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Abstract

Consider an affine field X : R2 → R, that is a process equal in law to Z(A.t), where
Z is isotropic and A : R2 → R2 is a linear self-adjoint transformation. The field X and
transformation A will be supposed to be respectively Gaussian and definite positive.
Denote 0 < λ := λ2

λ1
6 1 the ratio of the eigenvalues of A, let λ1, λ2 with λ2 6 λ1. This

paper is aimed at testing the null hypothesis “X is isotropic” versus the alternative
“X is affine”. Roughly speaking, this amounts to testing “λ = 1” versus “λ < 1”. By
setting level u in R, this is implemented by the partial observations of process X
through some particular level functionals viewed over a square Tn, which grows to
R2. This leads us to provide estimators for the affinity parameters that are shown to
be almost surely consistent. Their asymptotic normality results provide confidence
intervals for parameters.

This paper offered an important opportunity to study general level functionals
near the level u and for a fixed bounded rectangle T of R2, part of the difficulties
arises from the fact that the topology of level set CT,X(u) = {t ∈ T : X(t) = u} can be
irregular, even if the trajectories of X are regular. A significant part of the paper is
dedicated to show the L2-continuity in the level u of these general functionals.
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1 Introduction

The aim of the present paper is to test the null hypothesis that a given real Gaussian
process X indexed in R2 and living in the class of affine processes is isotropic. Recall
that a process (X(t), t ∈ R2) is said to be an affine process when it is equal in law to
(Z(A.t), t ∈ R2), where Z is isotropic (see definition in Section 2.1, page 15) and A :

R2 → R2 is a linear self-adjoint matrix. We assume that X is partially observed through
some level functionals of its level curve CTn,X(u) for a fixed level u, say CTn,X(u) =

{t ∈ Tn : X(t) = u}. The set Tn is a bounded square of R2, having the following shape
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]−n, n[
2, with n a positive integer. We are interested in the asymptotic as the square Tn

tends to R2. The eigenvector directions v1, v2 forming an orthonormal basis of R2 and
the associated eigenvalues λ1, λ2 (0 < λ2 6 λ1) specify the affinity A. Also 0 < λ 6 1

is defined as the quotient of the eigenvalues, λ := λ2/λ1. Saying that the process X is
isotropic means that λ = 1 (see Adler and Taylor [2, Section 5.7]). A fixed vector of R2

being fixed, say v?, it can always be written in the previous basis as:

v? = cos(θ)v1 + sin(θ)v2.

It is always possible to choose −π2 < θ 6 π
2 (see Figure 1, page 40). We use Wschebor

estimators [32] of the affinity parameters, defined as λ and θ, based on the shape of the
level curve CTn,X(u) corresponding to a given level u. Also, a lot of papers have been
devoted to the study of two-dimensional deformed fields, these later naturally model
spatial and physical phenomena neither isotropic nor stationary. They are obtained by
deforming a fixed isotropic field, say Z : R2 → R, thanks to a deterministic function,
say Υ : R2 → R2, that transforms bijectively the index set. This model of deformed
fields, say XΥ := Z ◦Υ, was introduced by Sampson and Guttorp in [29] but with only a
stationary assumption on Z. Among the papers that focus on the study of these fields, let
us quote Allard et al. [3], Anderes et al. [4], Anderes and Stein [5], Fouedjio et al. [16],
Fournier [17] and Perrin and Senoussi [27]. For example, in [27] the authors studied
the models through the covariance function. In this vein a large number of authors
was interested in estimate deformation Υ thanks to the observation of the deformed
field XΥ. As precursors, Sampson and Guttorp in [29] used several observations on a
sparse grid. Another approach was then to use only one observation of XΥ on a dense
grid, we can cite for example the relevant research of [4], [5] and [16]. Notice that in
[3], the authors focus on the case where the deformation Υ is linear which will also be
our aim. The matrix representation of this deformation being the product of a diagonal
and a rotation matrix, the authors calling the produced effect, “geometric anisotropy".
However, as far as we know, very little research is based on the use of level sets of the
observed process XΥ and except for [32] those quoted previously are not an exception
to the rule. In some cases, we may be interested in the use of the information given by
some functional of level sets of the process rather than given by a simple realization of
the process itself. This is done for example in [17] where the author chose as particular
functional the Euler characteristic of some of excursion sets of the deformed field. The
covariance function of the underlying field Z and the deformation Υ are unknown. The
problem consists in identifying Υ using sparse data, that is through observations of some
excursion sets of XΥ above fixed levels by focusing on the mean Euler characteristic of
the excursion sets for multiple windows of observation. For this doing some assumptions
on Z are required, among others a Gaussian property is asked. The ambition of Fournier
was to identify the deformation Υ. However, it had proved impossible to distinguish
between Υ and another deformation Υ̃ if the random fields XΥ and XΥ̃ have the same
law. Indeed and because of the property of isotropy for process Z, this case occurs when
Υ̃ = ρ ◦Υ + x, where ρ is a rotation of R2 and x a vector of R2. Thus, the author almost
entirely identifies Υ by proposing an identification of the matrix parameter Υ up to
composition with an unknown rotation and with a translation. Also, in a Note [9], Berzin
and Iribarren proposed estimators for the spectral matrix Σ of the second order moments
for a stationary and centred Gaussian bi-parametric random field. The estimators are
defined as functionals over the level curves of the field and are inspired from those given
by Cabaña [12] to estimate the affinity parameters previously defined. Making so, the

used techniques could allow to estimate the ratio
√

λ−
λ+

, where 0 < λ− 6 λ+ are the

eigenvalues of Σ. This last ratio being nothing else that λ = λ2

λ1
when X = Z ◦ A is an

affine process. We see here a posteriori that inference based on one level set by the
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pioneering work of Cabaña could already have been useful at this time for estimate the
affinity parameter λ.

Concerning the tests for the hypotheses of isotropy of general random fields many
methods have been provided. An overview of methods available to test the isotropy
have been very well summarized in Weller et al. [31] but as previously explained, to
my knowledge except the one given by Cabaña [12], none used the observation of the
level curves. The author’s basic idea was to induce a distortion in the domain that
breaks isotropy. This deformation becoming apparent in the length of the level sets.
This last quoted work has deeply inspired the present paper. In [12], according to his
own words, the author defines the class of affine processes as a reasonable alternative
to test the null hypothesis that a given almost surely differentiable stationary real
process with parameter in R2 is isotropic. More precisely Cabaña, considers an affine
process {X(t), t ∈ R2} that is equal in law to {Z(A.t), t ∈ R2}, where Z is isotropic (no
necessarily Gaussian) and A : R2 → R2 is a linear self-adjoint transformation. The angle
θ0 defining the eigenvector directions (cos(θ0), sin(θ0)) and (− sin(θ0), cos(θ0)) and the
repetitive eigenvalues λ1, λ2 specify the affinity A. As explained by the author there
is no loss of generality in assuming λ1 > λ2 > 0 and λ1λ2 = 1. The statistics used are
based on the size and shape of the random surface X, corresponding to a fixed level
u. The regions where X is observed are the indefinitely increasing family of rectangles
R% := {%t : t ∈ R}, % ∈ R+ obtained from a fixed rectangle R ⊂ R2. In order that the level
sets CR%,X(u) := {s ∈ R% : X(s) = u} are curves, some restrictions had to be imposed to
the process X, (see Proposition 2.1 for the discussion about the topic). So, the paths
of X are required to be of class C2 on R2. Also the pair (X(0),∇X(0)) is supposed to
have a joint density pX(0),∇X(0)(x, x

′) in R × R2, bounded for x′ varying in a compact
subset of R2 and x in some neighbourhood of u, ∇X standing for the gradient of X.
The stationary random fields Θ and ‖∇X‖2 are defining the polar representation of ∇X,
that is for t ∈ R2, ∇X(t) = ‖∇X(t)‖2 (cos(Θ(t)), sin(Θ(t))), where ‖·‖2 stands for the
Euclidean norm in R2.
In the first part of his paper, Cabaña proposes estimators of the affinity parameters

defined as k := (1 − λ2)
1
2 with λ :=

λ2

λ1
and θ0, based on the u level curve of X in the

following way. First, he defines for f : ]−π, π]→ R, a bounded and measurable function,
the general line integral

F(f,R) := |R|−1
∫
CR,X(u)

f(Θ(t)) dσ1(t),

where |R| denote the area of R that is σ2(R), and for d = 1, 2, σd denotes the Lebesgue
measure on Rd. (Note that the assumptions made on X ensure that these line integrals
are well defined, see the beginning of the paragraph General level functionals in Section
2.1 page 11 for a commentary about this topic).
Then he defines three statistics obtained as particular line integrals, let

L(R) := |R|−1
∫
CR,X(u)

1 dσ1(t),

C(R) := |R|−1
∫
CR,X(u)

cos(2Θ(t)) dσ1(t),

S(R) := |R|−1
∫
CR,X(u)

sin(2Θ(t)) dσ1(t).

The author states that assumptions made on process X imply that these functionals have
first and second moments, that is, Rice formulas of orders one and two are ensured. Thus,
he proves that the affinity parameters previously defined as k and θ0 can be obtained via
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the straightforward computations of E[L(R)], E[C(R)] and of E[S(R)]. In this way, the
author highlights the fact that

tan(2θ0) = E[S(R)]/E[C(R)] and g(k) =
√

(E[C(R)])2 + (E[S(R)])2/E[L(R)] ,

where g is a known continuously increasing function on [0, 1], such that g(0) = 0.
In view of studying the asymptotic properties of future estimators of k and θ0 that will
naturally result of the two above equalities, the author adds a condition of uniform mixing
for process X that we recall here. The field X is said to be uniformly mixing, when there
exists a decreasing function δ : R+ → R+, limy→+∞ δ(y) = 0, such that if S, S′ are two
Borel sets in R2, d := distance(S, S′), σ(S) is the σ-fields generated by {X(t) : t ∈ S},
then for any events A ∈ σ(S), B ∈ σ(S′), the inequality |P(A/B)− P(A)| 6 δ(d) holds.
Under the uniform mixing condition for X, Iribarren [19] has shown that the asymptotic

distribution of % |R|
1
2 (F(f, %R)−E[F(f,R)]) (as % goes to infinity) is Gaussian with mean

zero and variance σ2
f .

This leads Cabaña to conclude that the estimators θ̂0,% of θ0 and k̂% of k defined as

θ̂0,% := (1/2) arg(S(%R)/C(%R)) and k̂% := g−1(
√
C2(%R) + S2(%R)/L(%R)) are consistent

in probability.
In the second part of his work, by pointing out that an isotropic field X has k = 0 (see
[2, Section 5.7]) and the farther is X from isotropy, the greater is k, then he motivates
two isotropy tests for the null hypotheses “X is isotropic” versus the alternative “X
is affine”, as follows. For the first test that will be truthfully our main focus, he first
establishes that under the null hypothesis, the random variables C(%R), S(%R) and L(%R)

are asymptotically independent and also that E[C(R)] = E[S(R)] = 0. He deduces from
this result that %2 |R| (C2(%R) + S2(%R)) is asymptotically distributed as σ2

0χ
2
2, where σ2

0

denotes the common value of σ2
f when f(θ) is cos(2θ) or sin(2θ). This last result suggests

using the test variable

A%(R) := %2 |R| C
2(%R) + S2(%R)

L2(%R)

to define the rejection region as A%(R) > γ for the null hypothesis “k = 0”. Under k = 0,
the asymptotic distribution of A%(R) is σ2

0 (E[L(R)])−2 χ2
2, since L(%R) converges in prob-

ability to E[L(R)]. Furthermore when k 6= 0, %−2 |R|−1A%(R) converges in probability to
g2(k) > 0, and then A%(R) is stochastically unbounded for % tending to infinity. Thus, the
proposed critical region provides a consistent test for any positive constant γ.
Nevertheless, as previously announced, the author develops a second isotropy test, an
F -test, to remedy the imperfections of the first proposed test. This second test is still
based on the level sets of X and ensues from the following argumentation. In the case
where the null hypothesis completely specifies the distribution of the process, then σ2

0

and E[L(R)] can be evaluated since they only depend on the distribution of the subjacent
process Z and on λ1 that worth 1 since k = 0 and λ1λ2 = 1. Thus, in this case, all
the ingredients are gathered to perform the asymptotic test. But this is rarely actually
the case, since before deciding if the isotropic model is suitable, an estimation of joint
distribution of the process is necessary beforehand. Thus Cabaña developed a one-way
analysis of variance test in the following manner. The rectangle R is still fixed and is
cut into n rectangles of equal area, forming a partition F := {R1, R2, . . . , Rn}. Under
the same uniform mixing condition as supposed in the first part of his paper, the previ-
ous cited work [19] also allows to establish that since R1, R2, . . . , Rn are disjoint then

% |Ri|
1
2 (C(%Ri)− E[C(Ri)]), % |Ri|

1
2 (S(%Ri)− E[S(Ri)]), i = 1, 2, . . . , n are asymptotically

independent. Thus, the analysis of the model

C(%Ri) = E[C(Ri)] + error, S(%Ri) = E[S(Ri)] + error (i = 1, 2, . . . , n)
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suggested the test variable

B%(F) :=
n−1(

∑n
i=1 C(%Ri))2 + n−1(

∑n
i=1 S(%Ri))

2∑n
i=1 C2(%Ri) +

∑n
i=1 S2(%Ri)− n−1(

∑n
i=1 C(%Ri))2 − n−1(

∑n
i=1 S(%Ri))2

=
n(C2(%R) + S2(%R))∑n

i=1(C2(%Ri) + S2(%Ri))− n(C2(%R) + S2(%R))
.

Under the hypothesis “k = 0”, the law of B%(F) tends to that of a F2,2n−2 distribution as
% goes to infinity. When k 6= 0, that is when X is an affine process but not isotropic, the
limit law is a noncentral F -distribution. The critical region is then B%(F) > F2,2n−2(α),
where F2,2n−2(α) is the (1− α)-quantile of the F2,2n−2 distribution.
As ultimate remark Cabaña specifies that the size of the rectangles Ri has to be large
enough to ensure a fair approximation to the limit distribution. Doing so necessarily
limits the value of the number n of rectangles of the partition.

Bearing in mind to estimate the affinity parameters λ and θ defined at the beginning
of this Introduction, by using the level sets of the process XΥ and in the case where the
deformation Υ := A is a linear self-adjoint and definite positive one, our starting point
was an example from [32, Chap 3.6, Paragraph F, page 79].

In this example Wschebor, proposes estimators of the affinity parameters of a process
X indexed in R2 based on the shape of its level curve, corresponding to a given level
u. The author explains as preamble that his work was largely based on Cabaña [12],
although his estimators were different. More precisely, Wschebor considers {X(t), t ∈
R2} a C2-affine process (not necessarily Gaussian) and fixes u a level in R supposed to
be a regular value of X, (see Proposition 2.1 for much details on sufficient hypothesis
ensuring such a property). Moreover, the process X is supposed to be sufficiently regular
in order to verify the one and second order Rice formula. Chapter 3 of the book gives
many details about the topic and on particular hypothesesH1,2 andH2,2. Furthermore the
process X is supposed satisfying a condition of η-dependence. We recall here this notion.
The process (X,∇X) is said to be η-dependent if

∥∥ti − t′j∥∥2
> η > 0 (i = 1, . . . , k, j =

1, . . . , `, k, ` = 1, 2, . . . ), then the random vectors ((X(t1),∇X(t1)), . . . , (X(tk),∇X(tk))),
((X(t′1),∇X(t′1)), . . . , (X(t′`),∇X(t′`))) are independent. Notice that the condition of η-
dependence for X implies that of uniformly mixing required by Cabaña in [12]. The
regions where X is observed are the indefinitely increasing family of rectangles R% :=

{(%1t1, %2t2) : (t1, t2) ∈ R}, if % := (%1, %2), %1, %2 ∈ R+ obtained from a fixed rectangle
R ⊂ R2. By defining the following general functional J (f,R) of the fixed level u by:

J (f,R) := |R|−1
∫
CR,X(u)

f(
∇X(t)

‖∇X(t)‖2
) dσ1(t),

for f : S1 → R or f : S1 → R2, a bounded function where S1 is the boundary of the
unit ball of R2, the author considers two particulars functionals of the level set u. The
first one where f ≡ 1 corresponds to the particular functional being the measure of
dimensional area of the level set by unit of volume, say J (1, R). The second one, say

J (
−→
f?, R), corresponds to the function

−→
f? taking values in R2, that will be evaluated in

the value of the normalized gradient of X and being its value if this one lives in the same
half-plane as that of v?, a fixed unitary vector in R2, and minus this value if not, that is−→
f?(ω) := ω × (1{〈ω,v?〉>0} − 1{〈ω,v?〉<0}) if ω lives in S1. Note that with the notations of
Cabaña, this functional can be expressed as

J (
−→
f?, R) = |R|−1

∫
CR,X(u)

(cos(Θ(t)), sin(Θ(t))) sign(cos(Θ(t)− θ1)) dσ1(t),
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if v? = (cos(θ1), sin(θ1)).
Under the hypotheses that inf(%1, %2)→ +∞, Wschebor showed that the ratio Q(R%) :=
J (
−→
f?,R%)
J (1,R%) tends in probability toward E[J (

−→
f?,R)]

E[J (1,R)] . This convergence enabled him to propose

probability consistent estimators of direction θ, say θ̂% and also of λ, say λ̂%, based on the
observation of the quotient Q(R%). More precisely by using the one order Rice formula,

he proves that the ratio E[J (
−→
f?,R)]

E[J (1,R)] can be written in the fixed direct orthonormal basis

(v?, v??) (see Figure 1 page 40) as F1(λ, θ)v? + F2(λ, θ)v??, while functions Fi, i = 1, 2 are
explicitly known (see equation (5.5) page 41). Thus, his idea was to observe the ratio
Q(R%) in the fixed basis (v?, v??), say (X%, Y%). Following this way Wschebor has shown
that the system of equations {

X% = F1(λ, θ)

Y% = F2(λ, θ)
(1.1)

admits one and only one solution, say (λ̂%, θ̂%) ∈ ]0, 1[× ]−π2 ,
π
2 ] as long as (X%, Y%) is such

that X% 6= 2
π or Y% 6= 0 (see Figure 2 page 42 and Figure 3 page 43). It is important

to note that such an approach furnished estimators (λ̂%, θ̂%) of the affinity parameters
(λ, θ) in an implicitly manner which is not the case for those provided by Cabaña, the
latter not being linked together and can therefore be calculated independently of each
other. Then the author claims that the derived estimators are consistent in probability.
Note that this consistence property is valid under the hypothesis that 0 < λ < 1 and that
−π2 < θ < π

2 , that is for (λ, θ) belonging to an open set. Nothing is suggested by the
author in case where the parameters (λ, θ) belong to the boundary of the set; neither
for the convergence rate of these estimators, nor concerning those of Cabaña’s paper.
Moreover, Wschebor does not suggest any isotropic test since in fact his example was
part of those intended to illustrate the Rice formula and was not there intended to be
dealt with in details.

Thus, our goal was to revisit Wschebor example in [32] by showing among other
things the almost sure convergence of the estimators (λ̂%, θ̂%) toward the true parameters
(λ, θ), by exhibiting their rate of convergence via a central limit theorem, and also by
paying particular attention to the case where the parameters live on the border of their
definition domain. That naturally lead to propose an isotropic test by considering the
ideas developed in Cabaña [12].

Main contribution of the paper In the present work following the way opened by
Cabaña in [12], we still work with a C2-affine process, say {X(t), t ∈ R2}, that is equal
in law to {Z(A.t), t ∈ R2}, where Z is isotropic and A : R2 → R2 is a linear self-adjoint
transformation, additionally supposed to be a positive definite one. We get rid of the
η-dependence hypothesis for the process X requested by Wschebor in [32] and we add
the hypothesis that the subjacent process Z is Gaussian and some technical assumptions
on its covariance. We consider his proposed estimators of the affinity parameters λ
and θ by considering the particular following situation. We select the fixed rectangle
R := ]−1, 1[×]− 1, 1[, the sequence % = (%1, %2) := (n, n) with n positive integer, and we
consider the observation windows Tn := R% = ]−n, n[

2 with n tending toward infinity.
For these observation windows and as previously explained in the second part of the
Introduction we define the following general functional of the fixed level u ∈ R

J
(n)
f (u) :=

1

(2n)2

∫
CTn,X(u)

f(
∇X(t)

‖∇X(t)‖2
) dσ1(t),
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for f : S1 → Rd, d = 1, 2 a bounded continuous function. We observe the ratio Q(Tn) :=
J

(n)
−→
f?

(u)

J
(n)
1 (u)

in the fixed basis (v?, v??), say (Xn, Yn). Considering the system of equations

(1.1), in the same way as proposed by Wschebor we construct in an implicit manner the
estimators (λ̂n, θ̂n) (see Proposition 5.10).

Our main contribution consists, in the one hand, to establish the almost sure consis-
tence of these estimators (Theorem 5.11) in case where 0 < λ < 1 and −π2 < θ < π

2 . We
need to prove Theorem 4.1 stated below using an ergodic theorem (Adler [1, §6.5]) and
Rice formula (see the seminal work of Rice [28]).

Theorem 4.1 For f : S1 → R a continuous and bounded function,

J
(n)
f (u)

a.s.−−−−−→
n→+∞

E[J
(1)
f (u)].

This theorem applied to the particular functions
−→
f? and to the function 1 taking values in

R and identically equal to one implies that,

J
(n)
−→
f?

(u)

J
(n)
1 (u)

= Xnv
? + Ynv

?? a.s.−−−−−→
n→+∞

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

= F1(λ, θ)v? + F2(λ, θ)v??,

where the functions F1, F2 are defined by equation (5.5) page 41 (Proposition 5.2). By
noting

−→
F := (F1, F2) and by using the fact that

−→
F is a C2-diffeomorphism (Proposition

5.5), we deduce from this theorem the almost sure convergence of (Xn, Yn) =
−→
F (λ̂n, θ̂n)

toward
−→
F (λ, θ) and then of that of (λ̂n, θ̂n) toward (λ, θ) provided that these last parame-

ters live in an open set.
In the second hand our contribution was to propose a Central Limit Theorem (CLT)
(Theorem 5.17) for those estimators and some confidence intervals (Corollary 5.18),
still in case where 0 < λ < 1 and −π2 < θ < π

2 . For proving the asymptotic normality

of the estimators, we use a CLT for general functionals J (n)
f (u), that was the subject of

Theorem 4.7 stated here.

Theorem 4.7 For f : S1 → R a continuous and bounded function, we have the following
convergence,

ξ
(n)
f (u) := 2n

(
J

(n)
f (u)− E[J

(n)
f (u)]

)
Law−−−−−→

n→+∞
N (0;Σf,f (u)).

We deduce from Theorems 4.1 and 4.7 the following proposition.

Proposition 5.12

2n

J (n)
−→
f?

(u)

J
(n)
1 (u)

−
E[J

(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

 Law−−−−−→
n→+∞

N (0;Σ?(u)).

And writing this last convergence result in the basis (v?, v??), gives that

2n
(
F1(λ̂n, θ̂n)− F1(λ, θ)

)
v? + 2n

(
F2(λ̂n, θ̂n)− F2(λ, θ)

)
v??

Law−−−−−→
n→+∞

N (0;Σ?(u)),

so that

2n
(−→
F (λ̂n, θ̂n)−

−→
F (λ, θ)

)
Law−−−−−→

n→+∞
N (0;Σ?

Q(u),
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where Σ?
Q(u) := Q× Σ?(u)×Qt and Q is the change of basis matrix from the canonical

basis (~i,~j) to the basis (v?, v??).

Once again by using the fact that
−→
F is a C2-diffeomorphism, we deduce a CLT for

estimators (λ̂n, θ̂n), as soon as the affinity parameters λ and θ do not belong to the edges
of the parameter space.
Remark: this method for estimating the parameters (λ, θ) is available only when
the space parameters for X is R2. Indeed, when this space is Rd (d > 2), we deal
with a function

−→
F taking values from R2d−2 into Rd. The arguments of

−→
F would be

(µ2, . . . , µd, θ1, . . . , θd−1), µi being the ratio of the decreasing eigenvalues λi of A, let
µi := λi/λ1, i = 2, d, and θj the angles involved in the parametrization in spherical

coordinates of vector v?, j = 1, d − 1. The arrival space of function
−→
F is Rd since the

gradient ∇X lives into Rd. Thus, if we want the function
−→
F to be an isomorphism we

must require the following condition on d, that is 2d− 2 = d, which is only satisfied when
d = 2.

The tools for proving the CLT in Theorem 4.7 is the use of the CLT technique for
functionals belonging to the Wiener-Itô chaos. This method has been developed by
Nourdin et al. [24], Nualart et al. [25] and Peccati and Tudor [26] among others. The
idea for proving such a CLT is inspired by the precursor work of Kratz and León [20].
In the case where the process X is a stationary Gaussian isotropic process indexed by
R2 and the observation window is a fixed bounded rectangle T , the authors propose a
way to approximate σ1(CT,X(u))/σ2(T ), say J1(u) := J (1, T ), by other functionals J1(u, σ)

(σ → 0) with the help of a kernel Kσ tending to the delta-Dirac function in u. This is
done in such a way that the approximating functional can be expressed as stochastic
integrals with respect to Hermite polynomials. It consists in using the coarea formula
(see Federer [15, Theorem 3.2.12 p 249] and also Berzin et al. [10, Corollary 2.1.1]),
for J1(u, σ), transforming then this functional initially expressed on the level curve as a
temporal functional on the rectangle T and getting then its Hermite expansion in H(X)

the space of real square integral functionals of the field X. Using this technique in the
case where the observation window is still a fixed bounded rectangle T , as σ → 0 we
were able to express in turn a general functional on the level curve CT,X(u) as stochastic
integral with respect to Hermite polynomials, let Jf (u) := J (f, T ), f being a general
continuous and bounded function (Theorem 3.5). Applying this result to the squares
Tn, as n → ∞, we obtain the asymptotic variance Σf,f (u) of the centred and suitably

rescaled general functionals J (n)
f (u), say ξ(n)

f (u), with (Proposition 4.3). Finally, applying

the Peccati-Tudor method [26] and expressing the functionals ξ(n)
f (u) into the Wiener-Itô

chaos, we obtain the CLT in Theorem 4.7. The way of proceeding is completely based on
the methods developed into the paper Estrade and León [14] itself inspired by the article
[20]. In this work the authors show a CLT for the Euler characteristic of the excursions
above u of the field X on T as T grows to Rd, X being a stationary Gaussian isotropic
process indexed in Rd.

Our real contribution for proving the CLT, apart from showing the non-degeneration
of the asymptotic limit matrix variance Σ?(u) (Remark 5.14), was to rely on the two
functionals Jf (u) and Jf (u, σ) its approximation via the kernel Kσ, that is to show
that Jf (u, σ) is an L2-convergent approximation of Jf (u) (Proposition 3.7). It was the
opportunity to obtain as a first bonus the L2-continuity in the level u of the random
variable Jf (u) (Theorem 3.1), which is a very nice interesting result in itself. We did not
find it in the literature and we believe that this result deserves consideration. The proof
is far from obvious and implements a number of ideas developed in Berzin et al. [10],
from which a local parametrization of the level set CT,X(u+ δ) near the level u (see [10,
Theorem 3.1.2]). The second bonus was brought by obtaining the one order Rice formula
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for Jf (u), that is the exact computation of E[Jf (u)] (Proposition 3.10).
Having a closer look at how the estimators were obtained, we finally show apart in the
final section the almost sure convergence of estimators λ̂n (Theorem 6.1) and also their
rate of convergence (Theorem 6.2) in case where the true parameters (λ, θ) belong to
the boundary of the set ]0, 1[× ]−π2 ,

π
2 [.

By supposing that the covariance function of the subjacent process Z is known, this
leads us also to propose as in Section 2.1 of Cabaña’s paper, statistical tests for the null
hypothesis “X is isotropic” versus the alternative “X is affine” (Theorem 6.10). Those
ones are suggested by the convergence result previously stated in Proposition 5.12. As
explained in the first part of the Introduction testing the isotropy means to test the null
hypothesis H0 : λ = 1 against H1 : λ < 1. BecauseE[J

(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

= F1(λ, θ)v? + F2(λ, θ)v?? 6= 2

π
v?

 ⇐⇒ (λ < 1) ,

Proposition 5.12 ensures that under the hypothesis H0,

T
(n)
−→
f?

(u) := 2n

J (n)
−→
f?

(u)

J
(n)
1 (u)

− 2

π
v?

 Law−−−−−→
n→+∞

N (0;Γ (u, τ)),

(see Corollary 6.7), where the asymptotic matrix variance Γ (u, τ) depends only on u

and τ the common value of the eigenvalues of matrix A. Since E[J
(1)
1 (u)] = Cτ under

hypothesis H0, with C a computable constant, we estimate the parameter τ by an almost
sure convergence estimator τ̂n obtained by the application of Theorem 4.1 in the case
where function f is identically equal to 1. Thus, under the hypothesis of isotropy

Ξ
(n)
−→
f?

(u) := (S
(n)
−→
f?

(u))t S
(n)
−→
f?

(u)
Law−−−−−→

n→+∞
χ2

2,

where S(n)
−→
f?

(u)) := Γ−
1
2 (u, τ̂n) · T (n)

−→
f?

(u).

As in [12], the last convergence result naturally suggests using the test variable Ξ
(n)
−→
f?

(u).

We built a consistent test with rejection region Ξ
(n)
−→
f?

(u) > γ, since the previous equiva-

lence ensures that 1
(2n)2 Ξ

(n)
−→
f?

(u) converges in probability to b > 0 in case of anisotropy

(see Remark 6.11).
We end with a remark pinpointing the fact that such an isotropy test cannot be

implemented in this way in the case where the X process parameters are not in R2.
In fact, Proposition 5.12 could be generalized without difficulty to the case where the
parameter space is Rd (d > 3). Nevertheless, it is not enough for considering the idea
of adapting the isotropy test proof to the new situation. If we refer to the previous
remark made on page 8, using the same notations, under the isotropy hypothesis the
ratio E[J

(1)
−→
f?

(u)]/E[J
(1)
1 (u)] is not characterized by equalities µ2 = · · · = µd = 1. Roughly

speaking the isotropy hypothesis implies that E[J
(1)
−→
f?

(u)]/E[J
(1)
1 (u)] = c(d)v? (c(d) being

a constant depending only of d and computed under hypothesis of isotropy), but the
converse is not always true. Such a test would not be then consistent.

Outline of the paper Section 2.1 contains some notations, among others definitions,
affine process and isotropic process. It gives explicitly the type of general functionals on
the level set u we are looking for, say J (n)

f (u), where the observation window Tn grows
to R2 when n goes to infinity. It is also an opportunity in this part to introduce some
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concepts, when the observation window is a fixed rectangle T of R2. They deal with
regularity properties of level sets and Rice formulas, that are closed formulas for the
first and second moments for functionals defined on the level set, say Jf (u). Section 2.2
gives the assumptions on the interest model and some examples of processes satisfying
these assumptions.

In Section 3 the observation window is fixed by taking a rectangle T . We begin
by showing in Section 3.1 the L2-continuity in the level u for Jf (u), f being a general
continuous and bounded function. In Section 3.2, first by using the coarea formula for
an approximation of the functional, say Jf (u, σ)(σ → 0), we express this last one as
stochastic integral with respect to Hermite polynomials. Then by using the L2-continuity
in the level for Jf (u) we establish the L2-convergence of Jf (u, σ) towards Jf (u), from
which we deduce an Hermite expansion for the initial functional Jf (u). As a derived
product of the L2-continuity in the level previously obtained we deduce in Section 3.3 a
one order Rice formula for such functionals, in other words we compute E[Jf (u)].

In section 4, the observation windows (Tn)n is a sequence of open bounded squares of
R2, with the following form Tn := ]−n, n[

2 with n ∈ N? := {x ∈ Z, x > 0}, and n tends to

infinity. We focus on convergence results for J (n)
f (u). Section 4.1 is devoted to establish

the almost sure convergence of J (n)
f (u) for general function f . In Section 4.2, by using

the Hermite expansion of J (n)
f (u) derived from section 3.2, we give the rate of this

convergence. First the asymptotic variance as the squares Tn grow to R2 is expressed as
a series and we give an explicit lower bound. We then proved the asymptotic normality
for the centred and suitably rescaled general functionals J (n)

f (u) through the Peccati-
Tudor Theorem. The results obtained in Section 4 enable us, by considering in Section 5

the particular function
−→
f?, to give rise to a first result, the definition of the estimators

λ̂n and θ̂n of the affinity parameters λ and θ. Secondly, we prove their almost sure
consistency and also their rate of convergence in law in case where the true parameters
live in an open set. Also, the coefficients of the asymptotic matrix variance are computed
in Appendix A and a lower bound is given for its determinant. This law convergence
result gives rise to confidence intervals for parameters λ and θ in the specific special
case where the covariance rz of the underlying isotropic process is known.

In Section 6 some complementary convergence results for λ̂n are proposed when
the affinity parameters λ and θ belong to the edges of the parameter space, including
the particular case where λ = 1. Finally, supposing that the covariance rz is known, we
conclude by proposing an isotropy test.

This paper is complemented with Appendix A giving technical proofs of some lemmas.

2 Notations and hypotheses

2.1 Notations

Let us give some definitions, notations and some propositions and theorems related
to properties of level sets and Rice formulas.

In the following T is an open bounded rectangle of R2.
Let (Ω,A,P) be a probability space and X : Ω× T ⊂ Ω×R2 → R a process continuously
differentiable on T , that is X ∈ C1(T ).

Level sets We denote Dr
X the following set

Dr
X := {t ∈ T : ∇X(t) is of rank 1} = {t ∈ T : ‖∇X(t)‖2 6= 0} ,
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where ‖·‖2 denotes the Euclidean norm in R2, while ∇X stands for the Jacobian of X.
For u ∈ R we define the level set at u as:

CT,X(u) := {t ∈ T : X(t) = u} .

This set can be very irregular, but its intersection with Dr
X, let CDr

T,X(u) := CT,X(u) ∩ Dr
X is a

C1-manifold of dimension one. Indeed, at each point t ∈ CDr

T,X(u) the Jacobian matrix of X
is of full rank one. Thus, an application of the implicit theorem in a neighbourhood of
each point t provides a local parametrization of the level set CDr

T,X(u). For more details

concerning the proof of the construction of an atlas of CDr

T,X(u), the reader can look at the
beginning of the proof of [10, Theorem 3.1.2].

The following proposition (see Azaïs and Wschebor [8, Proposition 6.12]) gives a
sufficient condition to ensure that the level is a regular value of X.

Proposition 2.1. Let u ∈ R2. We assume the following:

• The paths of X are of class C2 on T .

• For each t ∈ T , the pair (X(t),∇X(t)) has a joint density pX(t),∇X(t)(x, x
′) in R×R2,

which is bounded for (t, x′) varying in a compact subset of T ×R2 and x in some
neighbourhood of u.

Then

P(ω ∈ Ω,∃ t ∈ T,X(t)(ω) = u, ‖∇X(t)(ω)‖2 = 0) = 0,

that is almost surely

CDr

T,X(u) = CT,X(u). (2.1)

Remark 2.2. Note that if X is a Gaussian process twice continuously differentiable on T ,
that is X ∈ C2(T ), such that for each t ∈ T , the vector (X(t),∇X(t)) has a joint density,
then the last proposition hypotheses are verified and equality (2.1) holds. In that case
the reader can also be referred to [10, Proposition 3.3.2].

General level functionals S1 is the boundary of the unit ball of R2 and for d = 1, 2,
σd denotes the Lebesgue measure on Rd. For f : S1 → R a continuous and bounded
function, we define the following general functional Jf (u) of the fixed level u by:

Jf (u) :=
1

σ2(T )

∫
CDr

T,X(u)

f(νX(t)) dσ1(t),

where νX(t) := ∇X(t)
‖∇X(t)‖2

.

Remark 2.3. Note that for general process X, the finiteness of this integral is not
necessarily guaranteed. However, this integral makes sense, for example, under as-
sumptions of Proposition 2.1. More precisely, we substitute hypotheses concerning the
process X on T in the last proposition by those on O, where O is any open set such that
T ⊂ T ⊂ O, where T stands for the closure of T . In that case we deduce that almost
surely CDr

T,X
(u) = CT,X(u). Then we construct a partition of unity for the compact manifold

CDr

T,X
(u) of R2, almost surely included in Dr

O,X := {t ∈ O : ‖∇X(t)‖2 6= 0}. In that way as

mentioned above, by using a local parameterization of the level set CDr

T,X(u), we prove

that almost surely, σ1(CDr

T,X(u)) < +∞ (see also Remark 2.9). Since function f is bounded,
this construction guarantees the existence of functional Jf (u). We also refer the reader
to [10, Theorem 3.1.2] for such a partition of unity construction.
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Note that in this article, T will increase to R2. In this regard, we will consider Tn :=

]−n, n[
2, open squares of R2, with n ∈ N?, a positive integer, and let n tends to infinity.

In this case, and with the comment made in Remark 2.3, the corresponding functional
on the set u will be denoted by J (n)

f (u), that is

J
(n)
f (u) :=

1

(2n)2

∫
CDr

Tn,X
(u)

f(νX(t)) dσ1(t).

The process X : Ω×R2 → R will at least be continuously differentiable on R2, that is
X ∈ C1(R2) and Dr

X will be the following set

Dr
X :=

{
t ∈ R2 : ∇X(t) is of rank 1

}
=
{
t ∈ R2 : ‖∇X(t)‖2 6= 0

}
.

Rice formulas The following results give Rice formulas for the first and second mo-
ments for general functionals defined on the level set of the process X (see [8] or [10]
for references).
By applying the coarea formula, for which a statement is expressed later in this text
in Corollary 3.4, to general functionals defined on the level sets CDr

T,X(u) and taking
expectation afterwards, one obtains the well-known Kac-Rice formula. This formula
gives a computation of the expectation of these general functionals for almost any level
u. A proof of this formula is given for example in [10, Proposition 2.2.1]. Let us recall it
here by adapting its statement to our context.

Let Ỹ : Ω × T ⊂ Ω ×R2 → R a process defined on T and continuous on Dr
X. Let us

consider the following assumptions:

• H1: The function

u 7−→ E

[∫
CDr

T,X(u)

|Ỹ (t)|dσ1(t)

]
,

is a continuous function of the variable u.

• H2: The function

u 7−→
∫
T

pX(t)(u)E[|Ỹ (t)| ‖∇X(t)‖2 |X(t) = u] dt,

is a continuous function of the variable u.

• H3: For almost any t ∈ T , the density of X(t) ,pX(t)(·) exists.

Proposition 2.2.1 implies the following proposition.

Proposition 2.4 (Kac-Rice formula). If X and Ỹ satisfy the assumption (H1 or H2) and
H3, then for almost any u ∈ R one has

E

[∫
CDr

T,X(u)

Ỹ (t) dσ1(t)

]
=

∫
T

pX(t)(u)E[Ỹ (t) ‖∇X(t)‖2 |X(t) = u] dt. (2.2)

However, in applications the interest is focused on a fixed level u. So, we add the two
following assumptions to ensure the validity of the Kac-Rice formula for all level.
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• H4: The function

u 7−→ E

[∫
CDr

T,X(u)

Ỹ (t) dσ1(t)

]
,

is a continuous function of the variable u.

• H5: The function

u 7−→
∫
T

pX(t)(u)E[Ỹ (t) ‖∇X(t)‖2 |X(t) = u] dt,

is a continuous function of the variable u.

Adding the two previous assumptions the two sides of equality (2.2) become now con-
tinuous as function of the level. Thus, we enunciate the following formula of Rice, for
which a proof is given in [10, Theorem 3.1.1].

Theorem 2.5 (One order Rice formula). If X and Ỹ satisfy the assumption (H1 or H2),
H3, H4 and H5 then for any u ∈ R one has

E

[∫
CDr

T,X(u)

Ỹ (t) dσ1(t)

]
=

∫
T

pX(t)(u)E[Ỹ (t) ‖∇X(t)‖2 |X(t) = u] dt.

Remark 2.6. Note that Rice formula only requires for Ỹ to be continuous on Dr
X, that

will be the case for the process Ỹ := f(νX)1Dr
X

defined in the paragraph General level
functionals, page 11.

Now we give conditions under which a two-order Rice formula will be valid. The
reader is referred to [10, Theorem 3.3.3] and adapted to the future situation.

Let us consider the following assumptions:

• Ha: X : Ω×T ⊂ Ω×R2 → R is a centred Gaussian random field twice continuously
differentiable on T , that is X ∈ C2(T ).

• Hb: For all t ∈ T , the vector (X(t),∇X(t)) has a density.

• Hc For all t1, t2 ∈ T , such that t1 6= t2, the vector (X(t1), X(t2)) has a density, say
pX(t1),X(t2)(·, ·).

• Hd:

E[sup
t∈T

∥∥∇2X(t)
∥∥(s)

1,2
]4 < +∞, (2.3)

where ∇2X stands for the 2× 2 Hessian matrix of X and ‖·‖(s)1,2 stands for the norm
in L2

s(R2,R), the vectorial space of symmetric linear continuous functions from R2

to R.

• He: Y : Ω × T ⊂ Ω × R2 → R is a continuous process defined on T as Y (t) :=

G(t,∇X(t)), where

G : T ×R2 −→ R

(t, z) 7→ G(t, z),

is a bounded continuous function on T ×R2.

Let us now state the following assumption H6.
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• H6: For all u ∈ R,∫
T×T

E [|Y (t1)| |Y (t2)| ‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = X(t2) = u]

× pX(t1),X(t2)(u, u) dt1 dt2 < +∞.

Let us express the following two-order Rice formula.

Theorem 2.7 (Two-order Rice formula). If X and Y satisfy the assumptions Ha, Hb, Hc,
Hd, He and H6, then for any u ∈ R one has

E[

∫
CDr

T,X(u)

Y (t) dσ1(t)]2 (2.4)

=

∫
T×T

E [Y (t1)Y (t2) ‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = X(t2) = u] ×

pX(t1),X(t2)(u, u) dt1 dt2.

From this theorem we deduce the following corollary.

Corollary 2.8. Let X : Ω×R2 → R be a centred stationary Gaussian random field twice
continuously differentiable on R2, that is X ∈ C2(R2), with covariance rx (belonging
necessarily to C4(R2)) satisfying the following hypotheses:

• ∇2rx(0) is a non-degenerate matrix, where ∇2rx stands for the 2×2 Hessian matrix
of rx .

• r2
x(0)− r2

x(t) 6= 0, for all t 6= 0.

Then assumptions Ha, Hb, Hc and Hd are checked so that for all u ∈ R, almost surely

CDr

T,X(u) = CT,X(u).

Furthermore if X and Y satisfy the assumption He then they satisfy also assumptions
H6. Thus, for any u ∈ R the two-order Rice formula (2.4) is valid.

The proof of this corollary provides from the following argumentation.
Hypotheses made on X, ensure that X is a Gaussian process twice continuously differ-
entiable on T , such that for each t ∈ T the vector (X(t),∇X(t)) has a joint density, since
X(t) and ∇X(t) are independent random variables. Thus Remark 2.2 gives equality
(2.1). Furthermore, these hypotheses ensure that assumption Hc is obviously checked.
By using the Borel-TIS inequality given in Adler and Taylor [2, Theorem 2.1.1], one can
show that assumption Hd is also checked.
Now let X and Y satisfying the assumption He. The fact that G is a bounded function on
T ×R2, implies that Y is a bounded process on T . Thus, to check assumption H6, it is
enough to establish that for all u ∈ R, one has∫

T×T
E [‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = X(t2) = u]× pX(t1),X(t2)(u, u) dt1 dt2 < +∞.

The proof of this finiteness can be founded for example in Berzin and Wschebor [11,
Proposition 2].
Thus X and Y satisfy assumptions given in Theorem 2.7 and the two-order Rice formula
ensues from it.

Remark 2.9. One can observe that under the hypotheses of Corollary 2.8 for X, by
taking Y ≡ 1, one has proved that for any u ∈ R,

E[σ1(CDr

T,X(u))]2 =∫
T×T

E [‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = X(t2) = u] × pX(t1),X(t2)(u, u) dt1 dt2 < +∞.
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Note that in that case we proved that almost surely CDr

T,X(u) < +∞ (resp. for all n ∈ N?,
CDr

Tn,X
(u) < +∞). Thus, for f : S1 → R a continuous and bounded function, the functional

Jf (u) (resp. J (n)
f (u)) is almost surely well defined.

Also note that under the hypotheses of Corollary 2.8 for X, those slightly modified
of Proposition 2.1 are also checked (see Remark 2.3). If we proceed as indicated in the
previous remark, we then obtain another way to establish the almost sure finiteness of
CDr

T,X(u) and also that of CDr

Tn,X
(u). This explicit way provides another manner for proving

the almost sure existence of functional Jf (u) (resp. J (n)
f (u)).

Remark 2.10. Note that process Ỹ := f(νX)1Dr
X

defined in the paragraph General level

functionals is such that processes X and Ỹ do not verify hypothesis He, since Ỹ is
continuous on Dr

X and a priori not continuous on T . So, to compute E[Jf (u)]2 we will
have to play close to the vest and be creative by generalizing the two order Rice formula
to our purpose (see forthcoming Lemma 3.2).

Isotropic process A process (Z(t), t ∈ R2) is said to be isotropic if it is a stationary
process and if for any isometry J in R2, k ∈ N := {x ∈ Z, x > 0} and t1, . . . , tk ∈ R2, the
joint laws of (Z(t1), . . . , Z(tk)) and (Z(J.t1), . . . , Z(J.tk)) are the same.

Affine process A process (X(t), t ∈ R2) is said to be an affine process when it is equal
in law to (Z(A.t), t ∈ R2), where Z is isotropic and A : R2 → R2 is a linear self-adjoint
transformation.
If the eigenvalues of A are denoted by λ1, λ2, saying that the process X is isotropic
means that λ1 = λ2 (see Adler and Taylor [2, Section 5.7]).

Hermite polynomials We use the Hermite polynomials (Hq)q∈N defined by

Hq(x) := (−1)qφ−1(x)
dq

dxq
(φ(x)),

where φ denotes the standard Gaussian density on R.
They provide an orthogonal basis of L2(R, φ(x) dx). We also denote by φm the standard
Gaussian density on Rm, for m = 2 or 3.

For k := (k1, k2, k3) ∈ N3 and y := (y1, y2, y3) ∈ R3, we set |k| := k1 + k2 + k3,
k! := k1!k2!k3! and H̃k(y) :=

∏
16j63Hkj (yj).

We denote by 〈·, ·〉 the canonical scalar product in R2.
C is a generic constant that could change value while developing a proof.

2.2 Hypotheses

Let (Ω,A,P) be a probability space and X : Ω × R2 → R an affine process, equal
in law to (Z(A.t), t ∈ R2), where Z : Ω × R2 → R is isotropic and A : R2 → R2 is a
linear self-adjoint transformation. We additionally suppose that A is a positive definite
transformation.
We also assume that Z is a centred Gaussian process twice continuously differentiable in
R2, that is Z ∈ C2(R2).
The eigenvalues of A are denoted by λ1, λ2, 0 < λ2 6 λ1. Let 0 < λ 6 1 be the quotient of
the eigenvalues, λ := λ2/λ1. The process X is isotropic means that λ = 1 (see Adler and
Taylor [2, Section 5.7]).

Let rz and rx be the covariance function of Z and X respectively. The regularity
assumption on Z implies that rz ∈ C4(R2).
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Let T be an open bounded rectangle of R2. Let also (Tn)n be open bounded squares
with the following form Tn := ]−n, n[

2 with n ∈ N?, and let n tends to infinity.

Assumptions on the covariance For any multidimensional index m := (i1, . . . , ik)

with 1 6 k 6 2 and 1 6 ij 6 2, we write ∂mrz
∂tm (t) := ∂krz

∂ti1 ···∂tik
(t). Let

Ψ(t) := max

{
|rz(t)| ,

∣∣∣∣∂mrz∂tm
(t)

∣∣∣∣ ,m ∈ {1, 2}k, 1 6 k 6 2

}
.

We make the following assumption.

• HΨ: Ψ(t)→ 0 when ‖t‖2 → +∞, Ψ ∈ L1(R2) and
∫
R2 rz(t) dt > 0.

Remark 2.11. Note that rz ∈ L1(R2) implies that rz ∈ Lq(R2) for all q > 1 and hence
that Z (resp. X) admits a spectral density fz (resp. fx) that is continuous and such that
fz(0) > 0. We wish to emphasize that this fact implies that the following assumption Hr

is always fulfilled

• Hr: r2
z(0)− r2

z(t) 6= 0, for all t 6= 0.

Remark 2.12. Note also that
∫
R2 fz(t) ‖t‖22 dt < +∞.

Comments on assumptions made Having the property that fz(0) > 0 ensures that

∇2rx(0) is a non-degenerate matrix. Indeed −∇2rx(0) = µA2, where µ := −∂
2rz
∂t2i

(0) =

1
2

∫
R2 fz(t) ‖t‖22 dt, for any i = 1, 2. Thus µ > 0.

Hypothesis Hr being fulfilled ensures that the assumptions of Corollary 2.8 are verified,
so that its conclusions are also verified. That is for all u ∈ R, equality (2.1) is almost
surely valid (for T or Tn). Furthermore if f : S1 → R is a continuous and bounded func-
tion, functionals Jf (u) and J (n)

f (u) (n ∈ N?) are almost surely well defined (see Remark
2.9). Also if X and Y satisfies the assumption He with T or Tn then the two-order Rice
formula (2.4) is valid for T or Tn.
The assumption HΨ will be useful to prove Proposition 4.3 in which we exhibit the
asymptotic variance of the centred and suitably rescaled general functionals J (n)

f (u) as
n tends to infinity. The fact that fz(0) > 0 ensures that this limit variance is not trivial.

These comments lead us to adopt the following new notations.

Notations We shall omit in the future the symbol Dr. Furthermore for writing conve-
nience if u is a fixed level belonging to R, we will note C(u) in place of CDr

T,X(u) and Cn(u)

in place of CDr

Tn,X
(u). Also, for B a rectangle set included in Tn, we will note CB(u) in place

of CDr

B,X(u).

Particular isotropic processes Here we give three examples of isotropic processes
satisfying assumption HΨ.
Since Z is a stationary Gaussian process, Z will be isotropic if, and only if, its covariance
rz will only depend on the norm. Furthermore Z must have a spectral density fz, so this
last condition is equivalent to the one that fz will depend only on the norm.
Powered exponential covariance The first example is given by a covariance function
belonging to the class of powered exponential family (see Yaglom [33, Chap. 4.22.2,
example 3, p. 364]), that is: rz(t) := C exp(−α ‖t‖22), t ∈ R2, C > 0, α > 0 being
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a scale parameter. One has,
∫
R2 rz(t) dt = Cπ

α > 0. Here the spectral density fz is

fz(λ) := C
4πα exp(− 1

4α ‖λ‖
2
2), λ ∈ R2. The covariance rz satisfies assumption HΨ.

Generalized Cauchy covariance The second example of covariance function is given
by the one belonging to the Cauchy family (see [33, Chap. 4.22.2, example 5, p. 365],
see also Anderson [6] and Lim and Teo [21, equality (2.1) p. 1326]), that is rz(t) :=

C (α2 + ‖t‖22)−ν , t ∈ R2, C > 0, α > 0 being a scale parameter and ν > 0 a smoothness
parameter controlling the long range dependence of the process Z. The spectral density
is

fz(λ) :=
Cα1−ν ‖λ‖ν−1

2

2νπΓ(ν)
Kν−1(α ‖λ‖2)

(see Yaglom [34, Chap. 4, equality (4.12’), p. 129], see also Lim and Teo [22, p. 3]). Here
Kν is the modified Bessel function of the third kind (see Gradshteyn and Ryzhik [18,
8.432 p. 917] for definition) and Γ is the Gamma function defined in Appendix (A.5).
If we add the condition ν > 1, then

∫
R2 rz(t) dt = Cπα2−2ν

ν−1 > 0, and covariance rz satisfies
assumption HΨ.
Whittle-Matérn covariance The third example of covariance function is given by the
one belonging to the Matérn class (see [33, Chap. 4.22.2, example 2, p. 363], see also
[22, equality (1) p. 2]). The covariance function is given by rz(t) := C(α ‖t‖2)νKν(α ‖t‖2),
t ∈ R2, C > 0, α > 0 being a scale parameter controlling the spatial range of the
covariance and ν > 0 is the smoothness parameter governing the level of smoothness

of Z(t). The spectral density is fz(λ) := C2ν−1Γ(ν+1)α2ν

π(α2+‖λ‖22)ν+1 (see [33, equality (4.131) p. 364,

Chap. 4.22.2, example 2] and also [21, Proposition 3.1 p. 1333]). Since ν > −1, using
the spectral density representation of the covariance in zero in the second example one
can prove that

∫
R2 rz(t) dt = Cπα−22ν+1Γ(ν + 1) > 0. In addition, if we suppose that

ν > 2, one can easily show that
∫
R2 ‖λ‖42 f(λ)dλ < +∞, so that the covariance function

rz ∈ C4(R2) (one can also refer to [22, (33) and (34), p. 9]). By using [18, equalities
10 and 11 of 8.486(1) p. 929] we obtain the expression of the derivatives of function
rz. In [18], equalities 8.485 p. 928 and 8.445 and 8. 446 p. 919 give the asymptotic
behaviour of Kν(z) when z → 0 and 6. of 8.451 p. 920 the one when z → +∞. With these
properties one can establish in case where ν > 2 that Ψ(t) → 0 when ‖t‖2 → +∞ and
that Ψ ∈ L1(R2). In conclusion we deduce that when ν > 2 the covariance rz satisfies
assumption HΨ.

Commentaries about these examples In the two first examples we remark that
covariance rz is strictly decreasing as function of the distance from the origin. If the
linear transformation A is not an isometry, this property vanishes since points living in a
circle centred at the origin with same covariance rz will be transformed by A into points
over an ellipse and thus with different covariances rx. In other words and in a general
way, meaning not just for the two previous examples, circles are deformed by stretching
via the transformation A. A point t ∈ R2 such that ‖t‖2 = 1, that is living in the unity
circle, will be such that A · t will belong to the centred ellipse at the origin defined by the
A-eigenvectors directions (v1, v2) as axis and by the eigenvalues λ1, λ2 the magnitude of
the axis. Measuring the range of this stretching will be part of the matter of the paper,
through the construction of estimators of the ratio of the eigenvalues, say λ = λ2/λ1, and
of θ, the angle rotation between the eigenvectors (v1, v2) and a fixed direct orthonormal
basis (v?, v??) (see Figure 1 page 40).

3 Hermite expansion for level functionals

In this section T will be a fixed open bounded rectangle of R2.
For a continuous and bounded function f , f : S1 → R, recall that we have defined in
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section 2.1 the following general functional Jf (u) of the level u as:

Jf (u) :=
1

σ2(T )

∫
C(u)

f(νX(t)) dσ1(t),

where νX(t) := ∇X(t)
‖∇X(t)‖2

.
Our objective is for u a fixed level to give an Hermite expansion of the random variable
Jf (u).
In this aim the idea consists in approaching functionals Jf (u) by other functionals, say
Jf (u, σ) (σ → 0), in such a way that the last ones can be expressed as stochastic integrals
with respect to Hermite polynomials. This is possible through the use of a kernel Kσ and
via the coarea formula. Then the idea will consist in proving that Jf (u, σ) tends in L2(Ω)

towards Jf (u) as σ → 0.
We emphasize that the convergence is not an obvious purpose since the difficulty is to
prove the continuity of function (y1,y2) 7→ E[Jf (y1) Jf (y2)] that will be the aim of the
next paragraph. This fact is far from being trivial and requires a number of results stated
in section 2.1, as the second order Rice formula, and also studied in next section, as a
in-depth study of the level curve C(u+ δ) in a neighbourhood of the level u.
By using the L2-continuity in the level u of functional Jf (u), we will obtain as by product
an expression for its first moment, that is a first order Rice formula for all level.

3.1 L2-continuity in the level

We prove the following theorem.

Theorem 3.1. Let f : S1 → R be a continuous and bounded function. Then the function

(y1,y2) 7→ E[Jf (y1)Jf (y2)],

is continuous. In particular the same holds for function,

y 7→ E[Jf (y)]2.

Proof of Theorem 3.1. As explained in Remark 2.10, process Ỹ := f(νX)1Dr
X

is not
continuous on T , so we can not apply Corollary 2.8 to compute E[Jf (y)]2. We need
to be a little careful. In fact the following lemma will prove as by product that such
computation holds for E[Jf (y)]2 and that function y 7→ E[Jf (y)]2 is continuous.
Let us state this lemma proved in Appendix and for which the proof is based on the
application of Corollary 2.8.

Lemma 3.2. Let F : T × (R2)? → R be a bounded continuous function of its arguments,
then

y 7→ E[

∫
C(y)

F (t,∇X(t))1Dr
X
(t) dσ1(t)]2

is a continuous function, where we have noted (R2)? := {v ∈ R2, ‖v‖2 6= 0}.
Furthermore, for any u ∈ R one has

E[

∫
C(u)

F (t,∇X(t))1Dr
X
(t) dσ1(t)]2

=

∫
T×T

E
[
F (t1,∇X(t1))1Dr

X
(t1)F (t2,∇X(t2))1Dr

X
(t2) ‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = X(t2) = u

]
× pX(t1),X(t2)(u, u) dt1 dt2,

where pX(t1),X(t2)(u, u) stands for the density of (X(t1), X(t2)) in point (u, u).
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Let y be fixed in R and (yk)k∈N be a real sequence tending to y.
Let us note If (y) :=

∫
C(y)

f(νX(t)) dσ1(t).

Proving Theorem 3.1 is equivalent to show that ‖If (yk)− If (y)‖L2(Ω) tends to zero as k

goes to infinity, where ‖·‖L2(Ω) stands for the L2(Ω)-norm.
Thus we try to apply the Scheffé’s lemma but it is not so direct.
Indeed Lemma 3.2 applied to function F : R2 × (R2)? → R, such that F (t, z) :=

f(z/ ‖z‖2)1{z 6=0}(z) implies that ‖If (yk)‖L2(Ω) tends to ‖If (y)‖L2(Ω) as k goes to infin-

ity. But we need the missing following convergence, that is, almost surely If (yk) tends
to If (y), with k.
Our goal is now to tempt to apply the following theorem stated and proved as [10,
Theorem 3.1.2]. Note that in its statement the functions of interest are deterministic,
that is they are not random functions.

Theorem 3.3. Let g : T ⊂ R2 → R be a function belonging to C1(T ) such that ∇g
is Lipschitz on T . Let h : T ⊂ R2 → R be a continuous function on T such that
supp(h) ⊂ Dr

g := {t ∈ T : ‖∇g(t)‖2 6= 0}, supp(h) being the support of function h. Then
the function

y→
∫
CDr

T,g(y)
h(t) dσ1(t)

is continous with respect to the variable y.
We have noted CDr

T,g(y) := {t ∈ T : g(t) = y, ‖∇g(t)‖2 6= 0}.
Remark that process X is such that ∇X is almost surely Lipschitz on T . Indeed we

have already mentioned after the statement of Corollary 2.8 that assumption Hd remains

checked. Thus equality (2.3) is valid, that is E[supt∈T
∥∥∇2X(t)

∥∥(s)

1,2
]4 < +∞. So we can

conclude that almost surely LX := supt∈T
∥∥∇2X(t)

∥∥(s)

1,2
< +∞. Furthermore the Taylor

formula applied to X belonging to C2(T ) ensures that almost surely ∇X is Lipschitz with
Lipschitz constant LX .
As already mentioned in section 2.1 process Ỹ := f(νX)1Dr

X
is not continuous on T and

there is no reason for why supp(Ỹ ) ⊂ Dr
X.

In view of applying the Scheffé’s lemma the idea consists in approximating the functional
If (y) by the following one. It will check hypotheses of Theorem 3.3 and also that of
Lemma 3.2 . For m ∈ N?, let

If,m(y) :=

∫
C(y)

Ym(t) dσ1(t),

where we define for t ∈ T

Ym(t) := Fm(t,∇X(t))1Dr
X
(t),

with function Fm : T × (R2)? → R, defined by

Fm(t, z) := gm(t)ϕ

(
1

m ‖z‖2

)
f(z/ ‖z‖2),

where ϕ is a continuous decreasing function on R+, such that

ϕ(t) :=

{
1, if 0 6 t 6 1

0, if 2 6 t

and (gm)m∈N∗ is a sequence of functions defined on R2 to [0, 1] in the following manner

gm(x) :=
d(x, T 2m)

d(x, T 2m) + d(x, T (m))
,
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where d(x, B) stands for the distance between the point x and the set B ⊂ R2. The
closed sets T 2m and T (m) are defined by

T 2m :=
{
x ∈ R2, d(x, T c) 6 1

2m

}
and T (m) :=

{
x ∈ R2, d(x, T c) > 1

m

}
,

T c denoting the complement of T on R2.
We have shown in [10, Lemmas 3.2.1 and 3.2.2] that the functions (gm)m∈N? are well
defined, continuous. Thus using the crucial central term in ϕ defining Ym, m ∈ N?, one
can prove that the r.v. Ym is continuous on T . Furthermore we established that the
support of function gm restricted to the set T is contained in T for each m ∈ N?. This
fact implies that supp(Ym) ⊂ Dr

X.
At last this sequence (gm)m∈N? is bounded by one and tends to one when m goes to
infinity. This implies that the sequence (Ym)m∈N? is bounded on T and that almost surely
for all t ∈ T , Ym(t) −−−−−→

m→+∞
Ỹ (t) = f(νX(t))1Dr

X
(t).

By summarizing, we have

1. g := X and h := Ym verifies assumptions of Theorem 3.3

2. Fm and F − Fm verify assumptions of Lemma 3.2

3. Almost surely for all t ∈ T , Ym(t) −−−−−→
m→+∞

Ỹ (t)

Assertion 1. implies that for all m ∈ N?, almost surely

If,m(yk) −−−−−→
k→+∞

If,m(y).

Note that this almost sure convergence is what we need to move forward. Furthermore,
assertion 2. implies that for all m ∈ N?,

‖If,m(yk)‖L2(Ω) −−−−−→k→+∞
‖If,m(y)‖L2(Ω) ,

so that Scheffé’s lemma allows to conclude that for all m ∈ N?,

lim
k→+∞

‖If,m(yk)− If,m(y)‖L2(Ω) = 0. (3.1)

Now, assertion 2. also implies that for all m ∈ N?,

lim
k→+∞

‖If (yk)− If,m(yk)‖L2(Ω) = ‖If (y)− If,m(y)‖L2(Ω) . (3.2)

An upper bound is

‖If (yk)− If (y)‖L2(Ω) 6 ‖If (yk)− If,m(yk)‖L2(Ω) +

‖If,m(yk)− If,m(y)‖L2(Ω) + ‖If,m(y)− If (y)‖L2(Ω) .

Applying convergence obtained in (3.1) and (3.2), it yields, for all m ∈ N?,

lim
k→+∞

‖If (yk)− If (y)‖L2(Ω) 6 2 ‖If (y)− If,m(y)‖L2(Ω) . (3.3)

Let us set,

If (y)− If,m(y) =

∫
C(y)

Ỹm(t) dσ1(t),

where Ỹm(t) := Ỹ (t)− Ym(t).
By using convergence given in point 3., we obtain that almost surely for all t ∈ Dr

X,
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limm→+∞ Ỹm(t) = 0.

Furthermore for all t ∈ Dr
X, one has

∣∣∣Ỹm(t)
∣∣∣ 6 C. Moreover by applying Remark 2.9, one

has

E[σ1(C(y))]2 < +∞, (3.4)

and then almost surely σ1(C(y)) < +∞. The Lebesgue convergence theorem induces
that

• Almost surely, limm→+∞(If (y)− If,m(y)) = 0. Furthermore

• Almost surely, |If (y)− If,m(y)| 6 Cσ1(C(y)) ∈ L2( dP ), last belonging providing
from (3.4).

Applying once again the Lebesgue convergence theorem, one has finally proved that
limm→+∞ ‖If,m(y)− If (y)‖L2(Ω) = 0. Thus by using inequality (3.3), one concludes that

lim
k→+∞

‖If (yk)− If (y)‖L2(Ω) = 0,

yielding Theorem 3.1. 2

We are now ready to define a L2(Ω)-expansion for Jf (u).

3.2 Hermite expansion for general functionals

Let f : S1 → R be a continuous and bounded function and u a fixed level in R. We
define an approximation of Jf (u). For σ > 0, we define

Jf (u, σ) :=
1

σ

∫ +∞

−∞
K(u−vσ ) Jf (v) dv,

where K is a continuous density function with a compact support in [−1, 1]. In view of
applying the coarea formula to Jf (u, σ) we recall a statement of this formula, adapted to
our situation and that can be found in Federer [15, Theorem 3.2.12] and also in Berzin
et al. [10, Corollary 2.1.1].

Corollary 3.4. (Coarea formula)
Let h a measurable function, h : R2×R→ R and g : T ⊂ R2 → R be a function belonging
to C1(T ). We have∫

T

h(t, g(t)) ‖∇g(t)‖2 dt =

∫ +∞

−∞

[∫
CDr

T,g(y)

h(t, y) dσ1(t)

]
dy,

provided that one of the two integrals is finite.

By applying last corollary to the measurable function h : R2 ×R→ R defined as :

h(t, y) :=
1

σ2(T )
f(νX(t))1{∇X(t)6=0}

1

σ
K(u−yσ ),

to the C1-function g := X : T ⊂ R2 → R, we get:

Jf (u, σ) =
1

σ2(T )

∫
T

f(νX(t))1{∇X(t)6=0}
1

σ
K(u−X(t)

σ ) ‖∇X(t)‖2 dt < +∞.

Let Λ :=

(
λ1 0

0 λ2

)
, a matrix that factorizes A such that A := PΛP t, where P is a unitary

matrix and t stands for the transpose symbol.
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The matrix ΓX stands for the covariance matrix of the 3-dimensional Gaussian vector

X(t) := (∇X(t), X(t))
t
.

We recall that since Z is isotropic, E[∇Z(0)∇Z(0)t] = µ I2, where µ := −∂
2rz
∂t2i

(0) for any

i = 1, 2 and I2 stands for the identity matrix in R2.

We denote ∆ for the 3×3 matrix, ∆ :=

(√
µPΛ 0

0
√
rz(0),

)
. It is such that ∆∆t = ΓX .

We have seen in Section 2.2 (see Remark 2.11) that Z admits a spectral density fz and
then the same fact occurs for X. We have noted fx the spectral density for X.
We obtain the following spectral representations: for t ∈ R2,

X(t) =

∫
R2

ei 〈t, λ〉
√
fx(λ) dW (λ),

where W stands for the standard Brownian motion.
Thus, for any λ := (λi)16i62 in R2, we let

ν(λ) := (iλ1, iλ2, 1),

so that for any t ∈ R2,

U(t) = (Ui(t))16i63 := ∆−1.X(t) =

∫
R2

ei 〈t, λ〉
√
fx(λ) ∆−1.ν(λ) dW (λ).

We can write for any t ∈ R2, X(t) = ∆.U(t), where U(t) is a 3-dimensional standard
Gaussian vector.
With these notations, one obtains:

Jf (u, σ) =

√
µ

σ2(T )

1

σ

∫
T

f


PΛ.

(
U1(t)

U2(t)

)
√
λ2

1U
2
1 (t) + λ2

2U
2
2 (t)

1{U1(t)6=0 or U2(t)6=0}

×K

(
u−

√
rz(0)U3(t)

σ

)√
λ2

1U
2
1 (t) + λ2

2U
2
2 (t) dt.

We define for σ > 0 and y = (yi)16i63 ∈ R3, the map gσ as:

gσ(y) :=

√
µ

σ
K

(
u−

√
rz(0) y3

σ

)
f


PΛ.

(
y1

y2

)
√
λ2

1y
2
1 + λ2

2y
2
2


√
λ2

1y
2
1 + λ2

2y
2
2 .

Since the map belongs to L2(R3, φ3(y) dy), the following expansion converges in this
space:

gσ(y) =

+∞∑
q=0

∑
k∈N3

|k|=q

af, σ(k, u) H̃k(y),

while taking k := (ki)16i63 ∈ N3,

af, σ(k, u) := af (k1, k2) aσ(k3, u), (3.5)
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where for (k1, k2) ∈ N2,

af (k1, k2) :=

√
µ

k1!k2!

∫
R2

f


PΛ.

(
y1

y2

)
√
λ2

1y
2
1 + λ2

2y
2
2


√
λ2

1y
2
1 + λ2

2y
2
2 Hk1(y1)φ(y1)

Hk2(y2)φ(y2) dy1 dy2 (3.6)

and

aσ(k3, u) :=
1

k3!

+∞∫
−∞

1

σ
K

(
u−

√
rz(0) y
σ

)
Hk3(y)φ(y) dy.

In this way, we obtain the expansion of the functional Jf (u, σ) in L2(Ω), that is:

Jf (u, σ)
L2(Ω)

=
1

σ2(T )

+∞∑
q=0

∑
k∈N3

|k|=q

af, σ(k, u)

∫
T

H̃k(U(t)) dt. (3.7)

Now observe that as σ tends to zero, aσ(k3, u) → a(k3, u), where coefficient a(k3, u) is
defined as

a (k3, u) :=
1

k3!
Hk3

(
u√
rz (0)

)
φ

(
u√
rz (0)

)
1√
rz (0)

. (3.8)

This remark will yield via the forthcoming theorem the following expansion in L2(Ω) of
Jf (u).

Theorem 3.5. For f : S1 → R a continuous and bounded function and u a fixed level in
R, one has the following expansion in L2(Ω),

Jf (u) =
1

σ2(T )

+∞∑
q=0

∑
k∈N3

|k|=q

af (k, u)

∫
T

H̃k(U(t)) dt,

where coefficients af (k, u) are defined by

af (k, u) := af (k1, k2) a(k3, u), (3.9)

with af (k1, k2) and a(k3, u) previously respectively defined by (3.6) and (3.8).

Remark 3.6. This equality has nothing obvious because we do not know a priori that
the right member in the last equality really belongs to L2(Ω). This fact comes from the
way we obtained this expansion, the series

∑+∞
k3=0 a

2(k3, u)k3! being equal to +∞ as the
Hermite development in L2(R, φ(x) dx) of delta’s Dirac function in point u.

Proof of Theorem 3.5. The proof of this theorem strongly leans on that given in Estrade
and León [14] and extensively uses the orthogonality of the various chaos.
We demonstrate Proposition 3.7.

Proposition 3.7. For f : S1 → R a continuous and bounded function and u a fixed level
in R, one has the following convergence,

Jf (u, σ)
L2(Ω)−−−−→
δ→0

Jf (u).
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Proof of Proposition 3.7. One can easily see that the proof of this proposition follows
immediately from that of Theorem 3.1. 2
As in the proof of [14, Proposition 1.3], let us define formally

η(T ) :=
1

σ2(T )

+∞∑
q=0

∑
k∈N3

|k|=q

af (k, u)

∫
T

H̃k(U(t)) dt,

and prove the following lemma.

Lemma 3.8. η(T ) ∈ L2(Ω).

Proof of Lemma 3.8. First, remark that if k,m ∈ N3 are such that |k| 6= |m|, then for all
s, t ∈ T × T , E[H̃k(U(t))H̃m(U(s))] = 0 and the above expression, η(T ) turns out to be a
sum of orthogonal terms in L2(Ω).

Indeed, to prove this we need a generalization of Mehler’s formula given in Azaïs
and Wschebor [8, Lemma 10.7, part (b), page 269] via the following lemma proved in
Appendix A.

Lemma 3.9. Let X = (Xi)i=1, 2, 3 and Y = (Yj)j=1, 2, 3 be two centred standard Gaussian
vectors in R3 such that for 1 6 i, j 6 3, E[XiYj ] = ρij , then for k,m ∈ N3, one has

E[H̃k(X)H̃m(Y )] =

( ∑
dij>0∑
j dij=ki∑
i dij=mj

k!m!
∏

16i,j63

ρ
dij
ij

dij !

)
1|k|=|m|.

As in [14], let us fix Q ∈ N and let us denote by πQ the projection onto the first Q
chaos in L2(Ω) and by πQ the projection onto the remaining one. With these notations
one has

πQ(η(T )) =
1

σ2(T )

Q∑
q=0

∑
k∈N3

|k|=q

af (k, u)

∫
T

H̃k(U(t)) dt,

and πQ(η(T )) = η(T )− πQ(η(T )).
By the precedent remark, we have

E[πQ(η(T ))]2 =

Q∑
q=0

E[
1

σ2(T )

∑
k∈N3

|k|=q

af (k, u)

∫
T

H̃k(U(t)) dt]2.

Remember that coefficients af,σ(k, u) have been defined by (3.5).
Applying the Fatou’s lemma, since limσ→0 af,σ(k, u) = af (k, u), we obtain

E[πQ(η(T ))]2 6 lim
σ→0

Q∑
q=0

E[
1

σ2(T )

∑
k∈N3

|k|=q

af,σ(k, u)

∫
T

H̃k(U(t)) dt]2

6 lim
σ→0

+∞∑
q=0

E[
1

σ2(T )

∑
k∈N3

|k|=q

af,σ(k, u)

∫
T

H̃k(U(t)) dt]2

= lim
σ→0

E[
1

σ2(T )

+∞∑
q=0

∑
k∈N3

|k|=q

af,σ(k, u)

∫
T

H̃k(U(t)) dt]2

= lim
σ→0

E[Jf (u, σ)]2 = E[Jf (u)]2 < +∞,
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the two last equalities providing from equality (3.7) and from Proposition 3.7 and the
third last equality from the expansion in L2(Ω) of Jf (u, σ) (see (3.7)) and precedent
remark. The finiteness of E[Jf (u)]2 comes from Lemma 3.2.
Thus the random variable η(T ) ∈ L2(Ω) and

E[η(T )]2 =

+∞∑
q=0

E

[
1

σ2(T )

∑
k∈N3

|k|=q

af (k, u)

∫
T

H̃k(U(t)) dt

]2

. (3.10)

This achieves proof of Lemma 3.8. 2
It remains to prove that Jf (u) = η(T ) in L2(Ω).

As in the proof of Theorem 3.1, we write ‖·‖L2(Ω) for the L2(Ω)-norm.
For fixed Q ∈ N and σ > 0, one has the following inequalities

‖Jf (u)− η(T )‖L2(Ω) 6 ‖πQ(Jf (u)− η(T ))‖L2(Ω)

+
∥∥πQ(Jf (u)− Jf (u, σ))

∥∥
L2(Ω)

+
∥∥πQ(Jf (u, σ)− η(T ))

∥∥
L2(Ω)

6 ‖πQ(Jf (u))‖L2(Ω) + ‖πQ(η(T ))‖L2(Ω) + ‖Jf (u)− Jf (u, σ)‖L2(Ω)

+
∥∥πQ(Jf (u, σ)− η(T ))

∥∥
L2(Ω)

.

Now by Lemma 3.2 and Lemma 3.8, Jf (u) and η(T ) belong to L2(Ω), thus
limQ→+∞ ‖πQ(Jf (u))‖L2(Ω) = limQ→+∞ ‖πQ(η(T ))‖L2(Ω) = 0.

Furthermore due to Proposition 3.7, lim
σ→0
‖Jf (u)− Jf (u, σ)‖L2(Ω) = 0 and for fixed Q ∈ N

and since limσ→0 af,σ(k, u) = af (k, u), lim
σ→0

∥∥πQ(Jf (u, σ)− η(T ))
∥∥
L2(Ω)

= 0.

Hence, for fixed Q ∈ N and taking limit as σ tends to zero one obtains,

‖Jf (u)− η(T )‖L2(Ω) 6 ‖πQ(Jf (u))‖L2(Ω) + ‖πQ(η(T ))‖L2(Ω) .

Then, taking limit as Q tends to infinity one finally gets

‖Jf (u)− η(T )‖L2(Ω) = 0.

Theorem 3.5 ensues. 2

3.3 One order Rice formula

As by product of Theorem 3.1, we obtain the one order Rice formula for the general
functional Jf (u), u being a fixed level in R. More precisely we have the

Proposition 3.10. For f : S1 → R a continuous and bounded function and u a fixed
level in R, one has

E[Jf (u)] = pX(0)(u)E[f

(
∇X(0)

‖∇X(0)‖2

)
‖∇X(0)‖2],

where pX(0)(·) stands for the density of X(0).

Proof of Proposition 3.10. We refer to Theorem 2.5 stated in section 2.1 and we check
that processes X and Ỹ := f(νX)1Dr

X
verify assumptions given in this theorem, that is

assumptions H1, H3, H4 and H5.
Theorem 3.1 implies that assumptions H1 and H4 are satisfied, assumption H3 being
fulfilled.
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Thus we just check if the hypothesis H5 is verified. In this context, let us compute the
following integral:

∫
T

pX(t)(u)E
[
Ỹ (t) ‖∇X(t)‖2 |X(t) = u

]
dt =

σ2(T ) pX(0)(u)E[f
(
∇X(0)
‖∇X(0)‖2

)
‖∇X(0)‖2] < +∞.

Since function u 7−→ pX(0)(u) is continuous, hypothesis H5 is satisfied. All conditions
are met to apply the Rice formula, and one gets,

E[Jf (u)] =
1

σ2(T )

∫
T

pX(t)(u)E
[
f
(
∇X(t)
‖∇X(t)‖2

)
1Dr

X
(t) ‖∇X(t)‖2 |X(t) = u

]
dt

= pX(0)(u)E[f
(
∇X(0)
‖∇X(0)‖2

)
‖∇X(0)‖2].

The proof is completed. 2

4 Convergence of general level functionals

In this section (Tn)n will be open bounded squares of R2, with the following form
Tn := ]−n, n[

2 with n ∈ N?, and n tends to infinity. Also let u be a fixed level in R.
Remember that for a continuous and bounded function f , f : S1 → R, we have defined
in section 2.1 the following general functional J (n)

f (u) of the level u as:

J
(n)
f (u) :=

1

(2n)2

∫
Cn(u)

f(νX(t)) dσ1(t),

where νX(t) = ∇X(t)
‖∇X(t)‖2

.
Our objective consists now to establish the almost sure convergence of such functionals
and also their asymptotic normality, when the observation window Tn tends to R2 as n
tends to infinity. To this end we will use the results established in previous section 3,
that is the Hermite expansion of the random variables J (n)

f (u) and also the one order
Rice formula in order to compute their expectation.

4.1 Almost sure convergence for J (n)
f (u)

By applying an ergodic theorem for stationary processes (Adler [1, §6.5)]), we shall
show the following general almost sure convergence theorem.

Theorem 4.1. For f : S1 → R a continuous and bounded function,

J
(n)
f (u)

a.s.−−−−−→
n→+∞

E[J
(1)
f (u)].

Proof of Theorem 4.1. Let f : S1 → R a bounded and continuous fonction. As a first step
we suppose that function f is positive and that the square Tn has the following shape:
Tn := ]0, n[× ]0, n[. Lemma 4.2 is proved in Appendix A.
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Lemma 4.2. Let f : S1 → R be a positive continuous and bounded function. One has∫ n−1

0

∫ n−1

0

∫
C[t , t+1[×[s , s+1[(u)

f(νX(x)) dσ1(x) dtds

−
∫ 1

0

∫ 1

0

∫
C]0,t[×]0,s[(u)

f(νX(x)) dσ1(x) dtds

6
∫
CTn (u)

f(νX(x)) dσ1(x) 6∫ n+1

0

∫ n+1

0

∫
C[t−1 , t[×[s−1 , s[(u)

f(νX(x)) dσ1(x) dtds

Let us note H(t, s) :=
∫
C]0,t[×]0,s[(u)

f(νX(x)) dσ1(x).

On the one hand, since function f is bounded, we have the convergence that follows

1

(2n)2

∫ 1

0

∫ 1

0

H(t, s) dtds 6
C

(2n)2
σ1

(
C]0,1[2(u)

)
a.s.−−−−−→

n→+∞
0,

last convergence providing from Remark 2.9. Indeed, since

E[σ1

(
C]0,1[2(u)

)
]2 < +∞, we deduce that σ1

(
C]0,1[2(u)

)
is almost surely finite. On the

other hand, noting by

ξ(t, s) :=

∫
C[t , t+1[×[s , s+1[(u)

f(νX(x)) dσ1(x),

one has

1

(2n)2

∫ n−1

0

∫ n−1

0

∫
C[t , t+1[×[s , s+1[(u)

f(νX(x)) dσ1(x) dtds =

(
n− 1

2n

)2
1

(n− 1)2

∫ n−1

0

∫ n−1

0

ξ(t, s) dtds.

Since process X is a centred stationary Gaussian process with continuous trajectories
such that rx(t) tends to zero as ‖t‖2 tends to +∞, we deduce from [1, Theorem 6.5.4] that
process X is ergodic. Now since process X is strictly stationary and ergodic, we deduce
from [1, Theorem 6.5.2], that process ξ(t, s) is a strictly stationary ergodic process. Note
that the set [t, t + 1[×[s, s + 1[ is not an open set of R2. However Proposition 3.10 still
remains valid. That is the closure of this rectangle does not play role in the expression of
the one order Rice formula. Thus from Proposition 3.10 we know that E[|ξ(t, s)|] < +∞.
By [1, Theorem 6.5.1], we deduce that(

n− 1

2n

)2
1

(n− 1)2

∫ n−1

0

∫ n−1

0

ξ(t, s) dtds
a.s.−−−−−→

n→+∞

1

4
E[ξ(0, 0)] =

1

4
E[J

(1)
f (u)].

In the same way, one obtains(
n+ 1

2n

)2
1

(n+ 1)2

∫ n+1

0

∫ n+1

0

∫
C[t−1 , t[×[s−1 , s[(u)

f(νX(x)) dσ1(x) dtds

a.s.−−−−−→
n→+∞

1

4
E[J

(1)
f (u)].
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Finally, by using Lemma 4.2, one proved that

1

(2n)2

∫
C]0,n[2 (u)

f(νX(x)) dσ1(x)
a.s.−−−−−→

n→+∞

1

4
E[J

(1)
f (u)].

Now, working in a similar way succesively with Tn :=]−n, 0]×]0, n[ or Tn :=]−n, 0]×]−n, 0]

or still with Tn = ]0, n[×]− n, 0], one should prove the same convergence result for each
square Tn, even if Tn is not an open set of R2. Finally, if f is a positive function, by using
the linearity of the interest functional one have proved that

J
(n)
f (u)

a.s.−−−−−→
n→+∞

4× 1

4
E[J

(1)
f (u)] = E[J

(1)
f (u)].

To conclude the proof of Theorem 4.1, we decompose function f into its negative part
and into its positive part, that is under the shape, f = f+−f−, and we apply the previous
result to each of the interest functionals J (n)

f+ (u) and J (n)
f− (u). 2

4.2 Convergence in law for ξ(n)
f (u)

We establish a CLT for a centred and suitably rescalled general functional J (n)
f (u),

function f : S1 → R being any continuous and bounded function and u a fixed level in R.
Roughly speaking we decided to give the rate of convergence in Theorem 4.1. In this
aim we define the random variable ξ(n)

f (u) by

ξ
(n)
f (u) := 2n

(
J

(n)
f (u)− E[J

(n)
f (u)]

)
. (4.1)

First we compute the asymptotic variance of ξ(n)
f (u) as n goes to infinity, which is

the object of the following proposition. The proof as well as the following remark very
closely follow the ones given in [14, Proposition 2.1].

4.2.1 Asymptotic variance for ξ(n)
f (u)

The functionals ξ(n)
f (u) are also orthogonal in L2(Ω). This is a crucial fact for computing

its variance. Using the Arcones inequality (see [7, Lemma 1, p. 2245]), we deduce the
asymptotic variance of ξ(n)

f (u) as Tn grows to R2, this variance depending on the level u
as follows.

Proposition 4.3. For f : S1 → R a continuous and bounded function, we have the
following convergence,

lim
n→+∞

Var[ξ
(n)
f (u)] = Σf,f (u),

Σf,f (u) being defined by

Σf,f (u) :=

+∞∑
q=1

∑
k,m∈N3

|k|=|m|=q

af (k, u) af (m, u)R(k,m), (4.2)

where coefficients af (k, u) have been defined by equality (3.9), while R(k,m) is defined
as

R(k,m) :=

∫
R2

E[H̃k(U(0))H̃m(U(v))] dv. (4.3)
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Remark 4.4. If f is a function with constant sign, then Σf,f (u) > 0.

Proof of Proposition 4.3. One has the following expansion in L2(Ω),

ξ
(n)
f (u) =

1√
σ2(Tn)

+∞∑
q=1

∑
k∈N3

|k|=q

af (k, u)

∫
Tn

H̃k(U(t)) dt.

Indeed by using Theorem 3.5 it remains to establish that E[J
(n)
f (u)] = af (0, u), where

0 := (0, 0, 0) ∈ N3. Thus it is enough to remark that a(0, u) = φ

(
u√
rz(0)

)
1√
rz(0)

=

pX(0)(u) and that af (0, 0) = E[f

(
∇X(0)

‖∇X(0)‖2

)
‖∇X(0)‖2], since

‖∇X(0)‖2 =
√
µ

∥∥∥∥PΛ.

(
U1(0)

U2(0)

)∥∥∥∥
2

=
√
µ

∥∥∥∥Λ.

(
U1(0)

U2(0)

)∥∥∥∥
2

.

Proposition 3.10 gives the result.

Since the random variable ξ(n)
f (u) is a centred one, using equality given in (3.10) and

Mehler’s formula (see Lemma 3.9 of Section 3.2), we obtain

Var
[
ξ

(n)
f (u)

]
= E[ξ

(n)
f (u)]2 =

+∞∑
q=1

∑
k,m∈N3

|k|=|m|=q

af (k, u) af (m, u)Rn(k,m) (4.4)

with

Rn(k,m) :=
1

(2n)2

∫
]−n,n[2

∫
]−n,n[2

E[H̃k(U(s))H̃m(U(t))] ds dt.

Thus and since U is a stationary process, we have

Rn(k,m) =

∫
]−2n,2n[2

E[H̃k(U(0))H̃m(U(v))]

(
1− |v1|

2n

)(
1− |v2|

2n

)
dv.

Now by applying Lemma 3.9 to X := U(0) and Y := U(v), one has for |k| = |m|,

E[H̃k(U(0))H̃m(U(v))] =
∑
dij>0∑
j dij=ki∑
i dij=mj

k!m!
∏

16i,j63

(ΓUij (v))dij

dij !
,

where

ΓUij (v) := E[Ui(0)Uj(v)]. (4.5)

Since

ΓU (v) = (ΓUij (v))16i,j63

=

−
1

µ
P t(

∂2rz
∂vi∂vj

(A.v))16i,j62 P − 1√
µrz(0)

P t(
∂rz
∂vi

(A.v))16i62

− 1√
µrz(0)

(
∂rz
∂vi

(A.v))t16i62 P
rz(A.v)

rz(0)

 ,
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we have for any v ∈ R2,

sup
16i,j63

∣∣ΓUij (v)
∣∣ 6 LΨ(A.v), (4.6)

where the function Ψ has been introduced in Section 2.2 and L is some positive constant.
Hence, for |k| = |m| = q, with q ∈ N?,∣∣∣E[H̃k(U(0))H̃m(U(v))]

∣∣∣ 6 L′Ψq(A.v),

where L′ is some constant depending on q.
By the covariance assumption HΨ previously stated in Section 2.2, Ψ ∈ L1(R2) and
then Ψq(A·) ∈ L1(R2). We can apply the Lebesgue convergence theorem and obtain, for
k,m ∈ (N3)?,

lim
n→+∞

Rn(k,m) = R(k,m) :=

∫
R2

E[H̃k(U(0))H̃m(U(v))] dv.

Now turning back to (4.4), we write

Var
[
ξ

(n)
f (u)

]
=

+∞∑
q=1

V (n)
q (u),

and according to what we have just seen, for all q ∈ N?,

Vq(u) := lim
n→+∞

V (n)
q (u) =

∑
k,m∈N3

|k|=|m|=q

af (k, u) af (m, u)R(k,m). (4.7)

Note that for any q, V (n)
q (u) > 0 and so Vq(u).

Thus, if we prove that limQ→+∞ supn
∑+∞
q=Q+1 V

(n)
q (u) = 0, Fatou’s lemma implies that

limQ→+∞
∑+∞
q=Q+1 Vq(u) = 0. Thus (

∑Q
q=1 Vq(u))Q is an upper bounded increasing se-

quence and consequently a converging sequence, that is the series Σf,f (u) :=
∑+∞
q=1 Vq(u)

will be convergent. Also the first convergence will imply that Var
[
ξ

(n)
f (u)

]
tends to

Σf,f (u). The proof of Proposition 4.3 will be completed. Thus let us prove this conver-
gence via a lemma.

Lemma 4.5. For q, n ∈ N?, let

V (n)
q (u) :=

∑
k,m∈N3

|k|=|m|=q

af (k, u) af (m, u)Rn(k,m),

with f : S1 → R a continuous and bounded function. One has the following convergence

lim
Q→+∞

sup
n>1

+∞∑
q=Q+1

V (n)
q (u) = 0. (4.8)

Proof of Lemma 4.5. First, let us remark that the convergence in (4.8) is equivalent to
the following one:

lim
Q→+∞

Var
[
πQ(ξ

(n)
f (u))

]
= 0,

uniformly with respect to n, where πQ stands for the projection onto the chaos of strictly
upper order in Q.
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For the sake of simplicity of writing, let us note Vn,Q := Var
[
πQ(ξ

(n)
f (u))

]
.

Let s ∈ R2 and θs be the shift operator associated with the field X, that is, θsX := Xs+·.
Let us also introduce the set of indices In := [−n, n[2 ∩Z2, clearly we have

πQ(ξ
(n)
f (u)) =

1

2n

∑
s∈In

θs(πQ(ξf,1(u))),

where the random variable ξf,1(u) is

ξf,1(u) :=

+∞∑
q=1

∑
k∈N3

|k|=q

af (k, u)

∫
]0,1[2

H̃k(U(t)) dt.

The stationarity of X leads to

Vn,Q =

(
1

2n

)2 ∑
s∈I2n

αs(n)E[πQ(ξf,1(u))θs(πQ(ξf,1(u)))],

where αs(n) := card{t ∈ In, t− s ∈ In}.
Obviously, one has αs(n) 6 (2n)2.
Now, on the one hand, by the covariance assumption HΨ made in Section 2.2,
lim‖x‖2→+∞Ψ(x) = 0, and since the eigenvalues of A are strictly positive one also has
lim‖x‖2→+∞Ψ(A.x) = 0.
On the other hand, let 0 < ρ < 1 such that

ρL(u) < 1 where L(u) := 2
u2

rz(0)
+ 1, (4.9)

and a > 0 such that ‖x‖2 > a implies

3LΨ(Ax) 6 ρ < 1, (4.10)

where L is defined by (4.6).
We split Vn,Q into Vn,Q = V

(1)
n,Q + V

(2)
n,Q, where in V

(1)
n,Q the sum runs over the indices

s in {s ∈ I2n, ‖s‖∞ < a+ 3} and in V (2)
n,Q over s in {s ∈ I2n, ‖s‖∞ > a+ 3}, ‖·‖∞ standing

for the supremum norm. By Schwarz inequality and since αs(n) 6 (2n)2, using the
stationarity of X one has the following upper bound,∣∣∣V (1)

n,Q

∣∣∣ 6 (2(a+ 3))2E[πQ(ξf,1(u))]2,

which goes to zero as Q goes to infinity uniformly with respect to n, since adapting
equality (3.10) to the present situation one can proved that limQ→+∞E[πQ(ξf,1(u))]2 = 0.

We proved that limQ→+∞ supn V
(1)
n,Q = 0.

Now, let us consider the term V
(2)
n,Q.

V
(2)
n,Q :=

(
1

2n

)2 ∑
s∈I2n

‖s‖∞>a+3

αs(n)E[πQ(ξf,1(u))θs(πQ(ξf,1(u)))].

For q ∈ N?, let us define function Fq by

Fq(x) :=
∑
k∈N3

|k|=q

af (k, u) H̃k(x), x ∈ R3.
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For s ∈ I2n such that ‖s‖∞ > a+ 3,

E[πQ(ξf,1(u))θs(πQ(ξf,1(u)))] =

+∞∑
q=Q+1

∫
]0,1[2

∫
]0,1[2

E[Fq(U(t))Fq(U(s+ v))] dtdv.

At this step of the proof we want to propose a bound for E[Fq(U(t))Fq(U(s + v))],
t, v ∈ ]0, 1[

2.
Note that if

∑
k∈N3

|k|=q
a2
f (k, u)k! = 0, then Fq(x) = 0 for all x ∈ R3 and a trivial bound is

zero. So let us suppose that
∑

k∈N3

|k|=q
a2
f (k, u)k! 6= 0.

We are going to apply Arcones inequality (see [7, Lemma 1 p. 2245]). By using no-
tations of this lemma, we apply it to f := Fq and to X = (X(j))16j63 := U(t) and
Y = (Y (k))16k63 := U(s+ v), with d = 3, such that r(j,k) = E[X(j)Y (k)] := ΓUjk(s− t+ v),

ΓU being defined in (4.5).
Now by using inequalities given in (4.6) and (4.10),

ψ :=

(
sup

16j63

3∑
k=1

∣∣∣r(j,k)
∣∣∣) ∨

 sup
16k63

3∑
j=1

∣∣∣r(j,k)
∣∣∣


6 3LΨ(A.(s− t+ v)) 6 ρ < 1. (4.11)

It remains to verify that Fq function on R3 has finite second moment and rank q.
In the first place by Lemma 3.9 given in Section 3.2 one has

E[Fq(X)]2 = E[Fq(U(t))]2 =
∑
k∈N3

|k|=q

a2
f (k, u)k! < +∞.

In the second place and since
∑

k∈N3

|k|=q
a2
f (k, u)k! 6= 0, this last equality ensures that

rank Fq 6 q. Furthermore let m ∈ N3 such that E[Fq(X)H̃m(X)] 6= 0. By Lemma 3.9,

E[Fq(X)H̃m(X)] =
∑

k∈N3

|k|=q
af (k, u)k!1|k|=|m|, which implies |m| = q and rank Fq = q.

Thus we have all the ingredients to apply Arcones inequality. For q > 1, using inequality
given in (4.11) we get the bound

E[Fq(U(t))Fq(U(s+ v))] 6 ψq E[Fq(U(t))]2

6 ρq−1 (3L) Ψ(A.(s− t+ v)) (
∑
k∈N3

|k|=q

a2
f (k, u)k!).

As already pointed out in Remark 3.6, the series
∑

k∈N3 a2
f (k, u)k! = +∞, so that we

have to tread carefully in what follows.
Finally and since αs(n) 6 (2n)2, one has∣∣∣V (2)

n,Q

∣∣∣ 6 C

+∞∑
q=Q+1

∑
k∈N3

|k|=q

ρq−1 a2
f (k, u)k!

∑
s∈I2n

∫
]0,1[2

∫
]0,1[2

Ψ(A.(s− t+ v)) dt dv.

Using that∑
s∈I2n

∫
]0,1[2

∫
]0,1[2

Ψ(A.(s− t+ v)) dt dv 6
∫
R2

Ψ(A.v) dv

6 C

∫
R2

Ψ(v) dv < +∞,
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last finiteness providing from assumption HΨ made in Section 2.2, one has∣∣∣V (2)
n,Q

∣∣∣ 6 C

+∞∑
q=Q+1

∑
k∈N3

|k|=q

ρq−1 a2
f (k, u)k!.

To conclude the proof of this lemma we just have to check that

+∞∑
q=1

∑
k∈N3

|k|=q

ρq−1 a2
f (k, u)k! < +∞.

Now remember that for k = (ki)16i63 ∈ N3,

af (k, u) = af (k1, k2) a(k3, u),

with af (k1, k2) and a(k3, u) respectively defined by equalities (3.6) and (3.8).
On the one hand, since the function

h : (y1, y2) 7→ f
( PΛ.

(
y1
y2

)
√
λ2

1y
2
1 + λ2

2y
2
2

)√
λ2

1y
2
1 + λ2

2y
2
2

is such that h ∈ L(R2, φ2(y) dy), we deduce that,∑
k1,k2∈N

a2
f (k1, k2)k1! k2! < +∞. (4.12)

On the other hand by using the expression of Hermite’s polynomials given in Appendix A
by (A.3) and (A.4), for all k ∈ N and for all x ∈ R we get the bound

H2
k(x) 6 (k + 1)! (2x2 + 1)k,

so that for all k ∈ N3 such that |k| = q and remembering that L(u) has been defined in
(4.9), one has

k3! a2(k3, u) 6 C (k3 + 1)Lk3(u) 6 C (q + 1)Lq(u).

Thus by inequality (4.12), finally one obtains

+∞∑
q=1

∑
k∈N3

|k|=q

ρq−1 a2
f (k, u)k! 6 C

+∞∑
q=1

ρq−1 (q + 1)2 Lq(u) < +∞,

last finiteness providing from inequality (4.9).
This yields Lemma 4.5. 2
Proposition 4.3 ensues. 2

Proof of Remark 4.4. Remark ensues from the following argumentation.
We have seen in the proof of Proposition 4.3 that Σf,f (u) =

∑+∞
q=1 Vq(u), with

Vq(u) =
∑

k,m∈N3

|k|=|m|=q

af (k, u) af (m, u)R(k,m) > 0,

for all q > 1. Thus

Σf,f (u) > V1(u) + V2(u).
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By using Lemma 3.9 and the inversion formula, a computation gives that for |k| = |m| = 1,
R(k,m) = 0 except when k = m = (0, 0, 1) and in this case one has

R((0, 0, 1), (0, 0, 1)) =
1

rx(0)

∫
R2

rx(v) dv = (2π)2 fz(0)

λ1λ2rz(0)
.

Thus

V1(u) = a2
f (0, 0)

u2

r2
z(0)

φ2
( u√

rz(0)

)
(2π)2 fz(0)

λ1λ2rz(0)
> 0,

if u 6= 0, since f is supposed to have constant sign and fz(0) > 0 (see Remark 2.11 given
in Section 2.2).
Using arguments similar to the previous ones, the fact that

∫
R2 fz(t) ‖t‖22 dt < +∞ (see

Remark 2.12) and Parseval equality, straightforward calculations provide that

V2(u) = 2× (2π)2

∫
R2

f2
x(t)×

[
af ((1, 1, 0), u)(d11d21t

2
1

+(d11d22 + d12d21)t1t2 + d12d22t
2
2) + af ((1, 0, 1), u)

1√
rz(0)

(d11t1 + d12t2)

+af ((0, 1, 1), u)
1√
rz(0)

(d21t1 + d22t2) + af ((2, 0, 0), u)(d11t1 + d12t2)2

+af ((0, 2, 0), u)(d21t1 + d22t2)2 + af ((0, 0, 2), u)
1

rz(0)

]2

dt > 0,

where (dij)16i,j62 = D :=
1
√
µ

Λ−1P t.

Remark 4.6. Note that in the case where the process X is isotropic our result contains
that of Kratz and León [20, Theorem 3].

Since det(D) 6= 0, one gets the following equivalence:

(V2(u) = 0) ⇐⇒ (af (k, u) = 0, for all k ∈ N3 such that |k| = 2)

In particular, since f has a constant sign, af (0, 0) 6= 0 so that af ((0, 0, 2), 0) 6= 0 and
V2(0) > 0.
Finally we proved that for u 6= 0, Σf,f (u) > V1(u) + V2(u) > V1(u) > 0 and for u = 0,
Σf,f (0) > V1(0) + V2(0) > V2(0) > 0.
The proof of Remark 4.4 is completed. 2

Now, we have got all the tools to prove that the random variable ξ(n)
f (u) converges

in law as n tends to infinity to a centred Gaussian variable with finite variance Σf,f (u)

given by (4.2), see Theorem 4.7. The proof we give for this theorem, is inspired by the
one presented in [14, Proposition 2.4].

4.2.2 General level functionals viewed into the Wiener-Itô chaos

Using the Peccati and Tudor theorem (see [26]), we obtain the following theorem.

Theorem 4.7. For f : S1 → R a continuous and bounded function, we have the following
convergence,

ξ
(n)
f (u)

Law−−−−−→
n→+∞

N (0;Σf,f (u)).
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Remark 4.8. For example if f ≡ 1, we find that the normalized centred curve length
converges in law to a non degenerate Gaussian random variable.

Note that for all real numbers a and b and for all continuous and bounded functions,
f1 and f2 : S1 → R, one has ξ(n)

af1+bf2
(u) = aξ

(n)
f1

(u) + bξ
(n)
f2

(u).
By generalizing the definition given in (4.1), we define the following functional. For

k ∈ N? and
−→
f := (f1, f2, · · · , fk) : S1 → Rk continuous and bounded function let

ξ
(n)
−→
f

(u) := 2n
(
J

(n)
−→
f

(u)− E[J
(n)
−→
f

(u)]
)

where

J
(n)
−→
f

(u)− E[J
(n)
−→
f

(u)] :=
(
J

(n)
fi

(u)− E[J
(n)
fi

(u)]
)

16i6k
. (4.13)

We define

Σfi,fj (u) :=

+∞∑
q=1

∑
k,m∈N3

|k|=|m|=q

afi(k, u) afj (m, u)R(k,m),

where R(k,m) is defined by (4.3), and

Σ−→
f

(u) :=
(
Σfi,fj (u)

)
16i,j6k

. (4.14)

By Cramer-Wold device we readily get Corollary 4.9.

Corollary 4.9. For all k ∈ N? and all
−→
f := (f1, · · · , fk) : S1 → Rk continuous and

bounded function, one has

ξ
(n)
−→
f

(u)
Law−−−−−→

n→+∞
N (0;Σ−→

f
(u)).

Proof of Theorem 4.7. First, let Q a fixed integer in N? and let us consider the projection
of the random variable ξ(n)

f (u) onto the first Q chaos in L2(Ω) that is

πQ(ξ
(n)
f (u)) :=

1

2n

Q∑
q=1

∑
k∈N3

|k|=q

af (k, u)

∫
Tn

H̃k(U(t)) dt.

We will show the asymptotic normality of this sequence as n tends to infinity. For this
purpose and in order to apply the Peccati and Tudor theorem (see [26, Theorem 1]), we
will give an expansion of this random variable into the Wiener-Itô chaos of order less or
equal to Q.
To this end, remember that in Section 3.2 for any t ∈ R2 one has defined the 3-dimensional
standard Gaussian vector U(t) as

U(t) =

∫
R2

ei 〈t, λ〉
√
fx(λ) ∆−1.ν(λ) dW (λ) = (Ui(t))16i63,

where W stands for the standard Brownian motion and for any λ = (λi)16i62 in R2,

ν(λ) = (iλ1, iλ2, 1).

In what follows, for any t ∈ R2 and j = 1, 2, 3, we denote by ϕt,j the square integrable
map on R2 such that,

Uj(t) =

∫
R2

ϕt,j(λ) dW (λ).
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Since (ϕt,j)16j63 is an orthonormal system in L2(R2), using Itô’s formula (see Major [23,
Theorem 4.2 p. 30]), for fixed k = (ki)16i63 ∈ N3 such that |k| = q,

H̃k(U(t)) =

3∏
j=1

Hkj (Uj(t))

=

∫
R2q

ϕ⊗k1t,1 ⊗ ϕ
⊗k2
t,2 ⊗ ϕ

⊗k3
t,3 (λ1, . . . , λq) dW (λ1) · · · dW (λq)

= Iq(ϕ
⊗k1
t,1 ⊗ ϕ

⊗k2
t,2 ⊗ ϕ

⊗k3
t,3 ),

where Iq stands for the Wiener-Itô integral of order q.
We shall use notations introduced in Slud [30].
For each q > 1, let consider L2

sym((R2)q) the complex Hilbert-space

L2
sym((R2)q) := {fq ∈ L2((R2)q), such that for all x ∈ (R2)q,

fq(x) = fq(−x), fq(x1, . . . , xq) = fq(xπ(1), . . . , xπ(q)),∀π ∈ Sq},

where Sq denotes the symmetric group of permutations of {1, . . . , q}.
For fq ∈ L2((R2)q), we denote by sym(fq) the symmetrization of fq, that is for x1, . . . , xq ∈
R2,

sym(fq)(x1, . . . , xq) :=
1

q!

∑
π∈Sq

fq(xπ(1), . . . , xπ(q)).

Observe that for fq ∈ L2((R2)q) such that for all x ∈ (R2)q, fq(x) = fq(−x), one has

Iq(fq) = Iq(sym(fq)). (4.15)

For q > 1, fq ∈ L2
sym((R2)q) and p = 1, . . . , q, we will write fq⊗p fq for the p-th contraction

of fq defined as

fq ⊗p fq(λ1, . . . , λ2q−2p) :=

∫
(R2)p

fq(λ1, . . . , λq−p, x1, . . . , xp)

fq(λq−p+1, . . . , λ2q−2p,−x1, . . . ,−xp) dx1 · · · dxp.

Using the property of Iq given in (4.15), the random variable of interest can be written
as

πQ(ξ
(n)
f (u)) =

Q∑
q=1

Iq(f
(n)
q ),

where for n, q ∈ N?

f (n)
q :=

1

2n

∑
k∈N3

|k|=q

af (k, u)

∫
Tn

sym(ϕ⊗k1t,1 ⊗ ϕ
⊗k2
t,2 ⊗ ϕ

⊗k3
t,3 ) dt.

We symmetrized the function f (n)
q with the aim of applying [26, Theorem 1].

Symmetrizing the function complicates a lot the calculations in the study of the contrac-
tions. So we are going to write function f (n)

q in another way.
For k = (ki)16i63 such that |k| = q, we define

Ak := {m = (m1, . . . ,mq) ∈ {1, 2, 3}q,∀i = 1, 2, 3,

q∑
j=1

1{i}(mj) = ki},
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one has card{Ak} = k!/q!. Let us remark that the sets (Ak)k∈N3,|k|=q provide a partition
of {1, 2, 3}q.
With these notations one has

∑
k∈N3

|k|=q

af (k, u) sym(ϕ⊗k1t,1 ⊗ ϕ
⊗k2
t,2 ⊗ ϕ

⊗k3
t,3 ) =

sym
( ∑

k∈N3

|k|=q

∑
m∈Ak

af (k, u)

card(Ak)
ϕt,m1 . . . ϕt,mq

)
.

Since (Ak)k∈N3,|k|=q provides a partition of {1, 2, 3}q, then for all m ∈ {1, 2, 3}q,∃!k ∈ N3

such that |k| = q and m ∈ Ak. So for fixed m ∈ {1, 2, 3}q, let bf (m,u) :=
af (k, u)

card(Ak)
. Thus

∑
k∈N3

|k|=q

af (k, u) sym(ϕ⊗k1t,1 ⊗ ϕ
⊗k2
t,2 ⊗ ϕ

⊗k3
t,3 )

= sym
( ∑
m∈{1,2,3}q

bf (m,u)ϕt,m1
· · ·ϕt,mq

)
=

∑
m∈{1,2,3}q

bf (m,u)ϕt,m1
· · ·ϕt,mq

since m 7→ bf (m,u) is symmetric on {1, 2, 3}q.
Finally the random variable πQ(ξ

(n)
f (u)) can be written as

πQ(ξ
(n)
f (u)) =

Q∑
q=1

Iq(f
(n)
q ),

where for n, q ∈ N?

f (n)
q =

1

2n

∫
]−n,n[2

∑
m∈{1,2,3}q

bf (m,u)ϕt,m1
· · ·ϕt,mq dt,

that ends our first objective.
To obtain convergence of πQ(ξ

(n)
f (u)), we use [26, Theorem 1]. Convergence in Proposi-

tion 4.3 gives the required conditions appearing at the beginning of this latter theorem.
So we just verify condition (i) in proving the following lemma.

Lemma 4.10. For fixed integers q and p such that q > 2 and p = 1, . . . , q − 1,

lim
n→+∞

∫
(R2)2(q−p)

∣∣∣f (n)
q ⊗p f (n)

q (λ1, . . . , λq−p, µ1, . . . , µq−p)
∣∣∣2

dλ1 . . . dλq−p dµ1 . . . dµq−p = 0.

Proof of Lemma 4.10. Let

Cn :=

∫
(R2)2(q−p)

∣∣∣f (n)
q ⊗p f (n)

q (λ1, . . . , λq−p, µ1, . . . , µq−p)
∣∣∣2

dλ1 . . . dλq−p dµ1 . . . dµq−p.

EJP 0 (2017), paper 0.
Page 37/72

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/


Estimation of Local Anisotropy Based on Level Sets

Straightforwards calculations show that

Cn =

(
1

2n

)4 ∫
(]−n,n[2)4

∑
k,m∈{1,2,3}q

∑
K,M∈{1,2,3}q

bf (k, u) bf (m,u)

bf (K,u) bf (M,u)ΓUk1,K1
(t1 − t2) . . .ΓUkq−p,Kq−p(t1 − t2)×

ΓUm1,M1
(s1 − s2) · · ·ΓUmq−p,Mq−p

(s1 − s2)ΓUkq−p+1,mq−p+1
(t1 − s1) · · · ×

ΓUkq,mq (t1 − s1)ΓUKq−p+1,Mq−p+1
(t2 − s2) · · ·ΓUKq,Mq

(t2 − s2) dt1 ds1 dt2 ds2 ,

where ΓU has been defined in (4.5).
Using inequality (4.6), we get the bound

Cn 6

(
1

2n

)4

L2q
( ∑
m∈{1,2,3}q

|bf (m,u)|
)4
∫

(]−n,n[2)4
Ψq−p(A.(t1 − t2))×

Ψq−p(A.(s1 − s2))Ψp(A.(t1 − s1))Ψp(A.(t2 − s2)) dt1 ds1 dt2 ds2.

Moreover, we have

Ψq−p(A.(t1 − t2))Ψp(A.(t2 − s2)) 6 Ψq(A.(t1 − t2)) + Ψq(A.(t2 − s2)).

Furthermore for r ∈ N?, one has∫
]−n,n[2

Ψr(A.(u− v)) dudv 6 C

∫
R2

Ψr(u) du < +∞.

Applying the penultimate and last inequalities to p > 1, q > 1 and q − p > 1, one obtains

Cn 6 Cq

(
1

2n

)2 (∫
R2

Ψq(u) du
)(∫

R2

Ψq−p(u) du
)(∫

R2

Ψp(u) du
)
,

thus we proved that limn→+∞ Cn = 0, this achieves proof of Lemma 4.10. 2

Hence we proved that,

• for all Q > 1, πQ(ξ
(n)
f (u))

Law−−−−−→
n→+∞

N(0;
∑Q
q=1 Vq(u)), where Vq(u) has been defined

by (4.7).
On the other hand we proved in Lemma 4.5 that

• for all n > 1, πQ(ξ
(n)
f (u))

L2(Ω)−−−−−→
Q→+∞

ξ
(n)
f (u),

and that

• lim
Q→+∞

Q∑
q=1

Vq(u) = Σf,f (u).

Finally and by Proposition 4.3 we also have

• lim
Q→+∞

lim
n→+∞

∥∥∥πQ(ξ
(n)
f (u))− ξ(n)

f (u)
∥∥∥
L2(Ω)

= 0.

Applying Dynkin [13, Lemma 1.1], we can conclude that ξ(n)
f (u)

Law−−−−−→
n→+∞

N(0;Σf,f (u)),

that achieves proof of Theorem 4.7. 2
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5 The affinity estimators

In this section (Tn)n will be still open bounded squares of R2, with the following form
Tn := ]−n, n[

2 with n ∈ N?, and n tends to infinity. Also u will be a fixed level in R.
We propose estimators of the affinity parameters defined as λ and θ, by considering the
particular functional of the level set u proposed by Wschebor [32, chap. 3.6 F, pages
82-85]. In this aim we reproduce in sections 5.1, 5.2 and 5.3 all the computations
made by Wschebor including the three forthcoming attached pictures. By using the
general convergence results established in previous section 4 we point out convergence
properties of these estimators.

5.1 The functional of interest

Let J (n)
−→
f?

(u) this particular functional (see notations given in (4.13) for the definition

of a general vector-functional of the level u), where the vector-function
−→
f? is defined as

follows. Let v? ∈ S1 a fixed vector and consider

S1 −→ S1

ω 7→
−→
f?(ω) := ω × (1{〈ω,v?〉>0} − 1{〈ω,v?〉<0}).

(5.1)

Remark 5.1. Note that function
−→
f? is continuous except on the line given by equation

〈ω, v?〉 = 0. Nevertheless Rice formulas will still remain valid for the associated function-
als. To be convinced of that, one only needs to apply the same techniques as those used
for showing Lemma 3.2.

Remember that in section 2.2 we have denoted the eigenvalues of A by λ1, λ2,

0 < λ2 6 λ1. Also 0 < λ 6 1 has been defined as the quotient of the eigenvalues, λ :=
λ2

λ1
.

Let P := (v1, v2) be an orthonormal basis of eigenvectors of matrix A, such that λ1

and λ2 are their respectives eigenvalues. The vector v? can always be written in this
basis:

v? = cos(θ)v1 + sin(θ)v2.

It is always possible to choose −π2 < θ 6 π
2 .

Indeed, θ could be the angle between v? and the eigenvector corresponding to the
highest eigenvalue, because of the symmetry with respect to the point (0, 0) and the fact
that the mapping transforms λ into 1

λ and θ into π
2 − θ has this effect.

By defining v?? := cos(θ+ π
2 ) v1 + sin(θ+ π

2 ) v2 = − sin(θ) v1 + cos(θ) v2, we thus defined a
direct orthonormal basis (v?, v??), see Figure 1.

Theorem 4.1 applied to the particular functions
−→
f? and to the function 1 taking values

in R and identically equal to one implies that,

J
(n)
−→
f?

(u)

J
(n)
1 (u)

a.s.−−−−−→
n→+∞

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

. (5.2)

Applying the Rice formula for this particular function
−→
f? and for the function 1, we show

the following proposition.

Proposition 5.2.

J
(n)
−→
f?

(u)

J
(n)
1 (u)

a.s.−−−−−→
n→+∞

1

I(λ)

[
(cos2(θ) + λ2 sin2(θ))

1
2 v? +

sin(θ) cos(θ)(λ2 − 1)

(cos2(θ) + λ2 sin2(θ))
1
2

v??
]
,
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Yn

Xn

+

θ

v1

v∗

v∗∗
v2

0

Figure 1: Eigenvector directions

where I(λ) is the elliptic integral

I(λ) :=

∫ π
2

0

(cos2(x) + λ2 sin2(x))
1
2 dx. (5.3)

Remark 5.3. Note that J (n)
1 (u) =

σ1(Cn(u))

σ2(Tn)
. This functional is nothing but the measure-

ment of the dimensional length of the level set by unit of surface.

Proof of Proposition 5.2. We use a lemma for which a proof is given in Appendix.

Lemma 5.4.
E[J

(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

=
2

π

A2.v?

‖A.v?‖2
1∫

S1 ‖A.α‖2 dα
,

where dα denotes the normalized area measure on S1.

Using last equality we show that
E[J

(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

can be expressed in the orthonormal

basis (v?, v??) as follows. One has:

A2.v? = λ2
1

[
cos(θ) v1 + λ2 sin(θ) v2

]
,

and

‖A.v?‖2 = λ1

[
cos2(θ) + λ2 sin2(θ)

] 1
2 .

Also ∫
S1

‖A.α‖2 dα = λ1

∫ 2π

0

[
cos2(x) + λ2 sin2(x)

] 1
2

dx

2π
=

2λ1

π
I(λ),

where I(λ) is the elliptic integral defined by (5.3).
Thus by using Lemma 5.4 we proved that

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

=
1

I(λ)

cos(θ) v1 + λ2 sin(θ) v2[
cos2(θ) + λ2 sin2(θ)

] 1
2

.
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At this stage of the proof we are going to change the basis, that is expressing last identity
in the orthonormal basis (v?, v??), getting

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

=
1

I(λ)

[
(cos2(θ) + λ2 sin2(θ))

1
2 v? +

sin(θ) cos(θ)(λ2 − 1)

(cos2(θ) + λ2 sin2(θ))
1
2

v??
]
. (5.4)

Proposition 5.2 ensues from convergence given in (5.2). 2

We consider function
−→
F being defined by:

−→
F : ]0, 1]× ]−π2 ,

π
2 ] −→ {(X,Y ) ∈ R2, X > 0, X2 + Y 2 < 1}

(λ, θ) 7→
−→
F (λ, θ) = (F1(λ, θ), F2(λ, θ)),

(5.5)

where 
F1(λ, θ) :=

1

I(λ)
(cos2(θ) + λ2 sin2(θ))

1
2

F2(λ, θ) :=
1

I(λ)

sin(θ) cos(θ)(λ2 − 1)

(cos2(θ) + λ2 sin2(θ))
1
2

.

Proposition 5.2 says that
J

(n)
−→
f?

(u)

J
(n)
1 (u)

a.s.−−−−−→
n→+∞

F1(λ, θ) v? + F2(λ, θ) v??.

In order to define estimators for parameters λ and θ we need to look more closely at the
properties of function

−→
F . To this end we are going to follow step by step Wschebor’s

method given in [32, pages 82 to 85]. That is the object of next section.

5.2 The F -diffeomorphism

We prove the following proposition.

Proposition 5.5. Function
−→
F is a one to one function from ]0, 1[×]−π2 ,

π
2 ] onto {(X,Y ) ∈

R2, X > 0, X2 + Y 2 < 1 and (X 6= 2
π or Y 6= 0)}.

Furthermore
−→
F is a C2-diffeomorphism from the open set O := ]0, 1[×]− π

2 ,
π
2 [ onto the

open set O′ := {(X,Y ) ∈ R2, X > 0, X2 + Y 2 < 1 and (X > 2
π or Y 6= 0)}.

Proof of Proposition 5.5. We reproduce here all the computations given by Wschebor in
[32] and also attach his two forthcoming pictures.
Let (X,Y ) ∈ R2 be fixed such that X > 0, X2 + Y 2 < 1 and X 6= 2

π or Y 6= 0.
We consider the following system of equations{

X = F1(λ, θ)

Y = F2(λ, θ)
(5.6)

If the system admits a solution λ, this solution ought to verify the following equation in
λ:

X2 I4(λ) (X2 + Y 2)−X2 I2(λ) (λ2 + 1) + λ2 = 0. (5.7)

At this step, two cases appear: the case where (X2 +Y 2)(π2 )2− 1 < 0 and the case where
(X2 + Y 2)(π2 )2 − 1 > 0. Let us consider the first one.

1. (X2 + Y 2)(π2 )2 − 1 < 0.
Since for all x ∈ [0, 1], I(x) 6 π

2 , the following inequality holds, (X2+Y 2) I2(λ)−1 <

0.
Now dividing (5.7) by I2(λ)X2, one gets

I2(λ) (X2 + Y 2)− (λ2 + 1) +
λ2

I2(λ)X2
= 0,
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that is, since (X2 + Y 2) I2(λ)− 1 < 0,

f1(λ) = f2(λ), (5.8)

where

f1(λ) := X2

(
I(λ)

λ

)2

f2(λ) :=
X2 I2(λ)− 1

(X2 + Y 2) I2(λ)− 1
.

Equation (5.8) admits a unique solution in the interval 0 < λ < 1. Let us argue this
last assertion.
Since X > 0, function f1 is strictly decreasing, while f2 is such that f ′2(λ) =

2 I(λ) I ′(λ)

((X2 + Y 2) I2(λ)− 1)2
Y 2 > 0, if Y 6= 0.

Let us consider the case where Y 6= 0. In this case function f2 is strictly increasing.
By summarizing the situation we know that f1 − f2 is continuous on ]0, 1], strictly
decreasing and such that (f1 − f2)(0+) = +∞ and

(f1 − f2)(1) =
X2 Y 2 (π2 )4 + (X2 (π2 )2 − 1)2

(X2 + Y 2) (π2 )2 − 1
< 0. Thus there exists an unique 0 <

λ < 1, such that f1(λ) = f2(λ), see Figure 2.

λ 10

f1

f2

Figure 2: λ-solution, first case

Now, in the case where Y := 0, f2(λ) = 1. We define g by g(λ) :=
I(λ)

λ
. Since

X < 2
π , λ = g−1( 1

X ) is the unique solution in ]0, 1[ of (5.8).

Let us consider now the second case.

2. (X2 + Y 2)(π2 )2 − 1 > 0.

Since X2 + Y 2 > 0, function h : λ→ (X2 + Y 2) I2(λ)− 1 is strictly increasing and
continuous on ]0, 1].
Moreover, h(0) = X2 + Y 2 − 1 < 0 and h(1) = (X2 + Y 2)(π2 )2 − 1 > 0. Thus there
exists a unique 0 < λ0 6 1 such that h(λ0) = (X2 + Y 2) I2(λ0)− 1 = 0 and then for
λ < λ0, one has (X2 + Y 2) I2(λ)− 1 < 0 and for λ > λ0, (X2 + Y 2) I2(λ)− 1 > 0.
Arguing as in first part, we can deduce that if (5.6) admits a solution λ 6= λ0, this
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solution ought to verify f1(λ) = f2(λ).
Function f1 is strictly decreasing, while function f2 is strictly increasing if Y 6= 0.
In this case f1 − f2 is continuous on ]0, 1], strictly decreasing and such that (f1 −
f2)(0+) = +∞ and (f1 − f2)(λ−0 ) = −∞, since Y 6= 0. Thus there exists an unique
0 < λ < λ0 6 1, such that f1(λ) = f2(λ).
On the other side, still if Y 6= 0 and if λ0 < 1, we have (f1 − f2)(λ+

0 ) = +∞ and
(f1 − f2)(1−) > 0. Then there is no more solution of (5.8) into interval ]λ+

0 , 1].
Thus we have proved that in the case where Y 6= 0, if (5.6) admits a solution λ 6= λ0,
this solution is the unique solution in ]0, 1[ of (5.8) and this solution belongs to the
interval ]0, λ0[ see Figure 3.

λ λ0 10

f1 f2

f2

Figure 3: λ-solution, second case

Now we are going to prove that in the case where Y = 0, there is no solution to
(5.6) different from λ0.

In fact, if λ is such a solution, that is different from λ0, then f1(λ) = X2
(
I(λ)
λ

)2

=

f2(λ) = 1, that is no possible. Indeed, since X2(π2 )2 − 1 > 0 then we would have

1 < X2(π2 )2 6 X2
(
I(λ)
λ

)2

= 1.

To finish the proof of this part of proposition, we look for conditions on λ = λ0 to
be solution of (5.6). If such a solution exists necessarily it has to verify (5.7), and
then since (X2 + Y 2) I2(λ0)− 1 = 0, we would have λ2

0(1−X2 I2(λ0)) = 0, so that
Y = 0 and λ0 = I−1( 1

X ).
Thus, since X2(π2 )2 > 1 and then 0 < λ = λ0 = I−1( 1

X ) < 1.
If we combine all results we get the following: if (5.6) admits a solution λ then, this
solution is unique, satisfies 0 < λ < 1 and is such that:

• Or (X2 + Y 2)(π2 )2 − 1 < 0, and this solution verifies equation f1(λ) = f2(λ).
Furthermore in the case where Y = 0 then λ = g−1( 1

X ), where we recall that

g(λ) =
I(λ)

λ
.

• Or (X2 + Y 2)(π2 )2 − 1 > 0 and Y 6= 0, and this solution verifies equation
f1(λ) = f2(λ).

• Or X2(π2 )2 > 1 and Y = 0, and this solution is λ = I−1( 1
X ).

Remark 5.6. Note that in all cases λ verifies (5.7).
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Remark 5.7. Note that in all cases (X2 + Y 2) I2(λ)− 1 6 0.

Now by continuing the reasoning by necessary condition, if we want that λ < 1 verifies
the first equation of (5.6), we have to resolve the following equation:

X2 I2(λ) = (λ2 − 1) sin2(θ) + 1,

that is

sin2(θ) =
1−X2 I2(λ)

1− λ2
=

1

λ2
− f1(λ)

1

λ2
− 1

.

Let us see that 0 6

1

λ2
− f1(λ)

1

λ2
− 1

6 1. We have the following equivalence:

( 1
λ2 − f1(λ)

1
λ2 − 1

6 1

)
⇐⇒ (f1(λ) > 1) .

In the case where X2(π2 )2 > 1 and Y = 0, we have λ = I−1( 1
X ). Thus f1(λ) =

1

λ2
> 1,

since 0 < λ < 1.
In the other cases, f1(λ) = f2(λ) and since f2 is an increasing function, f1(λ) > f2(0+) =

X2 − 1

X2 + Y 2 − 1
> 1, since Y 2 > 0 and X2 + Y 2 − 1 < 0.

Now

( 1
λ2 − f1(λ)

1
λ2 − 1

> 0

)
⇐⇒

(
X2 I2(λ)− 1 6 0

)
.

Remark 5.7 gives the result.
If we look at the sign of expression F2(λ, θ), we have to set:

θ := arcsin

(√
1−X2I2(λ)

1− λ2

)(
1{Y60} − 1{Y >0}

)
.

In this way, we always have −π2 6 θ 6 π
2 and in fact θ > −π2 . To verify last inequality,

remark that (
θ = −π

2

)
⇐⇒

(
Y > 0 and X2I2(λ) = λ2

)
=⇒ (Y > 0 and f1(λ) = f2(λ) = 1) =⇒ (Y > 0 and Y = 0) ,

which is impossible.
Let us see now that we can go backward. That is let us verify that these proposed λ(< 1)

and θ are actually solutions of (5.6).(
sin2(θ) =

1−X2 I2(λ)

1− λ2

)
⇐⇒

(
X2 =

cos2(θ) + λ2 sin2(θ)

I2(λ)

)
⇐⇒

(
X =

(cos2(θ) + λ2 sin2(θ))
1
2

I(λ)
= F1(λ, θ)

)
,

last equivalence provides from the fact that X > 0.

Let us consider the second equation of (5.6). In the case where Y = 0 and X >
2

π
,

one has λ = I−1( 1
X ) so that θ = arcsin(0) = 0 and Y = 0 = F2(λ, 0). In the other cases,
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one has f1(λ) = f2(λ), and since X2 I2(λ) = cos2(θ) + λ2 sin2(θ) one has

(f1(λ) = f2(λ))

⇐⇒
(
X2 I2(λ)

λ2
=

X2 I2(λ)− 1

(X2 + Y 2) I2(λ)− 1

)
⇐⇒

(
Y 2 =

[
1

I(λ)

sin(θ) cos(θ)(λ2 − 1)

(cos2(θ) + λ2 sin2(θ))
1
2

]2
)

⇐⇒
(
Y =

1

I(λ)

sin(θ) cos(θ)(λ2 − 1)

(cos2(θ) + λ2 sin2(θ))
1
2

= F2(λ, θ)

)
,

last equivalence providing from the fact that if Y 6 0, 0 6 θ 6 π
2 and if Y > 0, −π2 6 θ 6 0.

We thus proved that function
−→
F is a one to one function from ]0, 1[×]−π2 ,

π
2 ] onto {(X,Y ) ∈

R2, X > 0, X2 + Y 2 < 1 and (X 6= 2
π or Y 6= 0)}. This yields the first part of proposition.

Remark 5.8. Note that

(
−→
F (λ, θ) = (

2

π
, 0)

)
⇐⇒

(
λ = 1,−π2 < θ 6 π

2

)
.

Now the following equivalence(
λ < 1, θ =

π

2

)
⇐⇒

(
Y = 0 and X <

2

π

)
,

leads to the conclusion that
−→
F is a one to one function from the open set O :=

]0, 1[×]−π2 ,
π
2 [ onto the open set O′ := {(X,Y ) ∈ R2, X > 0, X2 + Y 2 < 1 and (X >

2
π or Y 6= 0)}. The second part of proposition follows from Lemma A.3 proved in Ap-

pendix which ensures that the Jacobian of the tranformation
−→
F is different from zero

since 0 < λ < 1. 2
We are now listen to give the definitions of the estimators of parameters λ and θ.

5.3 Definition of the affinity parameters λ̂n and θ̂n

As in [32, chap. 3.6 F] we write the observed ratio of functionals
J

(n)
−→
f?

(u)

J
(n)
1 (u)

as

J
(n)
−→
f?

(u)

J
(n)
1 (u)

= Xnv
? + Ynv

??. (5.9)

As a first step we use a lemma proved in Appendix A.

Lemma 5.9. The random variables Xn and Yn defined in (5.9) are such that for n ∈ N?,
a.s. Xn > 0 and X2

n + Y 2
n < 1.

The first part of Proposition 5.5, Lemma 5.9 and Remark 5.8 provide the following
estimators λ̂n and θ̂n of parameters λ and θ via the following proposition.

Proposition 5.10. Let consider the following system of equations{
Xn = F1(λ, θ)

Yn = F2(λ, θ),

where
−→
F = (F1, F2) has been defined by (5.5).

1. In the case where Yn 6= 0 or Xn 6= 2
π , it admits a unique solution (λ̂n, θ̂n) such that

0 < λ̂n < 1 and −π2 < θ̂n 6 π
2 .
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• The estimator 0 < λ̂n < 1 is solution of

X2
n

(
I(λ)

λ

)2

=
X2
nI

2(λ)− 1

(X2
n + Y 2

n )I2(λ)− 1
,

– except for Yn = 0 and Xn >
2
π , where λ̂n := I−1( 1

Xn
).

• The estimator θ̂n is defined as

θ̂n := arcsin

(√
1−X2

nI
2(λ̂n)

1− λ̂2
n

)(
1{Yn60} − 1{Yn>0}

)
.

2. In the case where Yn = 0 and Xn = 2
π , it admits a unique solution λ̂n := 1, θ̂n being

any number belonging to ]− π
2 ,

π
2 ].

Now we will apply the result of almost sure convergence highlighted in Proposition
5.2 and the fact that function

−→
F is a diffeomorphism. We will deduce the almost

sure convergence of the estimators of affinity parameters. Then we will use the law
convergence result established for general functionals in Corollary 4.9 in the aim to

establish a law convergence result for
J

(n)
−→
f?

(u)

J
(n)
1 (u)

. Once this is done we will deduce some

law convergence results for the estimators λ̂n and θ̂n and also propose some confidence
intervals for the parameters λ and θ.

5.4 Convergence for the affinity estimators

5.4.1 Consistency for the estimators

We are ready to state the following results of consistency for the two proposed estimators
λ̂n and θ̂n of parameters λ and θ.

Theorem 5.11. For 0 < λ < 1 and −π2 < θ < π
2 , one has

λ̂n
a.s.−−−−−→

n→+∞
λ and θ̂n

a.s.−−−−−→
n→+∞

θ.

Proof of Theorem 5.11. By the second part of Proposition 5.5 we know that F is a C2-
diffeomorphism from the open set O = ]0, 1[×]− π

2 ,
π
2 [ onto the open set O′ = {(X,Y ) ∈

R2, X > 0, X2 + Y 2 < 1, (Y 6= 0 or X > 2
π )}.

Furthermore by using the result convergence given for
J

(n)
−→
f?

(u)

J
(n)
1 (u)

in Proposition 5.2,

decomposition of this last random variable given in (5.9), we obtain the following
convergence result: for all 0 < λ 6 1 and −π2 < θ 6 π

2 ,

(Xn, Yn)
a.s.−−−−−→

n→+∞
(X,Y ) :=

−→
F (λ, θ). (5.10)

If we reduce the definition domain of (λ, θ), that is if we suppose that 0 < λ < 1 and

−π2 < θ < π
2 , then (X,Y ) belongs to the open set O′. If

−→
F −1 denotes the inverse

function of
−→
F , thus since

−→
F −1 is continuous from O′ to O, one deduces that almost surely−→

F −1(Xn, Yn) = (λ̂n, θ̂n) converges to
−→
F −1(X,Y ) = (λ, θ). This yields Theorem 5.11. 2

We have all the elements to prove a limit theorem about the distributions of estimators
λ̂n and θ̂n. Consequently, confidence intervals for the estimated parameters λ and θ can
be proposed.
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5.4.2 Convergence in law for the estimators

First, we apply results of Section 4.2.2.

Recalling that
−→
f? = (f?1 , f

?
2 ) has been defined in (5.1). We define

−→
f? := (f?1 , f

?
2 , f

?
3 ), with

f?3 := 1. By Theorem 4.1 and Corollary 4.9 one can show the following proposition.

Proposition 5.12.

2n

J (n)
−→
f?

(u)

J
(n)
1 (u)

−
E[J

(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

 Law−−−−−→
n→+∞

N (0;Σ?(u)),

where Σ?(u) = Σ?(u, λ1, λ2, P ) := BΣ−→
f?

(u)Bt and

B :=
1

a1(0, u)

1 0 −af
?
1
(0, u)

a1(0, u)

0 1 −af
?
2
(0, u)

a1(0, u)

 ,

where Σ−→
f?

(u) being defined by (4.14).

Remark 5.13. The expression of coefficients af?i (·, u) for i = 1, 2 and of a1(·, u) are
respectively given in Lemma A.4 and Lemma A.6 of Appendix A.

Remark 5.14. The asymptotic variance matrix Σ?(u) is a non-degenerate matrix.

Proof of Proposition 5.12. Let f : S1 → R be a continuous and bounded function. Since
E[J

(n)
f (u)] = af (0, u) the following decomposition ensues

2n

(
J

(n)
f (u)

J
(n)
1 (u)

−
E[J

(n)
f (u)]

E[J
(n)
1 (u)]

)
= 1
a1(0, u)

(
ξ

(n)
f (u)− af (0, u)

a1(0, u)
ξ

(n)
1 (u)

)

+

(
1

J
(n)
1 (u)

− 1
a1(0, u)

)(
ξ

(n)
f (u)− af (0, u)

a1(0, u)
ξ

(n)
1 (u)

)
≡ 1
a1(0, u)

(
ξ

(n)
f (u)− af (0, u)

a1(0, u)
ξ

(n)
1 (u)

)
,

the last law equivalence providing from Theorem 4.1 and from Theorem 4.7.
Applying this reasoning again successively to f := f?1 and f := f?2 , and using Corollary
4.9 by taking f1 := f?1 , f2 := f?2 and f3 := 1, we get Proposition 5.12. 2

Remark 5.15. Note that this proof highlights the fact that the asymptotic behavior of

2n

J (n)
−→
f?

(u)

J
(n)
1 (u)

−
E[J

(1)
−→
f?

(u)]

E[J
(1)
1 (u)]


is the same as that of ξ(n)

−→
f

(u), where
−→
f := (f1, f2), with fi :=

f?i
a1(0, u)

−
af?i (0, u)

a2
1(0, u)

1,

i = 1, 2.

Proof of Remark 5.14. It remains to prove that the matrix Σ?(u) is positive definite. In

this aim, for f1, f2 : S1 → R continuous and bounded functions, let us note
−→
f := (f1, f2)

and for q ∈ N?,

(Σf1,f2(u))q :=
∑

k,m∈N3

|k|=|m|=q

af1(k, u) af2(m, u)R(k,m),
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and (
Σ−→
f

(u)
)
q

:=
((

Σfi,fj (u)
)
q

)
16i,j62

.

The proof of Lemma 5.16 is given in Appendix A.

Lemma 5.16. For all f1, f2 : S1 → R continuous and bounded functions and for all
q ∈ N?, one has

det
(
Σ−→
f

(u)
)
>

+∞∑
q=1

det
(
Σ−→
f

(u)
)
q
> det

(
Σ−→
f

(u)
)
q
.

Thus applying this lemma to functions fi previously defined in Remark 5.15 by

fi :=
f?i

a1(0, u)
−
af?i (0, u)

a2
1(0, u)

1, for i = 1, 2, we obtain

det (Σ?(u)) > det
(
Σ−→
f

(u)
)

2
.

Note that det
(
Σ−→
f

(u)
)

1
= 0 and this is why we let q = 2 in Lemma 5.16. Using arguments

similar to those given in the proof of Remark 4.4, simple calculations give

det (Σ?(u)) > 4× (2π)2

∫
R4

f2
x(s)f2

x(t)
{
g2(s, t)− g(s, t)g(t, s)

}
ds dt > 0,

where

g(s, t) := s2
1t

2
2 a+ s2

1t1t2 b− s1s2t
2
2 c,

with

a := [(d11d22 + d12d21)A+ d11d12B − d21d22 C] det(D)

b :=
[
2d11d21A+ d2

11B − d2
21 C

]
det(D)

c :=
[
−2d12d22A− d2

12B + d2
22 C

]
det(D),

while

A := af1((2, 0, 0), u) af2((0, 2, 0), u)− af1((0, 2, 0), u) af2((2, 0, 0), u)

B := af1((2, 0, 0), u) af2((1, 1, 0), u)− af1((1, 1, 0), u) af2((2, 0, 0), u)

C := af1((0, 2, 0), u) af2((1, 1, 0), u)− af1((1, 1, 0), u) af2((0, 2, 0), u),

andD is defined as in the end of the proof of Remark 4.4 asD = (dij)16i,j62 :=
1
√
µ

Λ−1P t.

The positivity of the last integral provides from an application of Hölder inequality.
Let us remark on the one hand that the nullity of the integral is equivalent to the equality
in Hölder inequality and thus to a = b = c = 0. On the other hand since det(D) 6= 0,
A,B,C is solution of a Cramer linear system. We deduce that Σ?(u) will be strictly
positive if (A,B,C) 6= (0, 0, 0).
Let us see that C 6= 0.
By using Lemmas A.4 and A.6, straightforward computations show that,

C = − det(P )

a2
1(0, 0)

× λ1λ2µ

π(λ2
1(ω?1)2 + λ2

2(ω?2)2)
×
[
λ2

2(ω?2)2 + 2(λ2
1(ω?1)2 − λ2

2(ω?2)2)W
]
,
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where

W :=

∑+∞
n=0

1
4(n+1)Vn∑+∞
n=0 Vn

, while for n ∈ N, Vn :=
(2n)!(2n+ 1)!

(n!)424n+1
(1− λ2)n.

By using that 0 < W 6 1
4 , one easily gets that λ2

2(ω?2)2 + 2(λ2
1(ω?1)2 − λ2

2(ω?2)2)W > 0, thus
C 6= 0.
This yields proof of remark. 2

We translate the convergence result expressed in the above Proposition 5.12 in the
basis (v?, v??), recalling that function

−→
F has been defined in (5.5).

The decomposition given in (5.9), Proposition 5.10 and equality (5.4) imply that for
0 < λ 6 1 and −π2 < θ 6 π

2 ,

2n

J (n)
−→
f?

(u)

J
(n)
1 (u)

−
E[J

(n)
−→
f?

(u)]

E[J
(n)
1 (u)]

 = 2n
(
F1(λ̂n, θ̂n)− F1(λ, θ)

)
v?

+ 2n
(
F2(λ̂n, θ̂n)− F2(λ, θ)

)
v??

Law−−−−−→
n→+∞

N (0;Σ?(u)).

Thus we get for 0 < λ 6 1 and −π2 < θ 6 π
2

2n
(−→
F (λ̂n, θ̂n)−

−→
F (λ, θ)

)
Law−−−−−→

n→+∞
N (0;Σ?

Q(u), (5.11)

where Σ?
Q(u) = Σ?

Q(u, λ1, λ2, P ) := Q× Σ?(u)×Qt and Q is the change of basis matrix

from the canonical basis (~i,~j) to the basis (v?, v??).

By using last result convervence and the fact that
−→
F is a C2-diffeomorphism, we get the

following theorem.

Theorem 5.17. For 0 < λ < 1 and −π2 < θ < π
2 , one has

2n
(
λ̂n − λ; θ̂n − θ

)
Law−−−−−→

n→+∞
N (0;Σλ,θ(u)),

where Σλ,θ(u) := C(λ, θ)× Σ?
Q(u)× Ct(λ, θ) and

C(λ, θ) :=
1

J−→
F

(λ, θ)


∂F2

∂θ
(λ, θ) −∂F1

∂θ
(λ, θ)

−∂F2

∂λ
(λ, θ)

∂F1

∂λ
(λ, θ)


where the Jacobian J−→

F
has been defined in Appendix (A.2).

Proof of Theorem 5.17. We supposed that (λ, θ) ∈ O =]0, 1[×]− π
2 ,

π
2 [. On the one hand,

by Proposition 5.5, we know that
−→
F is a C2-diffeomorphism from the open set O onto

the open set O′ =
−→
F (O).

On the other hand, by Theorem 5.11, we know that

(λ̂n, θ̂n)
a.s.−−−−−→

n→+∞
(λ, θ).

Thus for n large enough, almost surely
−→
F (λ̂n, θ̂n) and

−→
F (λ, θ) belong to O′. Using a
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second order Taylor-Young expansion of
−→
F −1 about

−→
F (λ, θ), we get

2n
(
λ̂n − λ; θ̂n − θ

)
=

2∑
j=1

∂
−→
F −1

∂xj
(
−→
F (λ, θ))× 2n(Fj(λ̂n, θ̂n)− Fj(λ, θ))+

1

2

2∑
j,k=1

∂2−→F −1

∂xj∂xk
(
−→
F (λ, θ))× 2n(Fj(λ̂n, θ̂n)−

Fj(λ, θ))× (Fk(λ̂n, θ̂n)− Fk(λ, θ))

+ o(2n
∥∥∥−→F (λ̂n, θ̂n)−

−→
F (λ, θ)

∥∥∥2

2
).

Law convergence result expressed in (5.11) gives Theorem 5.17. 2

Now we are in position to propose confidence intervals for (λ, θ) when the covariance
rz of Z is known.

5.4.3 Confidence intervals for the affinity parameters

In this section, we suppose that parameters λ and θ are such that 0 < λ < 1, −π2 < θ < π
2 .

We will also assume that the covariance function rz is a known function.
One can build confidence intervals for parameters (λ, θ). We will show that

Σ?(u) = Σ?(u, λ1, λ2, P ) =
1

λ2
1

Σ?(u, λ, P ), (5.12)

where Σ? is a continuous matrix as function of (λ, P ) and is computable provided that
(λ, P ) are given.

We then consider λ̂1,n and P̂n two estimators of respectively λ1 and matrix P obtained

as follows. We propose P̂n := (v̂1,n, v̂2,n) as estimator of P = (v1, v2), the orthonormal
basis of eigenvectors of matrix A, with:{

v̂1,n := cos(θ̂n)v? − sin(θ̂n)v??

v̂2,n := sin(θ̂n)v? + cos(θ̂n)v??

By Theorem 5.11, P̂n is a consistent estimator of P .
Now for λ̂1,n, first, we apply Theorem 4.1 to the particular function f ≡ 1 and then, we
use the result of Proposition 3.10.

We deduce that if Λ̃(λ) :=

(
1 0

0 λ

)
, one has

J
(n)
1 (u)

a.s.−−−−−→
n→+∞

λ1 pZ(0)(u)E[
∥∥∥Λ̃(λ)P t.∇Z(0)

∥∥∥
2
] = λ1 Φ(u, λ, P ), (5.13)

where Φ is a continuous function of its arguments.
Once again by applying Theorem 5.11 one gets a consistent estimator for λ1 by taking:

λ̂1,n :=
J

(n)
1 (u)

Φ(u, λ̂n, P̂n)
,

and finally a consistent estimator of Σ?(u) is given by

Σ̂?
n (u) :=

1

λ̂2
1,n

Σ?(u, λ̂n, P̂n).
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The matrix Σ̂?
n(u) is computable and can be factorized as: Σ̂?

n (u) = RnΓ
?
nR

t
n, where Rn

is an unitary matrix and Γ ?n is a diagonal matrix.
Remark that Γ ?n is invertible since Σ?(u) is non-degenerate (see Remark 5.14). Thus let:

Dn(u) := (C−1(λ̂n, θ̂n))tQRn(Γ ?n)−
1
2Rtn.

Theorem 5.17 implies Corollary 5.18.

Corollary 5.18. For 0 < λ < 1 and −π2 < θ < π
2 , one has

2n
(
λ̂n − λ; θ̂n − θ

)
. Dn(u)

Law−−−−−→
n→+∞

N (0; I2).

Proof of Corollary 5.18. First, let us prove that Σ?(u) = Σ?(u, λ1, λ2, P ) =
1

λ2
1

Σ?(u, λ, P ),

where Σ? is a computable and a continuous matrix as function of (λ, P ).
On the one hand, this fact provides from the form of the ratio of coefficients

af?i (k, u)/a1(0, u), i = 1, 2, 3, these latter coefficients being defined in Lemmas A.4
and A.6 of Appendix A. Indeed these ratios only depend on the ratio λ = λ2/λ1 and P

and they are computable as function of λ and P . They do not depend on µ. On the other
hand by Lemma 3.9 given in Section 3.2 one can see that the term R(k,m) only depends
on the covariance function of U through the following form. By defining W (v) as the

3-dimensional vector defined as W (v) :=

(
P t√
µ
.∇Z(v),

Z(v)√
rz(0)

)t
, one has

R(k,m) =

∫
R2

E[H̃k(U(0))H̃m(U(v))] dv

=
1

λ2
1λ

∫
R2

E[H̃k(W (0))H̃m(W (v))] dv =
1

λ2
1

G(λ, P,k,m),

and since rz is supposed to be known, G is computable as function of λ and P . Thus
Σ?(u) = 1

λ2
1
Σ?(u, λ, P ), and Σ? is computable.

It remains to prove that Σ? is a continuous matrix as function of λ and P . In this
aim, let us compute Σf1,f1(u), similar arguments would be raised for Σf2,f2(u) and for

Σf1,f2(u), where we recall that fi =
f?i

a1(0, u)
−
af?i (0, u)

a2
1(0, u)

1, i = 1, 2 (see Remark 5.15).

Applying Proposition 4.3 to f := f1, the one order Rice formula for E[J
(n)
f1

(u)] (see

Proposition 3.10) and the second order Rice formula for E[J
(n)
f1

(u)]2 (see second part of
Lemma 3.2), it is easy to see that another expression for Σf1,f1(u) is

Σf1,f1(u) =

∫
R2

{E[f1(νX(t))f1(νX(0)) ‖∇X(t)‖2 ‖∇X(0)‖2 | X(0) = X(t) = u]

×pX(0),X(t)(u, u)− (E[f1(νX(0)) ‖∇X(0)‖2])2p2
X(0)(u)

}
dt.

Denoting by B(λ, P ) := P Λ̃(λ)P t and letting v := A.t, one gets

Σf1,f1(u) =
1

a2
1(0, u)

1

λ

∫
R2

{
E

[
g1

( B(λ, P ).∇Z(v)

‖B(λ, P ).∇Z(v)‖2

)
g1

( B(λ, P ).∇Z(0)

‖B(λ, P ).∇Z(0)‖2

)
‖B(λ, P ).∇Z(v)‖2 ‖B(λ, P ).∇Z(0)‖2 /Z(0) = Z(v) = u] pZ(0),Z(v)(u, u)

−
(
E[g1

( B(λ, P ).∇Z(0)

‖B(λ, P ).∇Z(0)‖2

)
‖B(λ, P ).∇Z(0)‖2]

)2

p2
Z(0)(u)

}
dv,
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where g1 := f?1 −
af?1

(0,u)

a1(0,u) := f?1 − b(u, λ, P ), while b is a continuous function of λ and P .

We conclude the argument noticing that a1(0, u) = λ1 c(u, λ) with c a strictly positive
continuous function of λ.

Now to prove Corollary 5.18, we have Lemma 5.19 proved in Appendix A.

Lemma 5.19. Let Σ := RΓRt a definite positive matrix such that R is an unitary
matrix, while Γ is a diagonal one. Let also (Σn)n be an approximation of matrix Σ, i.e.

lim
n→+∞

Σn = Σ, such that Σn := RnΓnR
t
n with Rn an unitary matrix and Γn a diagonal one.

Consider Bn a square root of Σn, that is Bn := RnΓ
1
2
n Rtn. Then lim

n→+∞
Bn = B := RΓ

1
2Rt.

Turning back to the proof of Corollary 5.18, we apply Lemma 5.19 to Σ := Σ?(u) =

RΓ ?Rt, Σn := Σ̂?
n(u) = RnΓ

?
nR

t
n. Since Σ̂?

n(u) is a consistent estimator of Σ?(u), we
deduce that lim

n→+∞
Σn = Σ. Using Lemma 5.19 and Theorem 5.11, we obtain that almost

surely
lim

n→+∞
Dn(u) = D(u) := (C−1(λ, θ))tQR(Γ ?)−

1
2Rt.

Using Theorem 5.17 and the fact that Dt(u)Σλ,θ(u)D(u) = I2, one finally proved corollary.
2

We deal in previous section 5.4 with the convergence for parameters λ and θ when
they are such that 0 < λ < 1 and −π2 < θ < π

2 . In next section we will complete these
convergence results by focusing on the case where λ = 1 that will lead naturally to an
isotropy test.

6 Towards a test of isotropy

6.1 Complementary results for estimating the parameter λ

6.1.1 Almost sure convergence for λ̂n

We emphasize that convergence result in Theorem 5.11 is valid under the assumption
that 0 < λ < 1 and −π2 < θ < π

2 . However, we can better elaborate what is happening

to λ̂n in the isotropic case, when λ = 1 (and −π2 < θ 6 π
2 ) and also when 0 < λ < 1 and

θ = π
2 , via the following theorem.

Theorem 6.1. For λ = 1 and −π2 < θ 6 π
2 or for 0 < λ < 1 and θ = π

2 , one has

λ̂n
a.s.−−−−−→

n→+∞
λ.

Proof of Theorem 6.1. First let us consider the isotropic case, that is the case where
λ = 1 and θ being any parameter belonging to ]− π

2 ,
π
2 ]. By Remark 5.6 stated at the end

of Proposition 5.5 proof, the estimator λ̂n has to verify the following equation

X2
n I

4(λ̂n) (X2
n + Y 2

n )−X2
n I

2(λ̂n) (λ̂2
n + 1) + λ̂2

n = 0.

Thus(
X2
n − ( 2

π )2
) [
I4(λ̂n) (X2

n + Y 2
n ) + ( 2

π )2 I4(λ̂n)− I2(λ̂n) (λ̂2
n + 1)

]
+ (

2

π
)2 I4(λ̂n)Y 2

n − (
2

π
)4
(

(
π

2
)2 − I2(λ̂n)

)(
I2(λ̂n)− (

π

2
)2 λ̂2

n

)
= 0. (6.1)

We define the function h for 0 < λ 6 1, by

h(λ) :=
(π

2
− I(λ)

)(
I(λ)− π

2
λ
)
. (6.2)
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By using convergence given in (5.10), we establish that

(Xn, Yn)
a.s.−−−−−→

n→+∞

(
2
π , 0

)
,

and since 0 < λ̂n 6 1 and 1 < I(λ̂n) 6 π
2 , we finally showed that

h(λ̂n)
a.s.−−−−−→

n→+∞
0.

Since h is a strictly decreasing continuous function on ]0, 1] and h(1) = 0, we obtain that

λ̂n
a.s.−−−−−→

n→+∞
1,

that is the required convergence.
Let us look now at the case where 0 < λ < 1 and θ = π

2 .
Convergence established in (5.10) now gives that

(Xn, Yn)
a.s.−−−−−→

n→+∞
(X,Y ) =

(
λ

I(λ)
, 0

)
.

In the same way as before and using Remark 5.6, one gets the following equality.(
X2
n −X2

) [
I4(λ̂n) (X2

n + Y 2
n ) +X2 I4(λ̂n)− I2(λ̂n) (λ̂2

n + 1)
]

+X2 I4(λ̂n)Y 2
n

− ( 1
I(λ) )4

(
I2(λ)− λ2 I2(λ̂n)

)(
λ I(λ̂n) + I(λ) λ̂n

)(
λ I(λ̂n)− I(λ) λ̂n

)
= 0. (6.3)

For fixed 0 < λ < 1, let us define function f by

f(x) := λI(x)− I(λ)x, for 0 6 x 6 1. (6.4)

Previous almost sure convergence and the fact that 0 < λ̂n 6 1, 1 < I(λ̂n) 6 π
2 and for

λ < 1, I(λ)− λ I(λ̂n) > I(λ)− π
2 > 0, imply that

f(λ̂n)
a.s.−−−−−→

n→+∞
0.

A straightforward calculation shows that function f is a strictly decreasing continuous
function on [0, 1] such that f(λ) = 0. We deduce that

λ̂n
a.s.−−−−−→

n→+∞
λ,

that yields Theorem 6.1. 2
We thus set up a first approach to detect if the process X is isotropic or not.

6.1.2 Convergence in law for λ̂n

In case where 0 < λ < 1 and −π2 < θ < π
2 , Theorem 5.17 gives as corollary a convergence

law result for 2n(λ̂n−λ). Here we complete the statement of this convergence under the
assumption that λ = 1 (and −π2 < θ 6 π

2 ) or when 0 < λ < 1 and θ = π
2 via the following

theorem.

Theorem 6.2. 1. For 0 < λ < 1 and θ = π
2 , one has

2n
(
λ̂n − λ

)
Law−−−−−→

n→+∞
N (0;

(
Σλ,π2 (u)

)
11

),

where
(
Σλ,π2 (u)

)
11

stands for the first row and first column element locaded in
matrix Σλ,π2 (u) defined in Theorem 5.17.
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2. For λ = 1 and −π2 < θ 6 π
2 , one has

2n (1− λ̂n)
Law−−−−−→

n→+∞

√
V ,

where the density fV (t) of the positive random variable V is given by:

fV (t) :=
1

σ11σ̃22

 1

4π

∫ 2π

0

e
−t (cos(θ)− a sin(θ))2

2σ2
11 (1 + a2) e

−t sin
2(θ) (1 + a2)

2 σ̃2
22 dθ

1{t>0},

where the coefficients a and σ̃22 are defined by:

a :=
σ12

σ2
11

, σ̃2
22 :=

σ2
11σ

2
22 − σ2

12

σ2
11

,

while coefficients σ11, σ22 and σ12 are

σ2
11 := 4

(π
2

)2

Σ
(??)
11 (u), σ2

22 :=
(π

2

)2

Σ
(??)
22 (u), σ12 := 2

(π
2

)2

Σ
(??)
12 (u),

with

Σ (??)(u) =
(
Σ

(??)
ij (u)

)
16i,j62

:= Σ?
Q(u, τ, τ, I2)(u),

where τ is the common value of the eigenvalues of matrix A under the isotropic
hypothesis.

Remark 6.3. If λ 6= 1, by part one of Theorem 6.2, we readily get that 2n (1 − λ̂n)

converges in law to Gaussian random variable with positive infinite mean when n tends
to infinity. Thus one gets a one more way to detect if the process is isotropic or not.

Remark 6.4. By Remark 5.14, the matrix Σ (??)(u) is non-degenerate, ensuring that the
coefficient σ̃22 appearing in the expression of the density fV does not vanish.

Remark 6.5. We suppose that the covariance function rz of Z is known. We can
estimate the density fV by f̂V (t) := fV ′(τ̂

2
nt)τ̂

2
n, where τ̂n is a consistent estimator of τ ,

the common value of the eigenvalues of matrix A under the isotropic case and where V ′

has the same law as that of V , where we replaced Σ (??)(u) by QΣ?(u, 1, I2)Qt, where Σ?
being defined in equality (5.12) is computable. By using convergence in (5.13) we can
take for τ̂n,

τ̂n := 2 J
(n)
1 (u)

√
rz(0)

µ
exp(

1

2

u2

rz(0)
). (6.5)

Proof of Theorem 6.2. Let us look first at the case where 0 < λ < 1 and θ = π
2 , then we

will be treat the case where λ = 1 (and −π2 < θ 6 π
2 ).

In the first case, by decomposition obtained in (6.3) in the proof of Theorem 6.1, we have

2n (Xn −X) (Xn +X)
[
I4(λ̂n) (X2

n + Y 2
n ) +X2 I4(λ̂n)− I2(λ̂n) (λ̂2

n + 1)
]

+ 2nY 2
n I

4(λ̂n)X2 − 2n
(
λ I(λ̂n)− I(λ) λ̂n

)
×

1

I4(λ)

(
I2(λ)− λ2 I2(λ̂n)

)(
λ I(λ̂n) + I(λ) λ̂n

)
= 0,

where

(Xn, Yn)
a.s.−−−−−→

n→+∞
(X,Y ) = (λ/I(λ) , 0) .
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Now by using this almost sure convergence result and those given in (5.11) plus Theorem
6.1, one obtains the following probability equivalence

2n (Xn −X) 2λ I(λ)(λ2 − 1) ≡ 2n
(
λ I(λ̂n)− I(λ) λ̂n

) 2λ

I(λ)
(1− λ2),

and since 0 < λ < 1, one finally gets

2n
(
λ I(λ̂n)− I(λ) λ̂n

)
≡ −2n (Xn −X) I2(λ).

Now refering to function f defined by (6.4) in the proof of Theorem 6.1, let

f(x) = λI(x)− I(λ)x, for 0 6 x 6 1.

One has f(λ) = 0 and f ′(λ) = λI ′(λ)− I(λ) < 0.
So with the first order Taylor expansion of f about λ evaluated at λ̂n, one gets

2n
(
λ I(λ̂n)− I(λ) λ̂n

)
= 2nf(λ̂n)

≡ 2nf ′(λ)(λ̂n − λ)

≡ −2n (Xn −X) I2(λ),

and then one proved that

2n(λ̂n − λ) ≡ 2n (Xn −X) I2(λ)

I(λ)− λI ′(λ)
,

and by convergence given in (5.11),

2n
(
λ̂n − λ

)
Law−−−−−→

n→+∞
N (0;Σ ),

where Σ :=
I4(λ)

(I(λ)− λI ′(λ))2 (Σ?
Q(u))11.

To end the first part of this proof we just have to check that (Σλ,π2 (u))11 = Σ . In this
aim, remember that Σλ,π2 (u) = C(λ, π2 )× Σ?

Q(u)× Ct(λ, π2 ) with

C(λ,
π

2
) =

1

J−→
F

(λ, π2 )

∂F2

∂θ (λ, π2 ) −∂F1

∂θ (λ, π2 )

− −

 .

Using Lemma A.3, one obtains that J−→
F

(λ, π2 ) =
(λ2 − 1)

λ I(λ)
×
(
λI ′(λ)− I(λ)

I2(λ)

)
and

C(λ,
π

2
) =

1

J−→
F

(λ, π2 )

 1−λ2

λI(λ) 0

− −

 .

In this way, one proved that (Σλ,π2 (u))11 = Σ , yielding the first part of theorem. Now we
consider the second part taking λ = 1 (and −π2 < θ 6 π

2 ).

The decomposition obtained in (6.1) gives

2n
(
Xn − 2

π

) (
Xn + 2

π

)
×

2n
[
I4(λ̂n) (X2

n + Y 2
n ) + ( 2

π )2 I4(λ̂n)− I2(λ̂n) (λ̂2
n + 1)

]
+ ( 2

π )2 I4(λ̂n) (2nYn)2

= (2n)2
(
π
2 − I(λ̂n)

)(
I(λ̂n)− π

2 λ̂n

)
( 2
π )4

(
π
2 + I(λ̂n)

)(
I(λ̂n) + π

2 λ̂n

)
(6.6)
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where

(Xn, Yn)
a.s.−−−−−→

n→+∞
(X,Y ) =

(
2
π , 0

)
. (6.7)

Note that we can not hold the same reasoning as in the first part of the proof. Indeed, by
the first part of Theorem 6.1 and the latter almost sure convergence result, we deduce
that

Zn := I4(λ̂n) (X2
n + Y 2

n ) + (
2

π
)2 I4(λ̂n)− I2(λ̂n) (λ̂2

n + 1)
a.s.−−−−−→

n→+∞
0,

thus we have to normalize the studied expression by (2n)2.
However, if in a first time we do not normalize this expression by (2n)2 but rather by

(2n), we get

2n

(
Xn −

2

π

)(
Xn +

2

π

)
Zn + (

2

π
)2 I4(λ̂n) 2nY 2

n

= 2nh(λ̂n) (
2

π
)4
(π

2
+ I(λ̂n)

)(
I(λ̂n) +

π

2
λ̂n

)
,

remembering that the function h (see (6.2)) has been defined in the proof of Theorem
6.1 by

h(λ) =
(
π
2 − I(λ)

) (
I(λ)− π

2 λ
)
,

for 0 < λ 6 1.
Now by using the almost sure convergence to 0 for Zn and those given in (5.11) and
(6.7) and in the first part of Theorem 6.1, we get

2nh(λ̂n)
Pr−−−−−→

n→+∞
0.

Since h(1) = h′(1) = 0, one obtains by using a second order Taylor expansion of h about
1 evaluated at point λ̂n,

h(λ̂n) =
π2

16
(λ̂n − 1)2 + o((λ̂n − 1)2). (6.8)

Thus as a bonus we proved that in probability

2n (λ̂n − 1)2 = o(1). (6.9)

This last equality will help us to study the normalized expression 2nZn and show that in
probability

2nZn ≡ 2n (Xn − 2
π )
π3

4
.

Indeed

2nZn = I2(λ̂n)
[
2n
(
X2
n − ( 2

π )2
)
I2(λ̂n) + 2n I2(λ̂n)Y 2

n

+2n
(

2 I2(λ̂n) ( 2
π )2 −

(
λ̂2
n + 1

))]
.

Using an order two Taylor expansion of the elliptic integral I (see (5.3) for definition) in
λ̂n about λ = 1, one gets

I(λ̂n) =
π

2
+
π

4
(λ̂n − 1) +O((λ̂n − 1)2),
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in such a way that

2n
(

2 I2(λ̂n) ( 2
π )2 −

(
λ̂2
n + 1

))
= −n(λ̂n − 1)2 +O(2n (λ̂n − 1)2).

By equality (6.9) this expression converges in probability to zero.
Part one of Theorem 6.1, convergences in (5.11) and (6.7) give the required result

2nZn ≡ 2n (Xn − 2
π )π

3

4 .

Back to expression (6.6), using once again the convergence obtained in part one of
Theorem 6.1 and equality (6.8), one finally proved that in probability

π2
(
2n
(
Xn − 2

π

))2
+ (2nYn)

2 (π
2

)2 ≡ (2n)2 h(λ̂n) 16
π2 ≡ (2n (λ̂n − 1))2.

By using convergence given in (5.11), we get the required convergence. This ends the
proof of this theorem. 2

Proof of Remark 6.5. The density fV of the positive random variable V can be expressed
as fV (t) = fV ′(tτ

2)τ2, where τ is the common eigenvalue of matrix A under the isotropic
case and V ′ is defined as V , substituting QΣ?(u, 1, I2)Qt to Σ?(u, τ, τ, I2). The matrix Σ?
is computable and is defined by (5.12). So, it is enough to estimate τ by a consistent
estimator, say τ̂n. Using convergence given in (5.13) we propose a consistent estimator
of λ1 = τ in the isotropic case by taking

τ̂n :=
J

(n)
1 (u)

pZ(0)(u)E[‖∇Z(0)‖2
] = 2J

(n)
1 (u)

√
rz(0)

µ
exp

(1

2

u2

rz(0)

)
,

that is computable since µ and rz(0) are supposed to be known. 2

In the next section, statistical tests are proposed for the null hypothesis “X is
isotropic” against “X is affine”.

6.2 Testing the isotropy

We test

H0 : λ = 1 against H1 : λ < 1.

We still obtain a way to detect the possible isotropy of the process via the following
corollaries.

Corollary 6.6. Under the hypothesis H0, the following convergence holds:

J
(n)
−→
f?

(u)

J
(n)
1 (u)

a.s.−−−−−→
n→+∞

2

π
v?

Corollary 6.7. Under the hypothesis H0, we have the following convergence:

T
(n)
−→
f?

(u) := 2n

J (n)
−→
f?

(u)

J
(n)
1 (u)

− 2

π
v?

 Law−−−−−→
n→+∞

N (0;Σ?(u, τ, τ, I2)),

where τ is the common value of the eigenvalues of matrix A.

Remark 6.8. By Remark 5.14 we can observe that the matrix Σ?(u, τ, τ, I2) is non-
degenerate.
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Remark 6.9. Under the alternative hypothesis H1, the test statistic T (n)
−→
f?

(u) converges

in law toward a Gaussian random variable, the mean of which tends to infinity. Indeed
by using equality (5.4) one can easily show thatE[J

(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

=
2

π
v?

 ⇐⇒ (λ = 1) .

Proof of Corollaries 6.6 and 6.7. Using the almost sure convergence given in Proposition
5.2, convergence in law of Proposition 5.12, equality (5.4) and taking λ = 1 one obviously
gets Corollaries 6.6 and 6.7. 2

Proof of Remark 6.9. Appling Proposition 5.12, under H1, the test statistic T
(n)
−→
f?

(u)

converges in law to a Gaussian random variable with asymptotically mean equivalent to

2n

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

− 2

π
v?

.

Since

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

− 2

π
v?

 does not depend on n and is equal to zero if and if λ = 1, this

argument ends the proof of the remark. 2

In the case where covariance function rz is known, Corollary 6.7 suggests another
test statistic. More precisely, let R an unitary matrix obtained by diagonalizing the
computable matrix Σ?(u, 1, I2) defined in (5.12). That is Σ?(u, 1, I2) = RΓ?R

t.

We consider the following test statistic S(n)
−→
f?

(u):

S
(n)
−→
f?

(u) := τ̂n Γ
− 1

2
? Rt.T

(n)
−→
f?

(u),

where τ̂n is given by (6.5).
We can state the following theorem.

Theorem 6.10. Under the hypothesis H0, we have the following convergence:

Ξ
(n)
−→
f?

(u) := (S
(n)
−→
f?

(u))t S
(n)
−→
f?

(u)
Law−−−−−→

n→+∞
χ2

2.

Remark 6.11. The rejection region is then Ξ
(n)
−→
f?

(u) > γ. This critical region provides a

consistent test for any positive constant γ, because Ξ
(n)
−→
f?

(u) is stochastically unbounded,

for n → +∞, except under the null hypothesis. In fact when λ < 1, 1
(2n)2 Ξ

(n)
−→
f?

(u)

converges in probability to b > 0, and this implies that Ξ
(n)
−→
f?

(u) converges in probability

to +∞.

Proof of Theorem 6.10 and Remark 6.11. As we have already pointed out in Remark 6.8,
the matrix Σ?(u, τ, τ, I2) is invertible and we can factorize Σ?(u, 1, I2) into Σ?(u, 1, I2) =

RΓ?R
t, where R is an unitary matrix. Let

S
(n)
−→
f?

(u) = τ̂n Γ
− 1

2
? Rt.T

(n)
−→
f?

(u).

Since τ̂n is a consistent estimator of τ under hypothesis H0, by Corollary 6.7, asymptoti-
cally this random vector is a standard Gaussian one and Theorem 6.10 ensues.
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To achieve the proof of Remark 6.11, let us check that 1
(2n)2 Ξ

(n)
−→
f?

(u) converges in proba-

bility to b > 0 under the alternative hypothesis H1 that is when λ < 1.
In this aim, let us note

S̃
(n)
−→
f?

(u) := τ̂n Γ
− 1

2
? Rt.T̃

(n)
−→
f?

(u),

where

T̃
(n)
−→
f?

(u) := 2n

J (n)
−→
f?

(u)

J
(n)
1 (u)

−
E[J

(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

 .

We have the following decomposition

1

(2n)2
Ξ

(n)
−→
f?

(u) =
1

(2n)2
(S

(n)
−→
f?

(u))tS
(n)
−→
f?

(u)

=
1

(2n)2

(
S

(n)
−→
f?

(u)− S̃(n)
−→
f?

(u)

)t (
S

(n)
−→
f?

(u)− S̃(n)
−→
f?

(u)

)
+

2

(2n)2
(S̃

(n)
−→
f?

(u))t
(
S

(n)
−→
f?

(u)− S̃(n)
−→
f?

(u)

)
+

1

(2n)2
(S̃

(n)
−→
f?

(u))t (S̃
(n)
−→
f?

(u))

= (1) + (2) + (3).

Let us look at the third term (3).

(3) :=

(
1

2n
(T̃

(n)
−→
f?

(u))t
)
.
(
τ̂2
n RΓ

−1
? Rt

)
.

(
1

2n
T̃

(n)
−→
f?

(u)

)
Pr−−−−−→

n→+∞
0,

by using Proposition 5.12 and the fact that τ̂n almost surely converges to

√
2

πµ
E[‖∇X(0)‖2]

(see Theorem 4.1 and Proposition 3.10).
For the second term (2).

(2) :=

(
1

n
(T̃

(n)
−→
f?

(u))t
)
.
(
τ̂2
n RΓ−1

? Rt
)
.

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

− 2

π
v?

 ,

and this term tends in probability toward zero as for the third term (3).
Finally, the first term (1) gives

(1) :=

τ̂n Γ− 1
2

? Rt.

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

− 2

π
v?

t

×

τ̂n Γ− 1
2

? Rt.

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

− 2

π
v?

 = bn,

and

lim
n→+∞

bn = b :=
2

πµ
(E[‖∇X(0)‖2])2

Γ
− 1

2
? Rt.

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

− 2

π
v?

t

×

Γ
− 1

2
? Rt.

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

− 2

π
v?

 > 0.
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Since Γ
− 1

2
? Rt is invertible, one has

(b > 0) ⇐⇒

E[J
(1)
−→
f?

(u)]

E[J
(1)
1 (u)]

− 2

π
v?

 6= 0

 ⇐⇒ (λ < 1) .

That ends the proof of remark. 2

A Appendix

Proof of Lemma 3.2. Let F : T × (R2)? → R be a bounded continuous function of its
arguments. We want to prove that y 7→ E[I(y)]2 is a continuous function, where for
y ∈ R, we have noted I(y) :=

∫
C(y)

F (t,∇X(t))1Dr
X
(t) dσ1(t). Also we would like to show a

second order Rice formula for the functionnal I(y).
Due to the presence of the indicator, function t 7→ F (t,∇X(t))1Dr

X
(t) is not continuous

on T , so we can not apply the two-order Rice formula (2.4) given in Corollary 2.8.
Thus we consider the following approximation. For m ∈ N?, let

Im(y) :=

∫
C(y)

Gm(t,∇X(t)) dσ1(t),

where function Gm : T ×R2 → R, is defined by

Gm(t, z) := ϕ

(
1

m ‖z‖2

)
F (t, z)1{z 6=0},

where ϕ has been defined in the proof of Theorem 3.1.
As in the proof of last cited theorem we can prove that function Gm is a bounded
continuous function on T ×R2.
The two order Rice formula ensues by applying Corollary 2.8 to the functional Im(y).
That is for all y ∈ R, one has

E[Im(y)]2 =∫
T×T

E [Gm(t1,∇X(t1))Gm(t2,∇X(t2)) ‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = X(t2) = y]

× pX(t1),X(t2)(y, y) dt1 dt2 < +∞.

We observe that the following convergence holds. For all t ∈ T and z ∈ R,
Gm(t, z) −−−−−→

m→+∞
F (t, z)1{z 6=0}. Then we point out that Remark 2.9 following Corollary

2.8 ensures that
E[σ1(C(y))]2 =

∫
T×T E [‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = X(t2) = y]×pX(t1),X(t2)(y, y) dt1 dt2 <

+∞.
Thus by using the fact that function Gm is bounded, an application of the Lebesgue
convergence theorem induces that

E[I(y)]2 =

∫
T×T

E
[
F (t1,∇X(t1))1Dr

X
(t1)F (t2,∇X(t2))1Dr

X
(t2)×

‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = X(t2) = y] × pX(t1),X(t2)(y, y) dt1 dt2 < +∞.

We have therefore established the second order Rice formula for I(y).
We are going to prove that function y 7→ E[I(y)]2 is continuous. This would achieve the
proof of Lemma 3.2.
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In this aim, we use the decomposition given in Wschebor [32, p. 60], that is, for τ := t−s,
where t, s ∈ T

∇X(0) = ξ + (X(0)α+X(τ)β)

∇X(τ) = ξ? − (X(τ)α+X(0)β),

where ξ and ξ? are centred Gaussian vectors taking values in R2, with joint Gaussian
distribution, each of them independent of (X(0), X(τ)), such that, if ∇rx stands for the
Jacobian of the X covariance function,

α :=
rx(τ)∇rx(τ)

r2
x(0)− r2

x(τ)
; β := − rx(0)∇rx(τ)

r2
x(0)− r2

x(τ)

Var(ξ) = Var(ξ?) = −∇2rx(0)− rx(0)

r2
x(0)− r2

x(τ)
∇rx(τ) (∇rx(τ))

t

Cov(ξ, ξ?) = −∇2rx(τ)− rx(τ)

r2
x(0)− r2

x(τ)
∇rx(τ) (∇rx(τ))

t
.

Thus with these notations one has

E[I(y)]2 =

∫
T

ds

∫
T

L(y, s, t− s) dt,

where for τ := t− s

L(y, s, τ) := exp

(
− y2

rx(0) + rx(τ)

)
1

2π

1

(r2
x(0)− r2

x(τ))
1
2

× E
[
F (s, ξ − y

rx(0) + rx(τ)
∇rx(τ))1{ξ− y

rx(0)+rx(τ)
∇rx(τ)6=0}

∥∥∥∥ξ − y

rx(0) + rx(τ)
∇rx(τ)

∥∥∥∥
2

× F (τ + s, ξ? +
y

rx(0) + rx(τ)
∇rx(τ))1{ξ?+ y

rx(0)+rx(τ)
∇rx(τ)6=0}

∥∥∥∥ξ? +
y

rx(0) + rx(τ)
∇rx(τ)

∥∥∥∥
2

]
.

Using that F is a bounded continuous function on T × (R2)? one gets that

• z 7→ F (s, z)1{z6=0} ‖z‖2 is continuous for all s ∈ T .

Furthermore since r2
x(0)−r2

x(t) 6= 0 for all t 6= 0, this implies in force that rx(0)+rx(t) 6= 0

for all t 6= 0, thus by using that function F is bounded one obtains that

• y 7→ L(y, s, t− s) is continuous for almost (s, t) ∈ T × T .

Now let us enunciate a lemma for which a proof can be founded for example in Berzin
and Wschebor [11, Lemma 1 (b)].

Lemma A.1. ∃M > 0, ∀ t, s ∈ T,
(
‖t− s‖2 6M =⇒ r2

x(0)− r2
x(t− s) >M ‖t− s‖22

)
Now let us choose B > 0 small enough such that for all τ := s− t, with s, t ∈ T such

that ‖τ‖2 6 B, one has the following inequalities,

• (1) rx(0) + rx(τ) > 3
2 rx(0)

• (2) r2
x(0)− r2

x(τ) > B ‖τ‖22
• (3) ‖∇rx(τ)‖2 6 C ‖τ‖2

Note that these three inequalities are always possible to implement. Indeed the first
inequality just translates the fact that covariance function rx is continuous in zero, the
second one comes from Lemma A.1 and the third one from a first order Taylor expansion
of ∇rx(·) about zero.

These inequalities allow showing the following bound on |L(y, s, τ)|.
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• ∃D > 0 such that for all (s, t) ∈ T × T and τ := s− t,
|L(y, s, τ)| 6 D(1 + y2)

{
1{‖τ‖2>B} + 1

‖τ‖2
1{‖τ‖26B}

}
Before explaining the last inequality, let us remark that since

∫
T×T

ds dt
‖s−t‖2

< +∞, an

application of Lebesgue’s convergence theorem yields that function y 7→ E[I(y)]2 is
continuous.
Indeed, two cases occur: ‖τ‖2 > B and ‖τ‖2 6 B. If ‖τ‖2 > B, we consider the compact
set K := {s − t, (s, t) ∈ T × T with ‖s− t‖2 > B} where we have noted T for the
closure of T . Since rx is continuous on K and r2

x(0) − r2
x(v) 6= 0 for v ∈ K, thus there

exists E > 0 such for all v ∈ K, r2
x(0) − r2

x(v) > E and rx(0) + rx(v) > E, so that
|L(y, s, τ)| 6 D(1 + y2). If ‖τ‖2 6 B, inequalities (2) and (3) give that E[‖ξ‖2] 6 C and
E[‖ξ?‖2] 6 C and inequalities (1) and (2) give that |L(y, s, τ)| 6 D(1 + y2) 1

‖τ‖2
.

That completes the proof of Lemma 3.2. 2

Remark A.2. The approach chosen to prove Lemma 3.2 does not work for showing that

(y1,y2) 7→ E[Jf (y1)Jf (y2)],

is continuous. In fact if we try to reproduce the previous proof, we realize that we have
to check that for all y1, y2 ∈ R,

H(y1, y2) :=∫
T×T

E[‖∇X(t1)‖2 ‖∇X(t2)‖2 |X(t1) = y1, X(t2) = y2]×pX(t1),X(t2)(y1, y2) dt1 dt2 < +∞.

As before, performing a regression, the expectation appearing in the expression of
H(y1, y2) is

E

[∥∥∥∥ξ +
rx(τ)∇rx(τ)

r2
x(0)− r2

x(τ)
y1 −

rx(0)∇rx(τ)

r2
x(0)− r2

x(τ)
y2

∥∥∥∥
2

×
∥∥∥∥ξ? +

rx(0)∇rx(τ)

r2
x(0)− r2

x(τ)
y1 −

rx(τ)∇rx(τ)

r2
x(0)− r2

x(τ)
y2

∥∥∥∥
2

]
,

and the principal difficulty results in bounding
∇rx(τ)

r2
x(0)− r2

x(τ)
when ‖τ‖2 6 B. That is why

we developped a little more sophisticated approach to prove Theorem 3.1.

Proof of Lemma 3.9. Let X = (Xi)i=1, 2, 3 and Y = (Yj)j=1, 2, 3 be two centred standard
Gaussian vectors in R3 such that for 1 6 i, j 6 3, E[XiYj ] = ρij .
Let k = (k1, k2, k3) and m = (m1,m2,m3) be two vectors of N3. We want to give an
explicit formula for E[H̃k(X)H̃m(Y )].
For ease of notations let us set Yj = Xj+3 for j = 1, 2, 3.

As in Azaïs and Wschebor [8, p. 269], a straightforward calculation on Gaussian
characteristic functions gives

E[

6∏
i=1

exp(tiXi − 1
2 t

2
i )] = exp

( 3∑
i=1

3∑
j=1

ρij titj+3

)

=

+∞∑
r=0

1

r!

( 3∑
i=1

3∑
j=1

ρij titj+3

)r
=

+∞∑
r=0

∑
∑
i,j dij=r

3∏
i,j=1

1

dij !
(ρij titj+3)

dij

=

+∞∑
r=0

∑
∑
i,j dij=r

 3∏
i,j=1

ρ
dij
ij

dij !

 (
3∏
i=1

t
∑3
j=1 dij

i

) 3∏
j=1

t
∑3
i=1 dij

j+3

 (A.1)
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Now, by definition

exp(tx− 1
2 t

2) =

+∞∑
q=0

tq
Hq(x)

q!
,

thus

E[

6∏
i=1

exp(tiXi − 1
2 t

2
i )]

=

+∞∑
k1=0

+∞∑
k2=0

+∞∑
k3=0

+∞∑
m1=0

+∞∑
m2=0

+∞∑
m3=0

tk11

k1!

tk22

k2!

tk33

k3!

tm1
4

m1!

tm2
5

m2!

tm6
6

m6!
E[H̃k(X)H̃m(Y )].

Identifying this last equality with (A.1), it follows that E[H̃k(X)H̃m(Y )] = 0 if |k| 6= |m|.
In the case where |k| = |m|, one gets

E[H̃k(X)H̃m(Y )] =
∑
dij>0∑
j dij=ki∑
i dij=mj

k!m!
∏

16i,j63

ρ
dij
ij

dij !
,

yielding the lemma. 2

Proof of Lemma 4.2. Let f : S1 → R be a positive continuous and bounded function. For
n ∈ N?, let Tn := ]0, n[× ]0, n[. One has

(1) =

∫ n−1

0

∫ n−1

0

∫
C[t , t+1[×[s , s+1[(u)

f(νX(x)) dσ1(x) dtds

−
∫ 1

0

∫ 1

0

∫
C]0,t[×]0,s[(u)

f(νX(x)) dσ1(x) dtds

=

∫ n−1

0

∫ n−1

0

(H(t+ 1, s+ 1)−H(t, s+ 1)−H(t+ 1, s) +H(t, s)) dtds

−
∫ 1

0

∫ 1

0

H(t, s) dtds,

where we recall that we have noted

H(t, s) :=

∫
C]0,t[×]0,s[(u)

f(νX(x)) dσ1(x).

Thus by making change of variable in the first integral, one obtains

(1) =

∫ n

n−1

∫ n

n−1

H(t, s) dtds−
∫ 1

0

∫ n

n−1

H(t, s) dtds−
∫ n

n−1

∫ 1

0

H(t, s) dtds.

Since f is a positive function then H(t, s) > 0 and we get the following upper bound

(1) 6
∫ n

n−1

∫ n

n−1

H(t, s) dtds

6
∫ n

n−1

∫ n

n−1

∫
C]0,n[×]0,n[(u)

f(νX(x)) dσ1(x) dtds =

∫
C]0,n[×]0,n[(u)

f(νX(x)) dσ1(x).
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The first inequality of lemma is then achieved. To obtain the second inequality, arguing
as previously we obtain the following lower bound

(2) =

∫ n+1

0

∫ n+1

0

∫
C[t−1 , t[×[s−1 , s[(u)

f(νX(x)) dσ1(x) dtds =

∫ n+1

n

∫ n+1

n

H(t, s) dtds

−
∫ 0

−1

∫ n+1

n

H(t, s) dtds−
∫ n+1

n

∫ 0

−1

H(t, s) dtds+

∫ 0

−1

∫ 0

−1

H(t, s) dtds

>
∫ n+1

n

∫ n+1

n

∫
C]0,t[×]0,s[(u)

f(νX(x)) dσ1(x) dtds >
∫
C]0,n[×]0,n[(u)

f(νX(x)) dσ1(x),

this yields Lemma 4.2. 2

Proof of Lemma 5.4. Since Z is an isotropic process, its density p∇Z(0)(v) depends only
on ‖v‖2. We denote it by g(‖v‖2).

Thus if
−→
f : S1 → R2 is a continuous and bounded function,

E[
−→
f (νX(0)) ‖∇X(0)‖2] = E[

−→
f
(

A.∇Z(0)
‖A.∇Z(0)‖2

)
‖A.∇Z(0)‖2]

=

∫
R2

−→
f
(

A.v
‖A.v‖2

)
‖A.v‖2 g(‖v‖2) dv.

Letting v := rα, α ∈ S1, one gets

E[
−→
f (νX(0)) ‖∇X(0)‖2]

= σ1(S1)

(∫ ∞
0

g(r)r2 dr

) (∫
S1

−→
f

(
A.α
‖A.α‖2

)
‖A.α‖2 dα

)
= E[‖∇Z(0)‖2]

(∫
S1

−→
f

(
A.α
‖A.α‖2

)
‖A.α‖2 dα

)
.

In a similar way taking f ≡ 1, one gets

E[‖∇X(0)‖2] = E[‖∇Z(0)‖2]

(∫
S1

‖A.α‖2 dα

)
.

Finally by using Proposition 3.10, one obtains

E[J
(n)
−→
f

(u)]

E[J
(n)
1 (u)]

=

∫
S1

−→
f

(
A.α
‖A.α‖2

)
‖A.α‖2 dα∫

S1 ‖A.α‖2 dα
.

Now choosing
−→
f :=

−→
f? defined by (5.1) and since A is a self-adjoint matrix, one has∫

S1

−→
f?
(

A.α

‖A.α‖2

)
‖A.α‖2 dα = 2

∫
S1

A.α1{〈A.α, v?〉 > 0} dα

= 2

∫
S1

A.α1{〈α,A.v?〉 > 0} dα = 2A.

∫
S1 ∩ {〈α,w?〉 > 0}

α dα,

where we have noted w? := A.v?

‖A.v?‖2
.

If R denotes the change of basis matrix from the canonical orthonormal basis e := (~i,~j)

to an orthonormal basis choosen as w := (w?1 , w
?) and making the change of variable
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β := Rt.α in the last integral, one obtains(∫
S1 ∩ {〈α,w?〉e > 0}

α dα

)
e

=

(∫
S1 ∩ {〈α, (0, 1)〉w > 0}

α dα

)
w

=

(
0,

(∫
S1 ∩ {α2 > 0}

α2 dα

))
w

=

(∫
S1 ∩ {α2 > 0}

α2 dα

)
w? =

(∫ π

0

sin(x)
dx

2π

)
w? =

1

π
w?.

Thus we have proved that∫
S1

−→
f?
(

A.α
‖A.α‖2

)
‖A.α‖2 dα =

2

π
A.w? =

2

π

A2.v?

‖A.v?‖2
,

that yields Lemma 5.4. 2

Lemma A.3. The Jacobian J−→
F

of transformation
−→
F (see (5.5)) is given by

J−→
F

(λ, θ) =
λ(1− λ2)

I3(λ)(cos2(θ) + λ2 sin2(θ))
×[

sin2(θ)

∫ 1

0

√
1− u2√

1− (1− λ2)u2
du

+ cos2(θ)

∫ 1

0

u2√
1− (1− λ2)u2

du√
1− u2

]
6= 0, (A.2)

for 0 < λ < 1.

Proof of Lemma A.3. For 0 < λ 6 1 and −π2 < θ 6 π
2 , one has

∂F1

∂λ
(λ, θ) =

1

I2(λ)

[
λ sin2(θ)I(λ)− (cos2(θ) + λ2 sin2(θ))I ′(λ)

]
(cos2(θ) + λ2 sin2(θ))

1
2

∂F1

∂θ
(λ, θ) =

1

I(λ)

(
λ2 − 1

)
sin(θ) cos(θ)

(cos2(θ) + λ2 sin2(θ))
1
2

,

and 
∂F2

∂λ
(λ, θ) =

sin(θ) cos(θ)

I2(λ)

 (λI(λ)− (λ2 − 1)I ′(λ))

×(cos2(θ) + λ2 sin2(θ))

+λI(λ)


(cos2(θ) + λ2 sin2(θ))

3
2

∂F2

∂θ
(λ, θ) =

(
λ2 − 1

)
I(λ)

[
cos4(θ)− λ2 sin4(θ)

]
(cos2(θ) + λ2 sin2(θ))

3
2

.

From straightforward calculations we deduce that the Jacobian J−→
F

of the transformation
−→
F can be written as

J−→
F

(λ, θ) =

(
1− λ2

)
I3(λ)

[
λ sin2(θ)I(λ) + (cos2(θ)− λ2 sin2(θ))I ′(λ)

]
(cos2(θ) + λ2 sin2(θ))

Now I(λ) =
∫ π

2

0
(cos2(x) + λ2 sin2(x))

1
2 dx, and the change of variable: sin(x) = u gives

I(λ) =

∫ 1

0

(1− (1− λ2)u2)
1
2

(1− u2)
1
2

du and I ′(λ) = λ

∫ 1

0

u2

(1− (1− λ2)u2)
1
2

du√
1− u2

.
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This yields

λ sin2(θ)I(λ) + (cos2(θ)− λ2 sin2(θ))I ′(λ) =

λ

[
sin2(θ)

∫ 1

0

√
1− u2√

1− (1− λ2)u2
du

+ cos2(θ)

∫ 1

0

u2√
1− (1− λ2)u2

du√
1− u2

]
,

and lemma ensues from the fact that
(
J−→
F

(λ, θ) = 0
)
⇐⇒ (λ = 1). 2

Proof of Lemma 5.9. First let us see that for n ∈ N?, a.s. X2
n + Y 2

n < 1.

X2
n + Y 2

n =

∥∥∥∫Cn(u)

−→
f?(νX(t)) dσ1(t)

∥∥∥2

2

σ2
1(Cn(u))

6

∫
Cn(u)

∥∥∥−→f?(νX(t))
∥∥∥2

2
dσ1(t)

σ1(Cn(u))
= 1,

last equality coming from the fact that
−→
f? takes its values into S1. But the strict inequality

is true otherwise, we would have equality in Hölder inequality that remains impossible.

Now let us see that, a.s. Xn > 0.

Xn =
〈J (n)
−→
f?

(u)

J
(n)
1 (u)

, v?
〉

=
1

σ1(Cn(u))

∫
Cn(u)

|〈νX(t), v?〉| dσ1(t) > 0,

and in a manner similar to that previously used it is proved that, a.s. Xn > 0. This yields
lemma. 2

Lemma A.4. The coefficients af?1 are given by: for m, ` ∈ N

(
af?1 (2m, 2`) af?1 (2m+ 1, 2`+ 1) af?1 (2m, 2`+ 1) af?1 (2m+ 1, 2`)

af?2 (2m, 2`) af?2 (2m+ 1, 2`+ 1) af?2 (2m, 2`+ 1) af?2 (2m+ 1, 2`

)
=

P ×
(
A(λ1, λ2, ω

?
1 , ω

?
2 ,m, `, µ) B(λ1, λ2, ω

?
1 , ω

?
2 ,m, `, µ) 0 0

A(λ2, λ1, ω
?
2 , ω

?
1 , `,m, µ) B(λ2, λ1, ω

?
2 , ω

?
1 , `,m, µ) 0 0

)
,

where ω? =
(
ω?1 , ω

?
2

)
:= v?.P and

A(λ1, λ2, ω
?
1 , ω

?
2 ,m, `, µ) :=√

2µ
π λ1

m∑
p=0

(−2)p−m

(2p)!(m− p)!

p∑
k=0

2kp!

(p− k)!

(
λ2ω

?
2

λ1ω?1

)2(p−k)

×

∑̀
n=0

(−2)n−`

(2n)!(`− n)!

(
λ1ω

?
1

[(λ1ω?1)2 + (λ2ω?2)2]
1
2

)2(n+p−k)+1

×

(2(n+ p− k))!

2n+p−k(n+ p− k)!
,
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and

B(λ1, λ2, ω
?
1 , ω

?
2 ,m, `, µ) :=√

2µ

π
λ1

∑̀
p=0

(−2)p−`

(2p+ 1)!(`− p)!

p∑
k=0

2kp!

(p− k)!

(
λ1ω

?
1

λ2ω?2

)2(p−k)

×

m∑
n=0

(−2)n−m

(2n+ 1)!(m− n)!

(
λ2ω

?
2

[(λ1ω?1)2 + (λ2ω?2)2]
1
2

)2(p−k+n+1)+1

×

(2(p− k + n+ 1))!

2p−k+n+1(p− k + n+ 1)!
.

Proof of Lemma A.4. Recall that for f : S1 → R a continuous and bounded func-
tions and for all u fixed level in R the coefficients af (·, u) are defined by af (k, u) =

af (k1, k2) a(k3, u), for k = (k1, k2, k3) ∈ N3, with

a(k3, u) =
1

k3!
Hk3

(
u√
rz(0)

)
φ

(
u√
rz(0)

)
1√
rz(0)

.

So for giving an expression of the coefficients af?i (·, u) for i = 1, 2 and of a1(·, u) just give
one of af?i (k1, k2) and of that of a1(k1, k2).
First, let us compute af?1 (k1, k2), for k1, k2 ∈ N. Let P := (ai,j)16i,j62. By definition of
coefficient af?1 (k1, k2), we have

af?1 (k1, k2) =

√
µ

k1!k2!

∫
R2

(a11 λ1 y1 + a12 λ2 y2)×(
1{〈(λ1 y1

λ2 y2

)
, (ω?)t

〉
>0
} − 1{〈(λ1 y1

λ2 y2

)
, (ω?)t

〉
<0
})×

Hk1(y1)φ(y1)Hk2(y2)φ(y2) dy1 dy2.

By using the fact that Hn is even when n is even and odd if not (see (A.3) and (A.4)), the
coefficients k1 and k2 ought to be of the same parity, otherwise the coefficients af?1 (k1, k2)

would be null. Therefore let us suppose first that k1 = 2m and k2 = 2`, m, ` ∈ N. In that
way and using that polynomial H2n is even, one has

af?1 (2m, 2`) =
2
√
µ

(2m)!(2`)!

∫
R2

(a11 λ1 y1 + a12 λ2 y2)×

1{〈(λ1 y1
λ2 y2

)
, (ω?)t

〉
>0
} ×H2m(y1)φ(y1)H2`(y2)φ(y2) dy1 dy2.

Let us compute

E :=

∫
R2

y1 × 1{〈(λ1 y1
λ2 y2

)
, (ω?)t

〉
>0
} ×H2m(y1)φ(y1)H2`(y2)φ(y2) dy1 dy2.

(similar computations would be done for the second integral on y2, the arguments
ω?2 , ω

?
1 , λ2, λ1, `,m, in this order, playing the role of ω?1 , ω

?
2 , λ1, λ2,m, ` in last integral).

At this step of the proof Lemma A.5 is required.

Lemma A.5. Let p ∈ N, a ∈ R and Fp(a) :=
∫ +∞
a

z2p+1φ(z) dz. Then

Fp(a) = φ(a)

p∑
k=0

2kp!

(p− k)!
a2(p−k).
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Proof of Lemma A.5. Integration by parts and straightforward calculations give the
lemma. 2
Three cases occur: ω?1 > 0, ω?1 < 0 and ω?1 = 0.
Let us consider the first one. If ω?1 > 0, E can be written as

E =

∫
R

H2`(y2)φ(y2)

∫ +∞

−λ2 ω
?
2

λ1 ω
?
1
y2

y1H2m(y1)φ(y1) dy1

 dy2.

For real x and m ∈ N, the polynomial form of H2m(x) is

H2m(x) = (2m)!

m∑
p=0

(−2)p−m

(2p)! (m− p)!
x2p. (A.3)

Using Lemma A.5, one gets

E = (2m)!

m∑
p=0

(−2)p−m

(2p)! (m− p)!

p∑
k=0

2kp!

(p− k)!

(
λ2ω

?
2

λ1ω?1

)2(p−k)

×

∑̀
n=0

(2`)!
(−2)n−`

(2n)! (`− n)!
Gn+p−k

(
λ2ω

?
2

λ1ω?1

)
,

where for q ∈ N and x ∈ R, we defined

Gq(x) :=

∫ +∞

−∞
y2q φ(y)φ(xy) dy =

1√
2π

1

(1 + x2)q+
1
2

(2q)!

2qq!
.

If ω?1 < 0, using that for m ∈ N, polynomial H2m is even, one obtains that

E =

∫
R

H2`(y2)φ(y2)

∫ −λ2ω?2λ1ω
?
1
y2

−∞
y1H2m(y1)φ(y1)dy1

 dy2

= −
∫
R

H2`(y2)φ(y2)

∫ +∞

−λ2ω
?
2

λ1ω
?
1
y2

y1H2m(y1)φ(y1)dy1

 dy2,

and in a same way, when ω?1 = 0,

E =

(∫
R

H2`(y2)φ(y2)1{y2ω?2>0} dy2

)(∫
R

y1H2m(y1)φ(y1) dy1

)
= 0.

Finally, knowing that |ω?1 | × sign(ω?1) = ω?1 , one gets the expression of coefficient
af?1 (2m, 2`).
For coefficient af?1 (2m + 1, 2` + 1), similar arguments would be developed using the
previous way and the polynomial form of H2`+1(x), that is

H2`+1(x) = (2`+ 1)!
∑̀
p=0

(−2)p−`

(2p+ 1)! (`− p)!
x2p+1. (A.4)

To conclude the proof of Lemma A.4, just remark that af?2 (2m+1, 2`) = af?2 (2m, 2`+1) = 0

and that af?2 (2m, 2`) (resp. af?2 (2m+ 1, 2`+ 1)) would be computed replacing a11 by a21

and a12 by a22 in the expression of af?1 (2m, 2`) (resp. af?1 (2m+ 1, 2`+ 1)). 2
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In order to give the coefficients a1 we introduce the following functions.
The β function is defined by:

β(x; y) :=
Γ (x)Γ (y)

Γ (x+ y)
, x, y > 0,

while the Γ function is defined by:

Γ (x) :=

∫ ∞
0

e−ttx−1 dt. (A.5)

Lemma A.6. The coefficients a1 are given by: for m, ` ∈ N(
a1(2m, 2`) a1(2m+ 1, 2`+ 1) a1(2m, 2`+ 1) a1(2m+ 1, 2`)

)
=(

c(λ1, λ2,m, `, µ) 0 0 0
)
,

where

c(λ1, λ2,m, `, µ) :=√
2πµ (−2)−(m+`)

m!`!

∑̀
p=0

m∑
q=0

(
`

p

)(
m

q

)
(−1)p+qλ2

(
λ2

λ1

)2q+1

×

+∞∑
n=0

(
q+n
q

)(
2q+2n
q+n

)(
2q
q

) (
1
2

)2n 1

β(p+ q + n+ 1; 1
2 )

(
1−

(
λ2

λ1

)2
)n

.

Remark A.7. Note that in the case where λ = 1, that is when the process is isotropic
our result contains that of the authors expressed in Kratz and León [20, Theorem 2].

Proof of Lemma A.6. Let us compute a1(k1, k2), for k1, k2 ∈ N. We have

a1(k1, k2) =

√
µ

k1!k2!

∫
R2

√
λ2

1 y
2
1 + λ2

2 y
2
2 Hk1(y1)Hk2(y2)φ(y1)φ(y2) dy1 dy2.

Similar arguments as those given in Lemma A.4 show that a1(k1, k2) = 0 except when k1

and k2 are even.
So let us compute a1(2m, 2`) for m, ` ∈ N.
The change of variable y1 := λr sin(θ) and y2 := r cos(θ) in last integral and expression of
H2` given in (A.3) yield

a1(2m, 2`) =
2
√
µ

π
λ2

2
λ1

m∑
p=0

∑̀
q=0

(−2)p−m(−2)q−`

(2p)!(2q)!(m− p)!(`− q)!
λ2p×

∫ π
2

0

∫ +∞

0

r2p+2q+2 cos2q(θ) sin2p(θ) e
−1

2
r2
[
cos2(θ) + λ2 sin2(θ)

]
dr dθ.

Now making the change of variable r2 :=
2v

cos2(θ) + λ2 sin2(θ)
and w := sin(θ), one gets

a1(2m, 2`) =

√
µ
π
λ2

2
λ1

m∑
p=0

∑̀
q=0

(−2)p−m(−2)q−`

(2p)!(2q)!(m− p)!(`− q)!
λ2p 2p+q+

1
2 ×

Γ (p+ q + 3
2 )F (p+ q + 3

2 ; p+ 1
2 ; p+ q + 1; 1− λ2),

where the hypergeometric function F is defined by

F (a; b; c; z) :=

∫ 1

0

ub−1(1− u)c−b−1(1− uz)−a du.

for |z| < 1, 0 < b < c and a > 0.
The proof of lemma ensues from the following one.
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Lemma A.8. For |z| < 1, 0 < b < c and a > 0, one has

F (a; b; c; z) =
Γ (c− b)
Γ (a)

+∞∑
n=0

Γ (a+ n)Γ (b+ n)
Γ (c+ n)Γ (n+ 1)

zn.

Proof of Lemma A.8. The proof consists in a serial development of function f(z) :=

(1− uz)−a. 2
2

Proof of Lemma 5.16. Let f1, f2 : S1 → R continuous and bounded functions and set
−→
f := (f1, f2). We have the following decomposition of det

(
Σ−→
f

(u)
)

.

det
(
Σ−→
f

(u)
)

= Σf1,f1(u)Σf2,f2(u)− (Σf1,f2(u))
2

=

+∞∑
q=1

+∞∑
q′=1

(Σf1,f1(u))q (Σf2,f2(u))q′ −

(
+∞∑
q=1

(Σf1,f2(u))q

)2

=

+∞∑
q=1

det
(
Σ−→
f

(u)
)
q

+
∑
q<q′

(√
(Σf1,f1(u))q

√
(Σf2,f2(u))q′ −

√
(Σf1,f1(u))q′

√
(Σf2,f2(u))q

)2

+ 2
∑
q<q′

[√
(Σf1,f1(u))q

√
(Σf2,f2(u))q′

√
(Σf1,f1(u))q′

√
(Σf2,f2(u))q

− (Σf1,f2(u))q (Σf1,f2(u))q′
]
.

To conclude the proof of lemma, we just have to verify that for all q ∈ N?,∣∣∣(Σf1,f2(u))q

∣∣∣ 6√(Σf1,f1(u))q

√
(Σf2,f2(u))q. (A.6)

So, let q ∈ N?, and let define(
ξ

(n)
f (u)

)
q

:= 1√
σ2(Tn)

∑
k∈N3

|k|=q

af (k, u)

∫
Tn

H̃k(U(t)) dt.

Corollary 4.9 implies that,((
ξ

(n)
f1

(u)
)
q

;
(
ξ

(n)
f2

(u)
)
q

)
Law−−−−−→

n→+∞
N (0;

(
Σ−→
f

(u)
)
q
),

and in force
(
Σ−→
f

(u)
)
q

is a semi-definite positive matrix. This argument yields inequality

(A.6) and Lemma 5.16. 2

Proof of Lemma 5.19. Using that B2
n = Σn, limn Σn = Σ = B2 and that limn tr(Bn) =

tr(B) > 0, we obviously deduce that limnBn = B.
2
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