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Abstract	
Solid	polymer	 linear	viscoelasticity	 in	 shear	 is	often	characterized	by	applying	 	 torsion	and	
using	the	Saint-Venant	solution	when	rectangular	prismatic	specimens	are	considered.	 It	 is	
shown	 that	 experimental	 dynamic	 torsion	 tests	 can	 show	 a	 dependency	 of	 the	 storage	
modulus	and	damping	factor	on	the	dimensions	of	the	rectangular	prismatic	specimen	when	
linear	temperature	ramps	are	applied.	While	the	discrepancy	of	damping	factor	is	explained	
by	temperature	heterogeneities	and	can	be	corrected	easily	by	applying	temperature	steps,	
the	 inconsistency	 of	 storage	modulus	 is	 due	 to	 an	 invalid	 application	 of	 the	 Saint-Venant	
solution.	Finite	element	simulations	allowed	definition	of	the	sample	dimensions	for	which	
the	Saint-Venant	solution	provides	a	good	approximation,	and	a	coefficient	is	given	to	correct	
the	results	obtained	with	commercial	rheometers	when	other	sample	dimensions	are	used.		
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1.Introduction	
The	linear	viscoelastic	behavior	of	solid	polymers	is	often	estimated	from	uniaxial	tension	or	
torsion	dynamic	mechanical	tests.	While	uniaxial	tension	is	appropriate	to	reach	the	storage	
and	loss	Young’s	moduli,	torsion	allows	measuring	the	storage	and	loss	shear	moduli.	When	
dealing	with	torsion	rheometers,	such	as	the	Anton	Paar	MCR	series,	tests	are	often	run	on	
rectangular	specimens	and	the	storage	modulus	and	damping	factor	are	obtained	from	the	
Saint-Venant	 solution	 [1].	 The	 rectangular	 shape	 is	 often	 preferred	 to	 the	 cylinder	 shape	
despite	the	fact	that	clamping	renders	the	Saint-Venant	solution	inappropriate.	Dessi	et	al.	[2]	
reported	a	storage	modulus	dependency	on	the	specimen	length/width	aspect	ratio	measured	
on	a	styrene	butadiene	rubber	in	its	rubbery	state.	They	proposed	a	correction	coefficient	to	
the	Saint-Venant	 solution	when	dealing	with	 rubbers	 (Poisson's	 ratio	equal	 to	0.5),	a	 fixed	
width/thickness	 ratio	 equal	 to	 4	 and	 a	 length/width	 ratio	 ranging	 from	 0.25	 to	 1.85.	
Unfortunately,	 these	 aspect	 ratios	 do	 not	 cover	 the	 entire	 range	 of	 specimen	 dimensions	
recommended	by	constructors.	The	Anton	Paar	documentation	recommends	a	 length	(L)	x	
width	 (W)	 x	 thickness	 (T)	 product	 of	 40	 x	 10	 x	 1	 mm3.	 The	 TA	 instruments	 Ares-G2	
documentation	mentions	that	sample	length	and	width	should	be	40	and	12	mm	respectively,	
while	the	specimen	thickness	should	range	between	0.3	and	6	mm.	Finally,	the	international	
standard	 ISO	 4664-2	 [3],	 designed	 to	 determine	 the	 dynamic	 properties	 of	 rubbers	 with	
torsion	 pendulum	 methods	 at	 low	 frequencies,	 recommends	 using	 specimens	 of	 1	 mm	
thickness,	with	 a	 preferred	width	 value	 of	 10	mm	and	 a	 length	 between	 40	 and	 120	mm	
chosen	to	 fit	 the	clamping	device.	 In	 the	 latter	 respect,	note	 for	 instance	that	 the	thermal	
chamber	CTD	600	from	Anton	Paar	limits	the	specimen	length	to	50	mm.	

In	the	present	contribution,	we	expose	the	significant	impact	of	the	sample	dimensions	when	
characterizing	 the	 linear	 viscoelastic	 response	 of	 a	 solid	 amorphous	 polymer	with	 torsion	
dynamic	tests	applied	to	a	rectangular	prismatic	sample.	For	this	purpose,	two	specimens	with	



different	aspect	ratios	were	submitted	to	a	sinusoidal	torsion	with	constant	amplitude	and	
frequency,	 at	 various	 temperatures	 applied	 either	 with	 a	 linear	 ramp	 or	 stepwise	 in	 a	
rheometer.	In	order	to	better	understand	the	experimental	results,	finite	element	simulations	
reproducing	the	experimental	torsion	tests	were	run.	These	simulations	allow	definition	of	the	
suitable	 geometries	 to	 apply	 the	 Saint-Venant	 solution,	 which	 is	 used	 by	 commercial	
rheometers.	They	also	allow	proposal	of	a	correction	coefficient	when	other	geometries	are	
used.				

2. Impact	of	sample	rectangular	dimensions:	Experimental	evidence
2.1.	Material	and	experiment	
In	 order	 to	 run	 torsion	 tests	 on	 rectangular	 geometries,	 plates	 of	 an	 amorphous	 polymer	
network	were	prepared	 in	 the	 lab.	The	material	was	a	mere	acrylate	network	obtained	by	
copolymerization	of	benzyl	methacrylate	 (BMA)	with	poly	 (ethylene	glycol)	dimethacrylate	
(PEGDMA)	 of	molar	 weight	 550	 g/mol	 used	 as	 crosslinking	 agent.	 Products	 were	 used	 as	
received	 from	 Sigma	 Aldrich	 in	 proportion	 90%	 molar	 mass	 of	 BMA	 10%	 molar	 mass	 of	
PEGDMA.	The	mix	was	cured	in	a	UVP	ultraviolet	chamber	CL-1000	for	50	minutes	between	
glass	plates	in	order	to	obtain	acrylate	plates	of	1	mm	thickness.	Rectangular	specimens	of	
either	12	or	5	mm	width	were	punched	from	the	plates.	Finally,	once	set	 in	the	grips,	 two	
geometries	of	46x5x1	and	20x12x1	mm3	were	tested.	

The	material	viscoelasticity	was	measured	with	a	MCR502	rheometer	from	Anton	Paar.	During	
the	dynamic	mechanical	analysis	(DMA)	tests,	a	sinusoidal	deflection	angle	𝜃 = 𝜃#	sin	(2𝜋𝑓𝑡)	
is	applied	with	a	small	angle	amplitude	𝜃#		at	a	given	frequency	𝑓.	Due	to	the	material	linear	
viscoelastic	behavior	at	low	strain,	the	resulting	torque	is	of	the	form	𝑀 = 𝑀#	sin	(2𝜋𝑓𝑡 +
𝛿),	with	tan 𝛿	characterizing	the	material	damping	factor	in	shear	obtained	directly	from	the	
phase	 difference	 between	 the	 applied	 deflection	 and	 the	 measured	 torque.	 If	 the	 Saint-
Venant	 solution	 for	 the	 free-end	 torsion	 of	 prisms	 is	 applied,	 the	 material	 storage	 shear	
modulus	is	calculated	from	the	measured	torque	as:	

𝐺′ = 56
789	:;
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																	(1)	

for	width/thickness	(W/T)	ratios	of	at	least	3	[4].	
It	 is	usual	 to	submit	amorphous	polymers	 to	a	 temperature	sweep	at	given	 frequency	and	
strain	 amplitude,	 in	 order	 to	 determine	 the	 glass	 transition	 temperature	 or	 the	 range	 of	
temperature	that	enhances	the	material	viscoelasticity.	Therefore,	a	temperature	sweep	was	
applied	to	the	samples.	

2.2.	Linear	temperature	heating	ramp	
The	 rectangular	 samples	 were	 submitted	 to	 torsion	 oscillations	 at	 1	 Hz	 and	 0.1%	 strain	
amplitude	during	linear	heating	ramps	at	1	°C/min.	Note	that	it	was	verified	that	the	material	
response	was	linear	at	0.1%	strain.	Figure	1	presents	the	storage	shear	modulus	𝐺′	and	the	
damping	factor	tan 𝛿	calculated	from	the	recorded	torque	𝑀	using	the	Saint-Venant	solution	
(Eq.	(1)),	with	respect	to	temperature.	These	values	are	very	similar	to	those	read	in	the	report	
data	 sheet	 from	 the	Anton	Paar	 rheometer	except	 for	 some	discrepancies	noticed	at	high	
temperatures	because	the	Anton	Paar	software	does	not	account	for	the	variations	of	sample	
length	(gap	between	the	two	grips)	as	it	should.	Indeed,	due	to	the	constant	axial	force	applied	
to	avoid	sample	buckling,	the	gap	between	grips	increases	with	temperature.	Note	that	it	is	
recommended	to	keep	the	axial	force	as	low	as	possible	to	avoid	large	gap	changes	that	may	



occur	suddenly,	as	we	observed	when	the	normal	force	was	set	to	-1N	(the	minus	sign	stands	
for	tension	for	Anton	Paar	reference).		

Figure	 1	 shows	 a	 storage	 modulus	 and	 a	 damping	 factor	 which	 depend	 on	 the	 sample	
geometry,	and	this	raises	the	question	of	which	(if	any)	data	represent	the	actual	behavior	of	
the	material.	Since	the	long	sample	stands	from	the	bottom	to	the	top	of	the	thermal	chamber	
and	 the	 short	 sample	 is	 relatively	 wide,	 it	 is	 not	 guaranteed	 that	 any	 sample	 is	 heated	
homogeneously	during	the	heating	ramp.	Therefore,	the	same	oscillatory	loading	was	applied	
while	the	temperature	was	set	stepwise,	allowing	temperature	to	homogenize	throughout	the	
samples	during	long	steps.			

2.3.	Stepwise	temperature	change	
For	 these	 tests,	 once	 a	 target	 temperature	 was	 reached,	 the	 samples	 were	 kept	 for	 five	
minutes	at	constant	temperature	before	applying	the	torsion	at	1	Hz	and	0.1%	strain.	Figure	
2	displays	the	storage	shear	modulus	and	the	damping	factor	obtained	for	both	geometries	
with	respect	to	temperature.	Unlike	in	Figure	1,	the	damping	factors	now	coincide.	Note	that	
the	 tan 𝛿	 curve	shown	 in	Figure	2	does	not	 superpose	with	any	of	 the	curves	displayed	 in	
Figure	1,	which	have	broader	bell	shapes.	The	latter	result	shows	that	a	linear	temperature	
ramp,	even	as	 low	as	1	°C/min	and	with	relatively	thin	samples	(1	mm),	may	 induce	a	non	
homogeneous	 temperature	 that	 leads	 to	 inaccurate	 damping	 factors.	 As	 a	 consequence,	
temperature	 should	 be	 applied	 stepwise	 to	 reach	 an	 equilibrium	 before	 attempting	 any	
measure.	The	storage	modulus	values	remain	specimen	shape	dependent	in	Figure	2,	with	the	
shorter	 and	 wider	 sample	 evidencing	 a	 significantly	 larger	 storage	 modulus.	 In	 order	 to	
understand	this	result,	finite	element	simulations	reproducing	the	torsion	test	were	run.	The	
material	viscoelastic	behavior,	defined	by	a	generalized	Maxwell	model	combined	the	WLF	
equation	[5]	for	time-temperature	superposition,	was	fitted	according	to	textbook	procedures	
[6,7].	Since	the	long	sample	is	closer	to	the	Saint-Venant	assumption	of	a	slender	prism,	the	
material	behavior	was	fitted	on	this	sample	response,	and	the	resulting	parameters	are	listed	
in	Table	1.	As	shown	in	Figure	3,	these	parameters	provide	a	very	good	representation	of	the	
viscoelastic	response	of	the	long	and	narrow	sample	obtained	with	temperature	steps.	These	
parameters	are	now	used	to	specify	the	linear	viscoelasticity	of	the	material	in	finite	element	
simulations.	

3.Impact	of	sample	geometry:	Finite	element	analysis
In	the	experiments,	the	specimens	are	clamped	at	both	ends,	and	this	defines	a	torsion	test	
that	 differs	 from	 the	 Saint-Venant	 free-end	 torsion	 problem.	 Therefore,	 finite	 element	
simulations	were	performed	to	estimate	how	the	actual	 recorded	 torque	compares	 to	 the	
Saint-Venant	solution	according	to	the	specimen	shape.	

3.1.	Linear	viscoelastic	simulations	
The	Abaqus	[8]	finite	element	code	was	used	to	perform	the	simulations	reported	in	this	study.	
The	 material	 obeyed	 the	 small	 strain	 linear	 viscoelastic	 model	 described	 in	 the	 previous	
Section.	The	length	unit	was	given	by	the	specimen	thickness,	and	a	mesh	was	defined	where	
all	elements	had	the	same	cubic	shape	with	an	edge	length	equal	to	one	tenth	of	the	specimen	
thickness.	Accordingly,	a	20x12x1	specimen	is	made	of	240,000	identical	linear	elements,	for	
instance.	A	torsion	about	the	 long	specimen	axis	was	applied	to	one	end	of	 the	specimen,	
while	the	opposite	end	was	fixed.	More	precisely,	two	types	of	conditions	were	applied	to	
these	 boundaries,	 according	 to	which	 the	 displacements	 parallel	 to	 the	 torsion	 axis	 were	



allowed	(like	in	the	Saint-Venant	solution)	in	the	end	sections	or	not	(like	in	the	rheometer).	
Small	angle	amplitude	sinusoidal	 torsions	were	applied	at	1	Hz	at	various	uniform	and	set	
temperatures.	 The	 calculated	 torque	 stabilized	 after	 the	 second	 cycle,	 which	 required	 to	
compute	at	least	three	cycles.	Each	cycle	was	discretized	into	512	equal	time	steps	to	avoid	
inaccurate	results	within	the	glass	transition,	where	the	material	viscoelasticity	is	enhanced.	
A	fast	Fourier	transform	was	applied	to	the	computed	torque	values	in	the	stabilized	cycle,	
leading	to	𝑀#	𝑐𝑜𝑠𝛿	and	𝑀#	𝑠𝑖𝑛𝛿,	which	gives	tan 𝛿	directly,	and	then	the	storage	modulus	𝐺′	
is	evaluated	by	using	Eq.	(1).	This	assumes	that	the	Saint-Venant	solution	applies,	like	in	the	
rheometer	software.	

The	first	comparison	considers	the	long	narrow	sample	(LxWxT=46x5x1)	with	the	two	types	of	
boundary	conditions	prescribed	alternatively.	The	comparison	between	the	model	material	
behavior	 plotted	 in	 Figure	 3	 and	 the	 estimates	 deduced	 from	 the	 simulations	 is	 shown	 in	
Figure	4.	First,	as	could	be	expected	since	the	Saint-Venant	solution	is	exact,	finite	element	
simulations	 using	 the	 free-end	 boundary	 conditions	 reproduce	 the	 material	 behavior	
perfectly.	 Second,	 Figure	 4	 shows	 that	 the	 material	 behavior	 estimated	 by	 applying	 the	
rheometer	boundary	conditions	to	the	long	narrow	sample	is	very	close	to	the	actual	material	
behavior,	 although	 the	 storage	 modulus	 𝐺′	 is	 slightly	 overestimated.	 This	 shows	 the	
pertinence	of	the	Saint-Venant	assumption	for	the	long	and	narrow	sample,	since	the	latter	
geometry	gives	access	to	a	very	good	estimate	of	the	material	behavior	directly.		

The	dynamic	torsion	test	was	also	simulated	with	the	short	wide	20x12x1	sample.	Of	course,	
both	the	short	wide	sample	and	the	long	narrow	sample	lead	to	the	same	(and	exact)	material	
behavior	when	the	free-end	boundary	conditions	are	applied	in	the	simulations.	Like	for	the	
long	sample,	the	Saint-Venant	solution	(Eq.	(1))	is	applied	to	calculate	the	storage	modulus	
from	the	calculated	torque	when	rheometer-like	boundary	conditions	are	applied,	and	Figure	
5	compares	the	results	to	the	experimental	data.	As	one	reads,	the	simulations	are	 in	very	
good	agreement	with	the	experimental	data	for	the	short	sample	as	well	as	for	the	long	one,	
therefore	our	 finite	 element	 simulations	do	 capture	 the	essential	 features	of	 the	dynamic	
torsion	test.	Although	the	damping	factor	is	assessed	well,	it	can	be	observed	that	the	storage	
modulus	is	still	overestimated	when	applying	the	Saint-Venant	solution	to	the	clamped	short	
sample.	 In	 order	 to	 better	 understand	 this	 result	 and	 to	 ultimately	 propose	 a	 geometry	
correction	when	needed,	simulations	were	now	run	in	linear	elasticity	allowing	to	test	quickly	
a	large	number	of	cases.	

3.2.	Linear	elastic	simulations	
The	material	is	now	elastic	and	characterized	by	its	shear	modulus	𝐺	and	its	Poisson's	ratio	𝜈.	
Either	 classical	 linear	 8-node	 elements	 (for	 𝜈=0.2,	 0.3	 and	 0.4)	 or	 hybrid	 linear	 8-node	
elements	(with	both	displacements	and	hydrostatic	pressure	as	unknowns,	for	𝜈=0.5)	were	
used.	A	constant	small	angle	 torsion	was	applied	with	the	same	boundary	conditions	as	 in	
section	3.1.	Figure	6	compares	the	Mises	stress	 induced	 in	46x5x1	and	20x12x1	specimens	
with	a	Poisson's	 ratio	of	0.5,	after	normalization	by	the	value	that	would	apply	at	 the	free	
surfaces	of	an	infinitely	long	and	wide	specimen,	namely	 3𝐺	𝜃	𝑇/𝐿,	where	𝜃	is	the	torsion	
angle.	In	each	subfigure,	one	quarter	of	the	specimen	has	been	removed	in	order	to	show	the	
stress	 distribution	 inside	 the	 specimen.	 It	 may	 be	 observed	 first	 that	 letting	 the	 vertical	
displacements	free	at	the	upper	and	lower	sections	does	induce	a	field	that	is	uniform	along	



the	specimen	length,	which	is	in	agreement	with	the	Saint-Venant	solution.	In	these	cases,	an	
edge	effect	can	be	observed	at	the	ends	of	the	transversal	section,	which	extends	over	a	length	
of	the	order	of	a	few	specimen	thicknesses	and	is	duly	included	in	the	Saint-Venant	solution.	
Accordingly,	 the	 torques	 computed	 in	 the	 cases	 b	 and	 d	 shown	 in	 Figure	 6	 are	 in	 perfect	
agreement	 with	 Eq.	 (1)	 where	 𝐺′	 is	 replaced	 by	 𝐺	 and	 where	 𝛿 = 0.	 Incidentally,	 the	
transversal	cross	sections	shown	in	Figures	6b	and	6d	recall	that	a	torsion	test	is	basically	non	
uniform,	even	 in	 ideal	 conditions,	 since	 the	stress	varies	 linearly	 through	 the	 thickness	 for	
simple	elastic	behavior.	More	importantly,	an	additional	edge	effect	is	noticed	in	Figures	6a	
and	6c,	which	extends	along	the	length	of	the	specimen.	Like	for	the	transversal	edge	effect	
mentioned	above,	this	effect	extends	over	a	length	of	the	order	of	a	few	specimen	widths.	
Consequently,	 the	 central	 transversal	 section	 of	 the	 specimen	 is	 barely	 affected	 by	 the	
longitudinal	edge	effect	in	Figure	6a,	and	the	torque	is	computed	as	1.057	times	the	Saint-
Venant	solution	(recall	that	the	latter	ignores	the	longitudinal	edge	effect).	 In	contrast,	the	
longitudinal	edge	effect	 is	dominant	 in	 the	 short	 specimen	of	Figure	6c,	and	 the	 torque	 is	
computed	 as	 1.490	 times	 the	 Saint-Venant	 value.	 Consequently,	 Figure	 6	 illustrates	 the	
assumption	 made	 when	 the	 Saint-Venant	 solution	 is	 used	 to	 interpret	 a	 torsion	 test:	
approximating	 Figure	 6a	 by	 Figure	 6b	 (which	 is	 reasonable,	 case	 of	 a	 long	 specimen),	 or	
approximating	Figure	6c	by	Figure	6d	(which	is	very	imprecise,	case	of	a	short	specimen).	

Since	 commercial	 rheometers	 use	 the	 Saint-Venant	 solution,	 one	 understands	 easily	 why	
short	wide	samples	are	not	recommended	to	measure	the	viscoelasticity	of	solid	polymers	
experimentally.	Nonetheless,	 one	may	 be	 constrained	 and	 not	 able	 to	 choose	 the	 sample	
dimensions.	 This	 will	 result	 in	 a	 measured	 storage	modulus	𝐺PQRST 	 larger	 than	 the	 actual	
storage	modulus	𝐺#T .	To	provide	a	sensible	correction,	we	have	simulated	the	elastic	torsions	
of	clamped	specimen	with	various	rectangular	dimensions	and	Poisson’s	ratio,	and	computed	
a	 correction	 coefficient	𝐾 𝐿/𝑇,𝑊/𝑇, 𝜈 	that	 relates	 the	 shear	modulus	 resulting	 from	 the	
Saint-Venant	 analysis	 to	 the	 actual	 shear	 modulus	 by	 𝐺XYZ = 𝐾. 𝐺#.	 Assuming	 that	 the	
Poisson’s	ratio	is	purely	elastic	at	a	given	temperature,	one	may	apply	this	coefficient	to	the	
measured	viscoelastic	storage	modulus	𝐺PQRST 	and	thus	reach	𝐺#T .	

3.3.	Shape	correction	factor	
The	sample	thickness	stands	as	the	unit	length.	Since	the	simplified	expression	(Eq.	(1))	of	the	
Saint-Venant	solution	assumes	that	the	sample	width	is	at	least	three	times	its	thickness,	this	
value	 is	 chosen	 as	 the	 lower	 limit	 for	𝑊/𝑇.	 In	 order	 to	 cover	 the	 rectangular	 dimension	
recommended	by	 rheometer	 constructors,	 the	upper	 limit	of	𝑊/𝑇	 is	 set	 to	12.	The	prism	
length	is	larger	than	its	width	and	ranges	between	20	and	200	times	its	thickness.	First,	elastic	
torsions	were	simulated	for	𝑊/𝑇 = 3.	The	ratio	of	the	elastic	shear	modulus	estimated	by	
using	the	Saint-Venant	solution	over	the	actual	material	shear	modulus	is	presented	in	Figure	
7	with	respect	to	the	length	over	thickness	ratio	𝐿/𝑇	.	As	can	be	seen,	the	results	depend	on	
the	 Poisson’s	 ratio.	 It	 may	 be	 noted	 that	 the	 correction	 coefficient	𝐾 = 𝐺XYZ/𝐺#	 is	 well	
estimated	by	the	following	expression:	

𝐾 𝐿/𝑇, 3, 𝜈 = 1 + 𝐴 𝜈 / 𝐿/𝑇 A.#55																	 	 	 	 	 					(2)	
The	values	of	𝐴 𝜈 	used	to	plot	the	broken	lines	in	Figure	7	are	reported	in	Table	2.		

Parameter	𝑊/𝑇	was	then	varied	from	3	to	12	for	various	values	of	𝜈	and	𝐿/𝑇.	Figure	8	shows	
the	 values	 of	 𝐺XYZ/𝐺#	obtained	 when	 𝜈 = 0.5.	 For	 each	 value	 of	 𝐿/𝑇,	 the	 𝐺XYZ/𝐺#	ratio	
evolves	almost	 linearly	with	 respect	 to	𝑊/𝑇.	 Similar	 linear	 correlations	were	obtained	 for	



Poisson’s	ratio	of	0.2,	0.3	and	0.4.	Consequently,	the	correction	coefficient	𝐾	can	be	written	
as		

𝐾 𝐿/𝑇,𝑊/𝑇, 𝜈 = 𝐾 𝐿/𝑇, 3, 𝜈 + 9
:
− 3 𝑏 𝐿/𝑇, 𝜈 					(3)	

The	parameter	𝑏 𝐿/𝑇, 𝜈 	was	determined	by	a	mere	linear	regression	in	a	log-log	plot	and	its	
values	are	shown	in	Figure	9,	where	the	broken	lines	are	evaluations	using	the	relation:	

𝑏 𝐿/𝑇, 𝜈 = 𝐵 𝜈 / 𝐿/𝑇 a b 																		 	 	 	 	 	 					(4)	
with	the	values	of	parameters	𝐵 𝜈 	and	𝐶 𝜈 	listed	in	Table	2.	

Finally,	Eqs.	(2),	(3)	and	(4)	define	the	expression	of	the	correction	coefficient	needed	
when	approximating	the	torsion	of	clamped	rectangular	prisms	by	the	Saint-Venant	solution:	

𝐾 𝐿/𝑇,𝑊/𝑇, 𝜈 = 1 + 𝐴 𝜈 / 𝐿/𝑇 A.#55 + 9
:
− 3 𝐵 𝜈 / 𝐿/𝑇 a b 					(5)	

When	 this	 coefficient	 is	used	 to	divide	 the	measured	storage	modulus	 to	 reach	 the	actual	
material	storage	modulus,	one	recognizes	its	dependence	on	the	Poisson’s	ratio.	While	the	
Poisson’s	ratio	is	known	to	be	approximately	0.5	in	the	rubbery	state,	and	is	relatively	easy	to	
measure	 in	 the	 glassy	 state,	 it	 is	more	 difficult	 to	 grasp	 at	 temperatures	within	 the	 glass	
transition.	Therefore,	 the	correction	proposed	here	might	 lead	 to	moderate	discrepancies;	
nonetheless	 it	 provides	with	 a	 fast	 correction	 to	 an	 error	 that	may	 reach	 several	 tens	 of	
percents,	as	one	can	see	in	Figure	8	for	instance.	

4. Conclusions
Experimental	 investigation	 and	 numerical	 finite	 element	 simulations	were	 run	 in	 order	 to	
understand	how	to	characterize	the	linear	viscoelasticity	of	solid	polymers	in	shear	accurately	
when	using	 the	dynamic	 torsion	of	 rectangular	 prismatic	 samples.	 It	was	 shown	 that	 long	
temperature	 steps	 should	be	preferred	 to	 the	usual	 linear	heating	 ramp	 to	avoid	possible	
temperature	 heterogeneities	 that	 induce	 significant	 inaccuracies.	 Moreover,	 since	
commercial	 rheometers	 apply	 the	 Saint-Venant	 solution	 that	 does	 not	 account	 for	 the	
displacement	constraints	parallel	to	the	torsion	axis	resulting	from	specimen	clamping,	it	was	
shown	that	specific	geometries	have	to	be	considered	to	access	the	storage	modulus	without	
correction.	Actually,	slender	narrow	specimens	are	to	be	preferred	since	they	minimize	edge	
effects	that	may	be	significant	otherwise.	When	other	geometries	are	to	be	used,	a	correction	
coefficient	has	been	proposed	that	depends	on	the	specimen	geometry	and	on	the	material	
Poisson’s	 ratio.	 Dividing	 the	 measured	 storage	 modulus	 by	 this	 coefficient	 allows	
determination	of	the	actual	material	storage	modulus.	
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Figure	captions	

Fig.	1.	Storage	modulus	and	damping	factor	measured	from	torsion	oscillations	at	1	Hz	and	
0.1%	strain	during	a	linear	temperature	ramp	at	1	°C/min	for	samples	of	LxWxT	geometries.	



Fig.	2.	Storage	modulus	and	damping	factor	measured	at	various	equilibrated	temperature	
steps	at	1	Hz	and	0.1%	strain	for	samples	of	LxWxT	geometries.	

Fig.	 3.	 Comparison	 between	 the	 model	 linear	 viscoelasticity	 (solid	 lines)	 defined	 by	 the	
parameters	 listed	 in	Table	1	and	the	experimental	behavior	measured	on	the	46x5x1	mm3	
sample	during	temperature	steps.	



Fig.	4.		Viscoelastic	behaviors	obtained	by	applying	the	Saint-Venant	solution	(Eq.	(1))	to	the	
results	of	finite	element	simulations	where	the	displacements	parallel	to	the	torsion	axis	of	
the	sample	 is	either	 free	(Saint-Venant)	or	prevented	(46x5x1	specimen).	Comparison	with	
the	model	material	used	in	the	simulations	(solid	lines).	

Fig.	 5.	 	 Impact	 of	 the	 specimen	 dimensions	 (LxWxT)	 on	 the	 linear	 viscoelastic	 behavior	
estimated	 from	 finite	 element	 simulations	 (Abaq.)	 of	 the	 torsion	 tests	 by	 using	 the	 Saint-
Venant	solution	(Eq.	(1)).	Comparison	to	the	experimental	data	(Exp.)	measured	for	the	same	
geometries.	



Fig.	6.	Maps	of	the	Mises	stress	normalized	by	 3𝐺θ	𝑇/𝐿	in	46x5x1	(a	and	b)	and	20x12x1	(c	
and	d)	elastic	specimens.	The	torsion	axis	is	vertical	and	the	Poisson's	ratio	is	0.5.	The	vertical	
displacements	in	the	upper	and	lower	sections	are	either	prevented	(a	and	c)	or	let	free	(b	and	
d).	

Fig.	7.	Ratio	of	 the	shear	moduli	evaluated	by	applying	 the	Saint-Venant	solution	over	 the	
actual	material	value	for	the	elastic	torsion	of	a	clamped	rectangular	sample	with	𝑊/𝑇 = 3.		



Fig.	8.	Ratio	of	 the	shear	moduli	evaluated	by	applying	 the	Saint-Venant	solution	over	 the	
actual	material	value	for	the	elastic	torsion	of	a	clamped	rectangular	sample	according	to	the	
geometry	parameters	𝑊/𝑇	and	𝐿/𝑇	for	an	elastic	Poisson’s	ratio	of	0.5.		

Fig.	9.	Values	of	parameter	𝑏 𝐿/𝑇, 𝜈 	defined	in	Eq.	(3)	and	calculated	by	linear	regressions	of	
the	data	displayed	in	Fig.	8.	

Table	1.	



WLF	parameters	and	generalized	Maxwell	model	parameters	leading	to	the	curves	shown	in	
Figure	3.	
WLF	parameters	 𝑇eQf	=	64	°C	 𝐶A	=	17	 𝐶g	=	128	°C	
𝐺Q=2.37	MPa 	
𝐺h 	(MPa)	 𝜏h 	(s)	 𝐺h 	(MPa)	 𝜏h 	(s)	

4.408E+01	 1.259E-08	 5.714E+01	 3.435E-03	
3.768E+01	 2.354E-08	 4.949E+01	 6.422E-03	
3.239E+01	 4.401E-08	 3.719E+01	 1.201E-02	
2.824E+01	 8.230E-08	 2.374E+01	 2.245E-02	
2.514E+01	 1.539E-07	 1.351E+01	 4.198E-02	
2.305E+01	 2.877E-07	 7.376E+00	 7.850E-02	
2.195E+01	 5.380E-07	 4.119E+00	 1.468E-01	
2.189E+01	 1.006E-06	 2.473E+00	 2.744E-01	
2.296E+01	 1.881E-06	 1.638E+00	 5.132E-01	
2.529E+01	 3.517E-06	 1.163E+00	 9.595E-01	
2.904E+01	 6.576E-06	 8.015E-01	 1.794E+00	
3.418E+01	 1.230E-05	 4.803E-01	 3.355E+00	
4.045E+01	 2.299E-05	 2.489E-01	 6.272E+00	
4.714E+01	 4.299E-05	 1.272E-01	 1.173E+01	
5.330E+01	 8.038E-05	 7.584E-02	 2.193E+01	
5.804E+01	 1.503E-04	 5.837E-02	 4.100E+01	
6.094E+01	 2.810E-04	 5.886E-02	 7.667E+01	
6.210E+01	 5.254E-04	 7.395E-02	 1.434E+02	
6.200E+01	 9.824E-04	 1.066E-01	 2.680E+02	
6.068E+01	 1.837E-03	 1.627E-01	 5.012E+02	

Table	2.		
Parameters	of	the	correction	coefficient	given	by	Eq.	(5).	

𝜈 = 0.2	 𝜈 = 0.3	 𝜈 = 0.4	 𝜈 = 0.5	
𝐴 𝜈 1.127	 1.204	 1.300	 1.412	
𝐵 𝜈 1.189	 1.346	 1.542	 1.817	
𝐶 𝜈 1.200	 1.213	 1.230	 1.250	


