ∈ ∂Ω ∩ U ⊂ ∂Ω ∩ V . On the

one hand, it implies that |∇ψ|z > 0 because ψ is a defining function for ∂Ω ∩ V . One the other
hand, the continuity of the function |∇ψ| at z implies that |∇ψ|z = lim

i→+∞
|∇ψ|zi = 0. Hence the

contradiction. �

Proposition 1.5. Let Ω ⊂ Cn be a domain, and q ∈ ∂Ω. Assume that there exists a neighborhood of
q on which ∂Ω is strictly pseudoconvex and of class C2. Let V ⊂ Cn be a bounded domain containing
q, ψ ∈ C2 (V ) be a strictly plurisubharmonic defining function for ∂Ω ∩ V . Let g := −Log (−ψ).

5



Then for every bounded open set U ⊂ U ⊂ V there exist 0 < λ ≤ Λ such that the following
inequalities hold on Ω ∩ U :

(6) λ
ψ2

−ψ + |∇ψ|2
I ≤

(
gij̄
)
≤ Λ (−ψ) I.

Proof of Proposition 1.5. We use formula (5) and notations of Proposition 1.3 with U replaced with
Ω ∩ U . We also use the notations introduced in the proof of Proposition 1.3.

According to Proposition 1.1, we have
B

1 + Tr(B)
∈ H+

n , hence 0 ≤ B

1 + Tr(B)
≤ Tr(B)

1 + Tr(B)
I.

Since A−1 = I − B

1 + Tr(B)
, we deduce

1

1 + Tr(B)
I =

(
1− Tr(B)

1 + Tr(B)

)
I ≤ A−1 ≤ I. Since

−ψ > 0, we deduce the following:

−ψ
−ψ + |∇ψ|2ψ

I ≤ 1

−ψ
R
(
gij̄
)
R ≤ I,

ψ2

−ψ + |∇ψ|2ψ

(
ψij̄
)
≤
(
gij̄
)
≤ (−ψ)

(
ψij̄
)
.

Moreover, since
(
ψij̄
)

is continuous on the compact set U , there exist 0 < λ ≤ Λ such that

λI ≤
(
ψij̄
)
≤ ΛI on U . Hence:

λ
ψ2

−ψ + |∇ψ|2ψ
I ≤

(
gij̄
)
≤ Λ (−ψ) I.

�

2. Construction of local asymptotically Kähler-Einstein metrics

Let V be an open set. Let k ≥ 2 be an integer. If ψ ∈ Ck(V ), its Fefferman functional is defined
by

J(ψ) := (−1)nDet

(
ψ (ψj̄)

t(ψi) (ψij̄)

)
.

Then J(ψ) ∈ Ck−2(V ). We observe that

J(ψ) = ψn+1Det
((
−Log(ψ)ij̄

))
on {ψ > 0},

and that the function

F := Log (J(ψ)) = −Ric (−Log(ψ))− (−(n+ 1)Log(ψ))

is well defined on {ψ > 0} ∩ {Det
(
−Log(ψ)ij̄

)
> 0}. Especially, if

(
−Log(ψ)ij̄

)
> 0, F is well

defined and measures the defect of (−Log(ψ)) to be the potential of a Kähler-Einstein metric: the
metric

(
−Log(ψ)ij̄

)
is Kähler-Einstein if and only if J (ψ) = 1.

Let Ω ⊂ Cn be a domain and q ∈ ∂Ω. Assume that there exists a neighborhood V of q such that
∂Ω ∩ V is strictly pseudoconvex and of class Ck with k ≥ 2n + 4. Without loss of generality, we
may assume that V is a bounded domain. We describe Fefferman’s iterating process in V .
Let ϕ ∈ Ck(V ) be a strictly plurisubharmonic defining function for ∂Ω∩V . Let U0 := {J(−ϕ) > 0}.
Since ϕ ∈ C2 (V ) and J(−ϕ) > 0 on ∂Ω∩ V , the set U0 contains ∂Ω∩ V and is open. Consider the
following constructions on U0:

ϕ(1) :=
ϕ

J(−ϕ)
1

n+1

and, for 2 ≤ l ≤ n+ 1, ϕ(l) := ϕ(l−1)

(
1 +

1− J(−ϕ(l−1))

l(n+ 2− l)

)
.

6



Then, for every 1 ≤ l ≤ n + 1, ϕ(l) is well defined on U0 and ϕ(l) ∈ Ck−2l(U0). Moreover,

according to the computations done by C. Fefferman in [5], we have
J
(
−ϕ(l)

)
− 1

(−ϕ)l
∈ Ck−2l−2 (U0).

This ensures that for every integer 1 ≤ l ≤ n + 1, the sets Ul :=

{∣∣∣1− J(−ϕ(l))
∣∣∣ < 1

2

}
are

open and contain ∂Ω ∩ V . Consequently, there exist positive constants r and R such that the set
U :=

(
∩n+1
l=0 Ul

)
∩((B(q,R) ∩ ∂Ω) +B(0, r)) is open, contains q, satisfies U ⊂ V , and on which every

ϕ(l) is a Ck−2l defining function for ∂Ω∩U . Then according to Proposition 1.4, we can assume (by

taking smaller r and R if necessary) that min
1≤l≤n+1

inf
z∈U
|∇ϕ(l)|z > 0 and also inf

z∈U
|∇ϕ|z > 0.

Since ∂Ω∩ V is strictly pseudoconvex, we can (by changing ϕ(l) to ϕ(l)
(
1 + tϕ(l)

)
with t > 0 small

and taking smaller r and R if necessary) assume that each ϕ(l) is strictly plurisubharmonic on U .
Finally, the above construction gives, for every 1 ≤ l ≤ n+ 1:

Log
(
J
(
−ϕ(l)

))
(−ϕ)l

=
Log

(
1 +

(
J
(
−ϕ(l)

)
− 1
))

(−ϕ)l

=
J
(
−ϕ(l)

)
− 1

(−ϕ)l

(
1 +

+∞∑
m=1

(−1)m

m+ 1

(
J
(
−ϕ(l)

)
− 1
)m)

∈ Ck−2l−2
(
U
)
.

Let us summarize all these facts:

Proposition 2.1. Let Ω ⊂ Cn be a domain and let q ∈ ∂Ω. Assume that there exists a neighborhood
V of q such that ∂Ω∩V is strictly pseudoconvex and of class Ck with k ≥ 2n+ 4. Then there exists
a bounded domain U containing q, and a collection of functions

(
ϕ(l)
)

1≤l≤n+1
satisfying, for every

1 ≤ l ≤ n+ 1:

(1) ϕ(l) ∈ Ck−2l
(
U
)
,

(2) Ω ∩ U = {ϕ(l) < 0} ∩ U ,

(3) inf
z∈U
|∇ϕ(l)|z > 0,

(4) ϕ(l) is strictly plurisubharmonic on U ,

(5)
∣∣1− J (−ϕ(l)

)∣∣ ≤ 1
2 on U ,

(6)
J(−ϕ(l))−1

(−ϕ)l
∈ Ck−2l−2

(
U
)
,

(7) ϕ(l)

ϕ ∈ C
k−2l

(
U
)

and is positive on U ,

(8)
Log(J(−ϕ(l)))

(−ϕ)l
∈ Ck−2l−2

(
U
)
.

Moreover, we have inf
z∈U
|∇ϕ|z > 0.

Remark 2.2. • Especially, conditions (1) to (4) imply that for every integer 1 ≤ l ≤ n + 1, the

function ϕ(l) is a strictly plurisubharmonic defining function of ∂Ω ∩ U of class Ck−2l.

• If k ≥ 3n + 5, then all the functions ϕ(l),
J
(
−ϕ(l)

)
− 1

(−ϕ)l
,
ϕ(l)

ϕ
and

Log
(
J
(
−ϕ(l)

))
(−ϕ)l

belong to

Cn+1
(
U
)
. If k ≥ 3n+6, then all the aforementionned functions belong to Cn+2

(
U
)
⊂ ∩0≤δ≤1Cn+1+δ

(
U
)
.

• The metrics
(
−Log

(
−ϕ(l)

ij̄

))
are called “asymptotically Kähler-Einstein” on ∂Ω ∩U , since they
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satisfy the condition J
(
−ϕ(l)

)
(z) −→

z→∂Ω∩U
1 (recall that

(
−Log

(
−ϕ(l)

ij̄

))
is Kähler-Einstein on

Ω ∩ U if and only if J
(
−ϕ(l)

)
= 1 on Ω ∩ U).

3. Local boundary regularity

In this Section, we fix an integer n ≥ 2, a domain Ω ⊂ Cn and a point q ∈ ∂Ω. We assume that
Ω satisfies the hypothesis of Theorem 1. Namely, there exists a complete Kähler-Einstein metric
induced by a potential w′ ∈ Cω (Ω) that satisfies conditions (1) and (2), and there exists a neighbor-
hood V of q such that ∂Ω∩V is strictly pseudoconvex and of class Ck with k ≥ max (2n+ 9, 3n+ 6).
Thus, we can apply Proposition 2.1, and use the same notations introduced therein.

One of the main ideas to prove Theorem 1 is to compare the complete Kähler-Einstein metric
(
w′
ij̄

)
to the aymptotically Kähler-Einstein metrics induced by the strictly plurisubharmonic defining
functions

(
ϕ(l)
)

1≤l≤n+1
as follows.

Let 1 ≤ l ≤ n+ 1, and set

η :=
ϕ(l)

ϕ
, w := −Log

(
−ϕ(l)

)
= −Log (−ηϕ) , F := Log

(
J
(
−ϕ(l)

))
= Log (J (−ηϕ)) .

Then, according to points (5), (6), (7), (8) of Proposition 2.1, η ∈ Ck−2l
(
U
)
, w ∈ Ck−2l (Ω ∩ U),

F ∈ Ck−2l−2
(
U
)
, F

(−ϕ)l
∈ Ck−2l−2

(
U
)

and w and F are related on Ω ∩ U by the condition

(7) Det
(
wij̄
)

= e(n+1)weF .

Let u := w′ − w. Then, on Ω ∩ U , u solves the Monge-Ampère equation

(8) Det
(
wij̄ + uij̄

)
= e(n+1)u−FDet

(
wij̄
)
.

Since w′ is real analytic in Ω and w ∈ Ck−2l (Ω ∩ U), then u ∈ Ck−2l (Ω ∩ U) .
So, for each integer 1 ≤ l ≤ n + 1, we have an asymptotically Kähler-Einstein metric

(
wij̄
)

on
∂Ω ∩ U , for which the defect of being Kähler-Einstein is encoded in the function F , and we study

the difference between this metric and the Kähler-Einstein metric
(
w′
ij̄

)
on Ω∩U . More precisely,

we study the boundary regularity of the difference of their potentials, namely the function u.

3.1. C1 estimate and consequences. Whether global (see [3]) or local (see [1]), the study of the
boundary behavior of u relies on its gradient estimate, which relies on the comparison between

the metrics
(
w′
ij̄

)
and

(
wij̄
)

(see condition (10)). The gradient estimate enables to deduce the

boundary behavior of u, and then the boundary behavior of the higher order derivatives of u by

use of Schauder theory. All these estimates depend on the regularity of the gradient of
F

(−ϕ)l
, for

which we have the following result:

Proposition 3.1. Under the hypothesis of Theorem 1, and with the notations introduced at the

beginning of Section 3, we have
|∇F |2w

(−ϕ)2l−1
∈ Ck−2l−3

(
Ω ∩ U

)
. In particular, there exists a positive

constant c∇, such that the following holds on Ω ∩ U :

(9) |∇F |2w ≤ c∇(−ϕ)2l−1.

Proof of Proposition 3.1. Let 1 ≤ i, j ≤ n. Then, according to point (8) of Proposition 2.1,
Fi

(−ϕ)l−1
= l

Fϕi
(−ϕ)l

+ ϕ

(
F

(−ϕ)l

)
i

∈ Ck−2l−3
(
U
)
, and according to equation (5) as well as point

8



(7) of Proposition 2.1,

wij̄

−ϕ
=
ψ

ϕ

wij̄

−ψ
=
ψ

ϕ

ψij̄ +

((
ψij̄
) (
ψiψj̄

) (
ψij̄
))

ij

−ψ + |∇ψ|2ψ

 ∈ Ck−2l−2
(
Ω ∩ U

)
,

where ψ := ϕ(l).

Hence
|∇F |2w

(−ϕ)2l−1
=
wij̄

−ϕ
Fi

(−ϕ)l−1

Fj̄
(−ϕ)l−1

∈ Ck−2l−3
(
Ω ∩ U

)
. �

We improve the gradient estimate obtained in [1] by using the computations of [3] in a different
way. Then we proceed exactly as in [1] to obtain the estimates of the other derivatives of u.

Proposition 3.2. Under the hypothesis of Theorem 1, and with the notations indroduced at the
beginning of Section 3 and in Proposition 3.1, for every γ ∈]0; min(2n + 1, 2l − 1)[, there exist
positive constants c and ε such that |∇u|2w ≤ c (−ϕ)γ on Ω ∩ U ∩ {|ϕ| < ε}.

Remark 3.3. • Proposition 3.2 improves the results obtained in [1] in the sense that ∂Ω∩U is not
required to be “nice”.
• Proposition 3.2 is a local version of Proposition 6.4 in [3].

• The proof of Proposition 3.2 will use the fact that |∇u|2w ∈ C2 (Ω ∩ U) and is bounded from above,
which is true as long as k ≥ 2n+ 5 (see page 297 of [1] for further details).
• It will also use the fact that Lemma II in [1] actually works for C2 functions that are bounded
below (see Lemma 3.4 for a version that fits to our situation).

Proof of Proposition 3.2. The strategy of the proof of Proposition 6.4 in [3] is first to show that
there exists δ0 > 0 such that for every 0 < α < n, 0 ≤ β < n + 1 and 0 < δ ≤ δ0 satisfying
α + β + δ ≤ 2l − 1, there exist positive constants ε and c such that the following inequality holds
on Ω ∩ {|ϕ| ≤ ε}:

∆w′

(
|∇u|2w
(−ϕ)β

− c(−ϕ)α
)
>
n+ 1 + nβ − β2

2

(
|∇u|2w
(−ϕ)β

− c(−ϕ)α
)
,

and then to apply the generalized maximum principle and choose suitable constants α and β to get
the conclusion.
In our case, we wish to follow the same strategy when we restrict our considerations to Ω ∩ U .
We focus our attention on explaining the necessary modifications in the proof of Proposition 6.4
in [3], keeping in mind that we look for local estimates in a neighborhood of ∂Ω ∩ U . For that
purpose, we first explain the dependence of the constants c1, . . . , c9 with respect to the local data
in order to obtain conditions (15) and (16). Then we use formulas (15) and (16) to complete the
proof. For each constant, we refer precisely to the condition in [3] where it is defined.
In the sequel, 0 < α < n and 0 ≤ β < n+ 1.
• We apply the first Proposition of page 297 in [1] to derive the existence of positive constants ε
and δ0 such that we have the following on Ω ∩ U ∩ {|ϕ| ≤ ε}:

(10)
(
w′ij̄

)
=
(

1 +O
(

(−ϕ)δ0
)) (

wij̄
)
,

which means that there exists a positive constant c′1 such that:(
1− c′1 (−ϕ)δ0

) (
wij̄
)
≤
(
w′ij̄

)
≤
(

1 + c′1 (−ϕ)δ0
) (
wij̄
)
.

Hence by inverting it we obtain:(
1 + c′1 (−ϕ)δ0

)−1 (
wij̄
)
≤
(
w′ij̄

)
≤
(

1− c′1 (−ϕ)δ0
)−1 (

wij̄
)
.
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Since
1

1− x
= 1 +

x

1− x
≤ 1 + 2x if x ∈

[
0, 1

2

]
, we have

1

1− c′1 (−ϕ)δ0
≤ 1 + 2c′1 (−ϕ)δ0 on the set

Ω ∩ U ∩ {|ϕ| ≤ ε} whenever ε ≤
(

1
2c′1

) 1
δ0 .

Moreover, since
1

1 + x
≥ 1 − x ≥ 1 − 2x for every x ∈

[
0, 1

2

]
, we also have

1

1 + c′1 (−ϕ)δ0
≥

1 − 2c′1 (−ϕ)δ0 on Ω ∩ U ∩ {|ϕ| ≤ ε}. Thus, there exist positive constants ε and c1 such that we
have, on Ω ∩ U ∩ {|ϕ| ≤ ε}:(

1− c1 (−ϕ)δ0
)(

wij̄
)
≤
(
w′ij̄

)
≤
(

1 + c1 (−ϕ)δ0
)(

wij̄
)
.

We also take ε ≤ 1 so that for every δ ≥ 0 we have |ϕ|δ ≤ 1. Consequently, we deduce the
existence of constants ε ∈]0, 1], δ0, c1 > 0 such that for every 0 ≤ δ ≤ δ0, we have the following on
Ω ∩ U ∩ {|ϕ| ≤ ε}:

(11)
(

1− c1 |ϕ|δ
)(

wij̄
)
≤
(
w′ij̄

)
≤
(

1 + c1 |ϕ|δ
)(

wij̄
)
.

This is the same as condition (6.18) in [3], except that it holds in a neighborhood of ∂Ω∩U in our
situation (in [3], due to the global assumption of strict pseudoconvexity of ∂Ω, the inequalities in
(11) are valid in a neighborhood of ∂Ω).
From now on, we let δ ∈]0, δ0].
• The constant c2 (see condition (6.19)) depends only on c1.
• The constant c3 (see conditions (6.22) and (6.23)) depends only on c1. Especially we have the
following on Ω ∩ U ∩ {|ϕ| ≤ ε}:

1− c3 (−ϕ)δ ≤
|∇ϕ|2w′
ϕ2

≤ 1 + c3 (−ϕ)δ .

In our situation we also assume that ε ≤
(

1
2c3

) 1
δ
, so that we have the following on Ω∩U ∩{|ϕ| ≤ ε}:

(12)
1

2
≤ 1− c3 (−ϕ)δ ≤

|∇ϕ|2w′
ϕ2

≤ 1 + c3 (−ϕ)δ .

• Set c4 := 2nc3 (see condition (6.24)).
• According to inequality (6.25), we have, on Ω ∩ U ∩ {|ϕ| ≤ ε}:

−∆w′(−ϕ)α ≥ α(−ϕ)α
[
(n− α)

|∇ϕ|2w′
ϕ2

− c4(−ϕ)δ
]
.

If we assume that ε <
(
n−α
5c4

) 1
δ
, then we derive the inequality (n−α)

2 |∇ϕ|2w′ − c4(−ϕ)δ+2 > 0 on

Ω ∩ U ∩ {|ϕ| ≤ ε}, which leads to the following:

(13) −∆w′(−ϕ)α >
α(n− α)

2

|∇ϕ|2w′
ϕ2

(−ϕ)α.

This is the same as inequality (6.26) in [3], but with c5 = 0.
• Set c6 := βc4 + c2 (see condition (6.28)).
• The constant c7 depends only on c6 (see condition (6.29)).
• The constant c8 depends only on c3 and c7 (see condition (6.30)).
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• If ε <
(
n+1+nβ−β2

2c8

) 1
δ
, then we have, on Ω ∩ U ∩ {|ϕ| ≤ ε}:

n+ 1 + nβ − β2

2
− c8(−ϕ)δ > 0,

so that in our case inequality (6.31) becomes the following:

(14) ∆w′

(
|∇u|2w
(−ϕ)β

)
>
n+ 1 + nβ − β2

2

|∇u|2w
(−ϕ)β

− |∇F |2w(−ϕ)−(δ+β).

Combining (13) and (14), we obtain, on Ω ∩ U ∩ {|ϕ| ≤ ε} and for every c > 0:

∆w′

(
|∇u|2w
(−ϕ)β

− c(−ϕ)α
)
>
n+ 1 + nβ − β2

2

|∇u|2w
(−ϕ)β

− |∇F |2w(−ϕ)−(δ+β) + c
α(n− α)

2

|∇ϕ|2w′
ϕ2

(−ϕ)α.

This is exactly the same as inequality (6.31) in [3], but with c9 = 0.
• Using condition (9) (Proposition 3.1), we observe that |∇F |2w ≤ c∇(−ϕ)α+δ+β whenever |ϕ| ≤ 1
and α+ δ + β ≤ 2l − 1. Therefore, according to (12), the following holds on Ω ∩ U ∩ {|ϕ| ≤ ε}:

−|∇F |2w(−ϕ)−(δ+β) + c
α(n− α)

2

|∇ϕ|2w′
ϕ2

(−ϕ)α ≥ −c∇(−ϕ)α + c
α(n− α)

2

|∇ϕ|2w′
ϕ2

(−ϕ)α

≥
(
−c∇ + c

α(n− α)

4

)
(−ϕ)α.

In particular if we take c > 4c∇
α(n−α) the right-hand side is non-negative. This is exactly what is

derived from relation (6.32) in [3] (see the explanation below relation (6.33) in [3]), except that in
our case it holds on Ω ∩ U ∩ {|ϕ| ≤ ε}.

For short, we have proved that there exists δ0 > 0 such that for every 0 < α < n, 0 ≤ β < n+ 1
and 0 < δ ≤ δ0 satisfying α+ β + δ ≤ 2l− 1, there exist ε ∈]0, 1] and c > 0 such that the following
inequalities hold on Ω ∩ U ∩ {|ϕ| ≤ ε}:

(15) ∆w′

(
|∇u|2w
(−ϕ)β

− c(−ϕ)α
)
> 0,

(16) ∆w′

(
|∇u|2w
(−ϕ)β

− c(−ϕ)α
)
>
n+ 1 + nβ − β2

2

(
|∇u|2w
(−ϕ)β

− c(−ϕ)α
)
.

Inequality (15) implies that the function f := |∇u|2w
(−ϕ)β

− c(−ϕ)α cannot achieve its maximum on

Ω∩U ∩{|ϕ| ≤ ε}, provided it is bounded from above on the set Dε := Ω∩U ∩{|ϕ| < ε}. Hence we
can find a sequence (zi)i∈N ∈ DN

ε such that lim
i→+∞

f
(
z′i
)

= sup
Dε

f and dw′ (zi, ∂Dε) −→
z→+∞

+∞. Note

that this implies that there exists a positive number R and an integer i0 ∈ N such that for every
i ≥ i0 we have dw′ (zi, ∂Dε) ≥ R.
The last step to conclude is to apply the local maximum principle due to J. Bland (see Lemma II in
[1]) and use inequation (16). For completeness, we recall the local maximum principle in a version
that fits our situation:

Lemma 3.4. Let Ω ⊂ Cn be a domain. Assume that there exists a Kähler-Einstein metric induced
by a potential w′ on Ω. Let D ⊂ Ω be a domain. Let f ∈ C2 (D) bounded from above. If there exists
a sequence (zi)i∈N ∈ DN such that lim

i→+∞
f
(
z′i
)

= sup
D
f and there exists R > 0 such that for every

integer i, dw′ (zi, ∂D) ≥ R, then there exists an other sequence (z′i)i∈N ∈ D
N such that

lim
i→+∞

f
(
z′i
)

= sup
D
f, lim sup

i→+∞
∆w′f(z′i) ≤ 0.
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We apply Lemma 3.4 to f =
|∇u|2w
(−ϕ)β

− c(−ϕ)α with D = Dε and choose the suitable constants

α, β, δ to conclude. We may argue as follows.

(1) If 2n+ 1 ≤ 2l − 1, we first apply Lemma 3.4 with β = 0, α = n− δ
4 and δ ∈ ]0,min (δ0, 4n)[ to

deduce the existence of constants ε ∈]0, 1] and c > 0 for which we have |∇u|2w − c(−ϕ)n−
δ
4 ≤ 0 on

Ω ∩Dε. Since (−ϕ) < ε ≤ 1 on Ω ∩Dε, this directly implies: |∇u|2w − c(−ϕ)n−
δ
2 ≤ 0 on Ω ∩Dε.

(2) Hence we may apply Lemma 3.4 with α = β = n − δ
2 and δ ∈ ]0,min (δ0, 2n)[ to deduce the

existence of constants ε ∈]0, 1] and c > 0 for which
|∇u|2w

(−ϕ)n−
δ
2

− c(−ϕ)n−
δ
2 ≤ 0 on Ω ∩Dε. Again,

since (−ϕ) < ε ≤ 1 on Ω ∩Dε, this directly implies: |∇u|2w − c(−ϕ)n+1− δ
2 ≤ 0 on Ω ∩Dε.

(3) Hence we may apply once more Lemma 3.4 with β = α+ 1 = n+ 1− δ
2 and δ ∈ ]0,min (δ0, 2n)[

to deduce the existence of c, ε > 0 for which
|∇u|2w

(−ϕ)n+1− δ
2

− c(−ϕ)n−
δ
2 ≤ 0 on Ω ∩Dε. Finally, we

directly deduce that |∇u|2w ≤ c(−ϕ)2n+1−δ on Ω ∩Dε.

(4) If 2l − 1 < 2n + 1, we can proceed likewise: first taking β = 0, α = min

(
n, l − 1

2

)
− δ

8

with δ ∈
]
0,min

(
δ0, 8 min

(
n, l − 1

2

))[
, then considering α = β = min

(
n, l − 1

2

)
− δ

4
with δ ∈]

0,min
(
δ0, 4 min

(
n, l − 1

2

))[
, and finally taking α = β = l − 1

2
− δ

2
with δ ∈ ]0,min (δ0, 2l − 1)[.

In both cases, we obtain the desired conclusion by letting δ tend to 0. Hence the result. �

In the rest of Subsection 3.1, we use Proposition 3.2 first to derive the estimates of u of order 0
(Proposition 3.5), second to derive estimates of higher order (Proposition 3.7), and finally to obtain
a regularity result for ϕe−u (Proposition 3.8).

Proposition 3.5. Under the hypothesis and notations of Proposition 3.2, we have:

(1) For every γ ∈]0,min (2n+ 1, 2l − 1) [, there exist positive constants ε and c such that |∇u| ≤
c (−ϕ)

γ
2
−1 on the set Ω ∩ U ∩ {|ϕ| < ε}. In particular, if γ > 2, one has u ∈ C1

(
Ω ∩ U

)
.

(2) For every z ∈ ∂Ω ∩ U ,
∣∣∣∇e−w′∣∣∣

z
6= 0.

(3) For every γ ∈]0,min(2n + 1, 2l − 1)[ there exist positive constants c and ε such that |u| ≤
c (−ϕ)

γ
2 on Ω ∩ U ∩ {|ϕ| < ε}.

Remark 3.6. • Observe that relation (10) already gives a control on u. Indeed, by applying Log ◦
Det on both sides, using equation (8), and simplifying both sides, we may successively obtain, on
Ω ∩ U ∩ {|ϕ| ≤ ε}:

e(n+1)u−FDet
(
wij̄
)

=
(

1 +O
(
|ϕ|δ0

))n
Det

(
wij̄
)
,

u =
n

n+ 1
Log

(
1 +O

(
|ϕ|δ0

))
+

F

n+ 1
.

Thus, part (3) of Proposition 3.5 only improves the exponent δ0.
• Part (3) of Proposition 3.5 is exactly as in [1], the only difference being that we have it for
every γ ∈ ]0,min (2n+ 1, 2l − 1)[. We prove it a slightly different way by first proving part (1) of
Proposition 3.5.

Proof of Proposition 3.5. (1) We apply Proposition 3.2, and use Proposition 1.5 with ψ = ηϕ,
g = w and U replaced with U ∩ {|ϕ| < ε}. With notations of Propositions 3.2 and 1.5, we have
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c
λ > 0. Moreover we know that −ψ + |∇ψ|2ψ,

(
1
η

)2
∈ C

(
U
)

and are positive functions. Hence they

are bounded from above, so that there exist positive constants M1,M2 such that −ψ+ |∇ψ|2ψ ≤M1

and
(

1
η

)2
≤M2 on U . Thus, we have the following on Ω ∩ U :

|∇u|2 ≤ 1

λ

−ψ + |∇ψ|2ψ
ψ2

|∇u|2g ≤
c

λ
(−ψ + |∇ψ|2ψ)

(
ϕ

ψ

)2

(−ϕ)γ−2 ,

=
c

λ
(−ψ + |∇ψ|2ψ)

(
1

η

)2

(−ϕ)γ−2 ,

≤ c

λ
M1M2 (−ϕ)γ−2 .

Therefore we obtain the conclusion by setting c′ =
√

c
λM1M2. Especially, if γ > 2, then all

the derivatives of u of order 1 extend continuously to Ω ∩ U (and equal 0 on ∂Ω ∩ U), hence
u ∈ C1

(
Ω ∩ U

)
.

(2) To prove part (2) of Proposition 3.5, we let l = n+1. Then by construction e−w
′

= −ϕ(n+1)e−u.
Moreover, according to point (1) of Proposition 2.1 and to point (1) of Proposition 3.5, we have

ϕ(n+1), u ∈ C1
(
Ω ∩ U

)
. Thus e−w

′ ∈ C1
(
Ω ∩ U

)
so that we can differenciate in Ω ∩ U and let z

tend to any point in ∂Ω ∩ U to deduce

lim
z→∂Ω∩U

∣∣∣∇e−w′∣∣∣
z

= lim
z→∂Ω∩U

∣∣∣∇ϕ(n+1)
∣∣∣
z
6= 0,

because of points (2), (3) of Proposition 2.1.
(3) Fix γ ∈ ]0,min (2n+ 1, 2l − 1)[.
Let z ∈ U ∩ {|ϕ| < ε}. Let z0 ∈ ∂Ω ∩ U ∩ {|ϕ| < ε} such that d(z, ∂Ω) = |z − z0| =: s. Set
−→v := z − z0. Define the following function:

f : [0, 1] −→ R
t 7−→ u (z0 + t−→v ) .

According to point (1) of Proposition 3.5 we have f ∈ C1 ([0, s]). Moreover, by the Cauchy-Schwarz
inequality we have |f ′(t)| ≤ |∇u|z0+t−→v |

−→v | = s |∇u|z0+t−→v . From point (1) of Remark 3.6 we also
have u(z0) = 0. Using the fundamental theorem of calculus we deduce:

|u(z)| = |f(1)− f(0)| =
∣∣∣∣∫ 1

0
f ′(t) dt

∣∣∣∣ ,
≤ s

∫ 1

0
|∇u|z0+t−→v dt,

≤ cs
∫ 1

0
(−ϕ (z0 + t−→v ))

γ
2
−1

dt,

≤ cs

inf [0,1] h′(t)

∫ 1

0
h′(t) (h(t))

γ
2
−1 dt,

=
2cs

γ inf [0,1] h′(t)

∫ 1

0

(
h
γ
2

)′
(t) dt,

=
2cs

γ inf [0,1] h′(t)
(−ϕ(z))

γ
2 ,

≤ 2cs

γ inf [0,1] h′(t)
,
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where h := −ϕ (z0 + ·−→v ) ∈ C1 ([0, 1]). According to point (3) of Proposition 2.1 we have inf
[0,1]

h′ > 0.

Hence the result.
�

Proposition 3.7 is exactly as in [1], the only difference being that we have the estimates for every
γ ∈ ]0,min (2n+ 1, 2l − 1)[.

Proposition 3.7. Under the hypothesis and notations of Proposition 3.2, we have: for every γ ∈
]0; min(2n+1, 2l−1)[, there exist positive constants ε and c such that for every integer 0 ≤ p ≤ k−2l,
the following holds on Ω ∩ U ∩ {|ϕ| < ε}:

|Dpu|w ≤ c |ϕ|
γ
2 ,

where |Dpu|w is the length of the p-th covariant derivative of u with respect to
(
wij̄
)
.

Proof of Proposition 3.7. We fix γ ∈ ]0,min (2n+ 1, 2l − 1)[ and follow line by line the proof at the
beginning of page 300 in [1], the only thing that changes being the range in which γ can be choosen.
Namely, we apply Log ◦Det to equation (8) to obtain the following partial differential equation of
second order:

(17) (n+ 1)u− F = hij̄ujī,

where
(
hij̄
)

:=

(∫ 1

0
(w + tu)ij̄ dt

)
∈ Ck−2l−2

(
Ω ∩ U ∩ {|ϕ| < ε},H++

n

)
. We use equation (11)

with δ = 0 to deduce the existence of constants ε, c > 0 such that we have, on Ω ∩ U ∩ {|ϕ| < ε}:
1

c

(
wij̄
)
≤
(
hij̄
)
≤ c

(
wij̄
)
.

Moreover u ∈ Ck−2l (Ω ∩ U ∩ {|ϕ| < ε}), and according to Proposition 2.1 we have F, F
(−ϕ)l

∈

Ck−2l−2
(

Ω ∩ U ∩ {|ϕ| < ε}
)

. We conclude by applying Schauder theory. �

In particular, we deduce the following, exactly as was done in [1]:

Proposition 3.8. Under the notations and hypothesis of Proposition 3.2, for every number γ ∈
]0,min (2n+ 1, 2l − 1) [ and for every 0 ≤ δ < γ

2 −
⌊γ

2

⌋
(where

⌊γ
2

⌋
denotes the integral part of γ

2 ),

we have: u, e−u ∈ Cb
γ
2 c+δ (Ω ∩ U). Moreover, if γ > 2, we have: ϕe−u ∈ Cb

γ
2 c+1+δ

(
Ω ∩ U

)
.

Proof of Proposition 3.8. This is exactly as in [1] (or [3] for a global version). Observe that since
k − 2l ≥ 3n+ 6− 2(n+ 1) ≥ n+ 2 ≥ γ

2 , u ∈ Cn+2 (Ω ∩ U) and ϕ ∈ Cn+2
(
U
)

(see Proposition 2.1),

it is enough to prove the existence of a positive constant ε such that for every 0 ≤ δ < γ
2 −

⌊γ
2

⌋
,

one has u ∈ Cb
γ
2 c+δ

(
Ω ∩ U ∩ {|ϕ| < ε}

)
and ϕe−u ∈ Cb

γ
2 c+1+δ

(
Ω ∩ U ∩ {|ϕ| < ε}

)
.

Let γ ∈]0,min (2n+ 1, 2l − 1) [. According to Proposition 3.7, there exist positive constants ε and
c such that for every integer 0 ≤ p ≤ k − 2l, the following holds on Ω ∩ U ∩ {|ϕ| < ε}:

|Dpu|w ≤ c |ϕ|
γ
2 .

Moreover, according to Proposition 1.5, there exist positive constants λ ≤ Λ such that the following
holds on Ω ∩ U :

λ

(
−ψ
−ϕ

)
−ψ

−ψ + |∇ψ|2
I ≤

(
wij̄

−ϕ

)
≤ Λ

(
−ψ
−ϕ

)
I.

14



Since
(
−ψ
−ϕ

)
∈ C

(
U
)

is a positive function (see Proposition 2.1) and U is a compact set, we deduce

that there exist positive constants M and M ′ such that the following holds on Ω ∩ U :

λM
−ψ

−ψ + |∇ψ|2
I ≤

(
wij̄

−ϕ

)
≤ ΛM ′I.

Together with the expression of |Dpu|w in terms of the derivatives of u and of w, this implies the
existence of positive constants ε and c such that for every integer 0 ≤ p ≤ k − 2l and every multi-
index (i1, j1, · · · , in, jn) ∈ N2n satisfying

∑n
k=1(ik+jk) ≤ p, the following holds on Ω∩U∩{|ϕ| < ε}:∣∣∣ui1j1···injn∣∣∣ , ∣∣∣(e−u)i1j1···injn∣∣∣ ≤ c |ϕ| γ2−p .

• Let p =
⌊γ

2

⌋
. Then the derivatives of u of order p extend continuously to Ω ∩ U ∩ {|ϕ| < ε} (and

are equal to 0 on ∂Ω∩U), and these extensions are Hölder of exponent δ for every 0 ≤ δ < γ
2 −
⌊γ

2

⌋
.

This gives the desired regularity of u and e−u.
• According to the chain rule and the regularity of ϕ and e−u, we have the existence of a constant
c > 0 such that the following holds on Ω ∩ U ∩ {|ϕ| < ε}:∣∣∣(ϕe−u)i1j1···injn − ϕi1j1···injne−u∣∣∣ ≤ c |ϕ| γ2−(p−1) .

Moreover, we have ϕi1j1···injne
−u ∈ C1

(
Ω ∩ U ∩ {|ϕ| < ε}

)
⊂ ∩0≤δ≤1Cδ

(
Ω ∩ U ∩ {|ϕ| < ε}

)
be-

cause we assume that γ
2 > 1. Let p =

⌊γ
2

⌋
+ 1. Then the derivatives of ϕe−u of order p ex-

tend continuously to Ω ∩ U ∩ {|ϕ| < ε} and these extensions are Hölder of exponent δ for every
0 ≤ δ < γ

2 −
⌊γ

2

⌋
. This gives the desired regularity of ϕe−u. �

3.2. Proof of Theorems 1 and 2. We deduce Theorem 1 by using Proposition 3.8:

Proof of Theorem 1. We take l = n + 1. Then, according to Proposition 3.1, the range of γ is

]0, 2n+1[. Let α ∈ ]0, 1[ and take γ := 2n+α so that
⌊γ

2

⌋
= n. We apply Proposition 3.8 to obtain

ϕe−u ∈ Cn+1+δ
(
Ω ∩ U

)
for every 0 ≤ δ < α

2 . Since k − 2(n+ 1) ≥ n+ 2, then
ϕ(n+1)

ϕ
∈ Cn+2

(
U
)

by point (7) of Proposition 2.1. We directly deduce that −w′ = ϕ(n+1)e−u =

(
ϕ(n+1)

ϕ

)
ϕe−u ∈

Cn+1+δ
(
Ω ∩ U

)
. This holds for every 0 ≤ δ < α

2 <
1
2 , hence the result. �

We can also prove Theorem 2:

Proof of Theorem 2. By definition,

Bisg,z(v, w) =

∑
1≤i,j,k,l≤nRij̄kl̄(g)vivjwkwl

|v|2g,z|w|2g,z
,

where the curvature coefficients satisfy the following formula which follows from the definition by
direct calculations:

(18)

Rij̄kl̄(g) = −(gij̄gkl̄ + gil̄gkj̄)

+
1

−ψ

Rij̄kl̄(ψ)− 1

|∇ψ|2ψ − ψ
(
ψik − ψikp̄ψp̄qψq

)︸ ︷︷ ︸
ψ,ik:=

(
ψj̄ l̄ − ψp̄ψp̄qψqj̄l̄

)︸ ︷︷ ︸
ψ,j̄l̄:=

 .

15



Therefore, if v, w ∈ S(0, 1), we have the following on Ω ∩ U :

Bisg(v, w) =−

(
1 +
|〈v;w〉g|2

|v|2g|w|2g

)
︸ ︷︷ ︸

=:T1(v,w)

+
1

−ψ
|v|2ψ|w|2ψ
|v|2g|w|2g

Bisψ(v, w)︸ ︷︷ ︸
=:T2(v,w)

− 1

−ψ
1

|∇ψ|2ψ − ψ
ψ,ikψ,j̄l̄vivjwkwl

|v|2g|w|2g︸ ︷︷ ︸
=:T3(v,w)

.

Using the proof of Proposition 3.8 with γ
2 = n + δ ≥ 2 + δ for some fixed 0 < δ < 1

2 we have the
existence of positive constants c, ε > 0 such that the following holds on Ω∩U ∩ {|ϕ| < ε} for every
1 ≤ i, j, k, l ≤ n: ∣∣ψij̄kl̄∣∣ ≤ c |ϕ|−1+δ ,

and we also have ψ ∈ C3
(

Ω ∩ U ∩ {|ϕ| < ε}
)

.

The rest of the proof consists of estimating |T2(v, w)| and |T3(v, w)|. This will directly follow from
formulas (19) and (20).
• Using the notations of Proposition 1.3 and of the proof of Proposition 1.3, we have 0 ≤ B, hence
I ≤ A, hence

(
ψij̄
)

=: R2 ≤ RAR = (−ψ)(gij̄).
This means that for every v ∈ Cn, the following holds on Ω ∩ U :

|v|2ψ ≤ (−ψ)|v|2g.(19)

• Since Ω ∩ U{|ϕ| < ε} is compact and ψ ∈ C2
(

Ω ∩ U ∩ {|ϕ| < ε}
)

, we also have the existence of

a positive constant 0 < λ− such that the following inequality holds on Ω ∩ U ∩ {|ϕ| < ε}:
(20) λ−I ≤ (ψij̄).

We complete the proof as follows. According to inequality (19), we have the following on Ω ∩ U
for every vectors v, w ∈ S(0, 1):

1

−ψ
|v|2ψ|w|2ψ
|v|2g|w|2g

≤ (−ψ) = (−ϕ)e−u.

Moreover, there exists a constant c > 0 such that for all 1 ≤ i, j, k, l ≤ n we have
∣∣Rij̄kl̄ (ψ)

∣∣ ≤
c |ϕ|δ−1 on Ω∩U∩{|ϕ| < ε}. Hence there exists a positive constant c > 0 such that |T2(v, w)| ≤ c|ϕ|δ
on Ω ∩ U ∩ {|ϕ| < ε}.

Likewise, using inequalities (19) and (20) we obtain, on Ω∩U and for every vectors v, w ∈ S(0, 1):

− 1

−ψ
1

|∇ψ|2ψ − ψ
1

|v|2g|w|2g
≤ (−ψ)

|∇ψ|2ψ − ψ
1

λ2
−

=
(−ϕ)

|∇ψ|2ψ − ψ
e−u

λ2
−
.

Note that (up to taking a smaller positive ε) |∇ψ|2ψ − ψ ∈ C
(

Ω ∩ U ∩ {|ϕ| < ε}
)

and is a positive

function thanks to point (2) of Proposition 3.5. Moreover, there exists a constant c > 0 such that
for all 1 ≤ i, j, k, l ≤ n we have

∣∣ψ,ikψ,j̄l̄∣∣ ≤ c on Ω ∩ U ∩ {|ϕ| < ε}. Hence there exists a positive

constant c > 0 such that |T3(v, w)| ≤ c|ϕ| on Ω ∩ U ∩ {|ϕ| < ε}.
16



Using the triangle inequality, we deduce the existence of positive constants ε, c > 0 such that the
following inequality holds on Ω ∩ U ∩ {|ϕ| < ε}:

sup
v,w∈S(0,1)

|Bisg (v, w) + T1(v, w)| ≤ c|ϕ|δ.

We obtain the result since lim
z→q

ϕ(z) = 0 and δ > 0. �

Remark 3.9. Regardless that n ≥ 2, the asymptotic curvature behavior (3) does not persist if we
remove the hypothesis of strict pseudoconvexity.
For instance, if m ∈ N∗, in the “egg domain” {(z1, z2) ∈ C2/|z1|2 + |z2|2m < 1}, we can easily
deduce from the computations done in [2] that, at q = (1, 0):

∀v, w ∈ S(0, 1), −3 +
3

2m+ 1
≤ lim

t→1−
Bisg,(t,0)(v, w) ≤ − 3

2m+ 1
.

This differs from (3) if m ≥ 2. We also notice that the same approach as in [2] may be adapted to
obtain the same estimates in tube domains {(z1, z2) ∈ C2/Re(z1) +Re(z2)2m < 1} at q = (1, 0) for
m ∈ N∗.

4. Proof of Theorem 4

We recall the definition of the squeezing function of a domain.

Definition 4.1. Let Ω ⊂ Cn be a domain. For z ∈ Ω, let

FΩ
z := {f : Ω −→ B(0, 1)/ f is holomorphic, injective and f(z) = 0}.

The squeezing funtion of Ω at point z is defined by sΩ(z) := sup{r > 0/∃f ∈ FΩ
z , B(0, r) ⊂ f(Ω)}.

In [4] the authors prove that the supremum in Definition 4.1 is achieved.
In the rest of this Section, every domain that appears possesses a unique complete Kähler-

Einstein potential which is solution to Equation (1) with condition (2) and we only work with
this one. Moreover, given a domain D with complete Kähler-Einstein potential g solving Equation
(1) with condition (2), we use the notations 〈·, ·〉Dz , |·|

D
z , Bis

D
z instead of the previous notations

〈·, ·〉g,z, |·|g,z , Bisg,z to avoid confusions.

We need the following Lemma, which is a direct consequence of the proof of Theorem 7.5. in [3]:

Lemma 4.2. Let D ⊂ Cn be a bounded pseudoconvex domain. Let (Dν)ν∈N be an exhaustion of D
by strictly pseudoconvex domains with boundary of class C∞. Then, up to extracting a subsequence
from (Dν)ν∈N, the following holds for every compact set K ⊂ D:

sup
z∈K

sup
v,w∈Cn\{0}

∣∣∣〈v, w〉Dνz − 〈v, w〉Dz ∣∣∣ −→ν→∞ 0,

sup
z∈K

sup
v,w∈Cn\{0}

∣∣BisDνz (v, w)−BisDz (v, w)
∣∣ −→
ν→∞

0.

We prove Theorem 4:

Proof of Theorem 4. Let
(
z(ν)

)
ν∈N ∈ ΩN such that lim

ν→∞
z(ν) = q. For ν ∈ N let f (ν) ∈ FΩ

z(ν) such

that B
(
0, sΩ

(
z(ν)

))
⊂ f (ν)(Ω), let g(ν) :=

(
1− 1

2ν+1

)
f (ν) and set Ων := g(ν) (Ω). Since g(ν) is a

biholomorphic mapping from the pseudoconvex domain Ω to Ων , Ων is a bounded pseudoconvex
domain. By construction of g(ν), for every integer ν ∈ N we have Ων ⊂ B(0, 1). Moreover we have

lim
ν→∞

sΩ
(
z(ν)

)
= 1 hence up to taking a subsequence we may assume that Ων ⊂ Ων+1.

Let ν ∈ N∗. Since Ων is a bounded pseudoconvex domain, there exists an exhaustion of Ων by
17



strictly pseudoconvex domains with smooth boundary, so that according to Lemma 4.2 there exists
a strictly pseudoconvex domain Dν with boundary of class C∞ that satisfies Ων−1 ⊂ Dν ⊂ Ων and

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣

∣∣∣〈v, w〉Ων0

∣∣∣
|v|Ων0 |w|

Ων
0

2

−


∣∣∣〈v, w〉Dν0

∣∣∣
|v|Dν0 |w|

Dν
0

2
∣∣∣∣∣∣∣ ≤

1

2ν
,

sup
v,w∈Cn\{0}

∣∣∣BisΩν
0 (v, w)−BisDν0 (v, w)

∣∣∣ ≤ 1

2ν
.

Moreover, since each g(ν) is holomorphic and injective, the linear map ∂g
(ν)

z(ν) is invertible, hence:

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣∣∣

∣∣∣∣〈∂g(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
〉Ων

0

∣∣∣∣∣∣∣∂g(ν)

z(ν)(v)
∣∣∣Ων
0

∣∣∣∂g(ν)

z(ν)(w)
∣∣∣Ων
0


2

−


∣∣∣∣〈∂g(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
〉Dν

0

∣∣∣∣∣∣∣∂g(ν)

z(ν)(v)
∣∣∣Dν
0

∣∣∣∂g(ν)

z(ν)(w)
∣∣∣Dν
0


2
∣∣∣∣∣∣∣∣∣ ≤

1

2ν
,(21)

sup
v,w∈Cn\{0}

∣∣∣BisΩν
0 (∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w))−BisDν0 (∂g
(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w))
∣∣∣ ≤ 1

2ν
.(22)

Because of the property Ων ⊂ Dν+1 ⊂ Ων+1 for every ν ∈ N, the sequence (Dν)ν∈N is an increasing

sequence of strictly pseudoconvex domains with boundary of class C∞. Since lim
ν→∞

sΩ
(
z(ν)

)
= 1 we

have ∪ν∈NDν = B(0, 1), that is (Dν)ν∈N is an exhaustion of the unit ball by strictly pseudoconvex
domains with boundary of class C∞. Therefore according to Lemma 4.2 we deduce the following
up to extracting a subsequence from (Dν)ν∈N:

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣

∣∣∣〈v, w〉Dν0

∣∣∣
|v|Dν0 |w|

Dν
0

2

−


∣∣∣〈v, w〉B(0,1)

0

∣∣∣
|v|B(0,1)

0 |w|B(0,1)
0

2
∣∣∣∣∣∣∣ −→ν→∞ 0,

sup
v,w∈Cn\{0}

∣∣∣BisDν0 (v, w)−BisB(0,1)
0 (v, w)

∣∣∣ −→
ν→∞

0.

Moreover, since each g(ν) is holomorphic and injective, the linear map ∂g
(ν)

z(ν) is invertible, hence:

sup
v,w∈Cn\{0}

∣∣∣∣∣∣∣∣∣

∣∣∣∣〈∂g(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
〉Dν

0

∣∣∣∣∣∣∣∂g(ν)

z(ν)(v)
∣∣∣Dν
0

∣∣∣∂g(ν)

z(ν)(w)
∣∣∣Dν
0


2

−


∣∣∣∣〈∂g(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
〉B(0,1)

0

∣∣∣∣∣∣∣∂g(ν)

z(ν)(v)
∣∣∣B(0,1)

0

∣∣∣∂g(ν)

z(ν)(w)
∣∣∣B(0,1)

0


2
∣∣∣∣∣∣∣∣∣ −→ν→∞ 0,(23)

supv,w∈Cn\{0}

∣∣∣BisDν0

(
∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
)
−BisB(0,1)

0

(
∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
)∣∣∣ −→

ν→∞
0.(24)
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Using triangle inequality we obtain for every integer ν ∈ N and every vectors v, w ∈ Cn \ {0}:∣∣∣∣∣∣∣BisΩ
z(ν) (v, w) + 1 +


∣∣∣〈v, w〉Ωz(ν)

∣∣∣
|v|Ωz(ν) |w|Ωz(ν)

2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣Bis
Ων
0

(
∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
)

+ 1 +


∣∣∣∣〈∂g(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
〉Ων

0

∣∣∣∣∣∣∣∂g(ν)

z(ν)(v)
∣∣∣Ων
0

∣∣∣∂g(ν)

z(ν)(w)
∣∣∣Ων
0


2
∣∣∣∣∣∣∣∣∣

≤
∣∣∣BisΩν

0

(
∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
)
−BisDν0

(
∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
)∣∣∣

+
∣∣∣BisDν0

(
∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
)
−BisB(0,1)

0

(
∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
)∣∣∣

+

∣∣∣∣∣∣∣∣∣Bis
B(0,1)
0

(
∂g

(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
)

+ 1 +


∣∣∣∣〈∂g(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
〉Dν

0

∣∣∣∣∣∣∣∂g(ν)

z(ν)(v)
∣∣∣Dν
0

∣∣∣∂g(ν)

z(ν)(w)
∣∣∣Dν
0


2
∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

∣∣∣∣〈∂g(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
〉Ων

0

∣∣∣∣∣∣∣∂g(ν)

z(ν)(v)
∣∣∣Ων
0

∣∣∣∂g(ν)

z(ν)(w)
∣∣∣Ων
0


2

−


∣∣∣∣〈∂g(ν)

z(ν)(v), ∂g
(ν)

z(ν)(w)
〉Dν

0

∣∣∣∣∣∣∣∂g(ν)

z(ν)(v)
∣∣∣Dν
0

∣∣∣∂g(ν)

z(ν)(w)
∣∣∣Dν
0


2
∣∣∣∣∣∣∣∣∣

−→
ν→∞

0.

From condition (22), respectively condition (24), condition (21), the first term of the right hand
side, respectively the second, the fourth, tends to 0 as ν tends to +∞. Moreover the Kähler-

Einstein metric we work with satisfies Bis
B(0,1)
0 (v, w) = −1−

( ∣∣∣〈v,w〉B(0,1)
0

∣∣∣
|v|B(0,1)

0 |w|B(0,1)
0

)2

for every vectors

v, w ∈ C2 \ {0}. We combine this remark with condition (23) to deduce that the third term of the
right hand side tends to 0 as ν tends to +∞. Hence the result. �
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