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We provide two new characterizations of FO[<, mod]-definable sets, i.e. sets of integers definable in first-order logic with the order relation and modular relations, and use these characterizations to prove that satisfiability of first-order logic over words with an order relation and a semilinear set (i.e. a set definable in first-order logic with addition) that is not FO[<, mod]definable is undecidable.

Introduction

A classical result of descriptive complexity theory (see [START_REF] Immerman | Descriptive Complexity[END_REF]) states that the FO[+, ×]-definable languages of finite words coincide with languages which belong to the circuit complexity class (uniform) AC 0 . One can consider variants where {+, ×} is replaced with weaker arithmetical relations. Two important examples are the fragments FO[<] and FO [<, mod], where mod denotes the set of modular relations. The fragment FO[<] captures the class of star-free regular languages [START_REF] Mcnaughton | Counter-free automata[END_REF]. The fragment FO[<, mod] also captures a subclass of the regular languages, which enjoys an (effective) algebraic characterization (see [START_REF] Barrington | Regular languages in {NC1}[END_REF]Corollary 10]); moreover FO[<, mod] is maximal with respect to regular languages, in the sense that every non trivial extension of the signature {<, mod} with numerical relations allows to define non-regular languages [START_REF] Péladeau | Formulas, regular languages and boolean circuits[END_REF]. For more information on this logic, we refer the reader to the book [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF].

Up to our knowledge there exist only few results on the expressivity of logics which lay between FO[<, mod] and FO[+, ×]. The situation contrasts with the extensive literature on definability of fragments of arithmetic over natural numbers, but is not surprising since many classical (un)definability techniques and results cannot be transferred to finite models. For instance, while there exist several characterizations of sets definable in the first-order theory of (N, +) (i.e. Presburger Arithmetic), the expressive power of FO[+] (over finite words) is not completely understood. Recently Choffrut & al. [START_REF] Choffrut | On the expressive power of FO[ +[END_REF] proved several closure properties of FO[+]-definable languages, and provided a partial characterization.

A natural approach to evaluate the expressive power of these logics is to study the complexity of the satisfiability problem. On the one hand this problem is undecidable for FO[+, ×], as a direct corollary of Trakhtenbrot's Theorem [START_REF] Trakhtenbrot | Impossibility of an algorithm for the decision problem in finite classes[END_REF]. Lange [START_REF] Lange | Some results on majority quantifiers over words[END_REF]Lemma 6.3] proved that undecidability occurs even for FO[+] over words. On the other hand satisfiability is decidable for FO[<, mod], since this fragment is contained in MSO[<] for which satisfiability is decidable [START_REF] Richard | Weak second-order arithmetic and finite automata[END_REF][START_REF] Elgot | Decision problems of finite automata design and related arithmetics[END_REF]Tra61]. In this paper we specify the decidability frontier for logics between FO[<, mod] and FO[+], by proving that for every integer d ≥ 1 and every relation R ⊆ N d , if R is definable in FO[+] but not in FO[<, mod], then satisfiability is undecidable for FO[<, R] (and FO[<, mod, R]) over words.

One should note that the previous result does not hold anymore if we remove the condition that R is FO[+]definable, since it can be shown for instance that satisfiability is decidable for FO[<, mod, R] when R denotes the set of factorials (this is a direct consequence of Elgot-Rabin' result that satisfiability of MSO[<, R] is decidable in this case [START_REF] Elgot | Decidability and undecidability of extensions of second (first) order theory of (generalized) successor[END_REF]).

In order to obtain our undecidability result, we prove general results about definability in fragments of Presburger Arithmetic. It is known that sets definable in Presburger Arithmetic coincide with semilinear sets [START_REF] Ginsburg | Semigroups, Presburger formulas, and languages[END_REF]. Two characterizations of semilinear sets are given in [START_REF] Muchnik | The definable criterion for definability in Presburger arithmetic and its applications[END_REF][START_REF] Michaux | Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of cobham's and semenov's theorems[END_REF] in terms of sets of smaller arity and local properties. We prove similar results for the FO[<, mod]-definable sets, and also for the FO[<, mod m] fragment, where only modulo m relation is used for some fixed natural number m. The FO[<, mod]-definable sets are accepted by synchronous multi-tape automata which read integers in base 1, hence they are also called regular sets (e.g. [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]).

The first result, Theorem 3.13, states that for each d ∈ N, a set R ⊆ N d is FO[<, mod m]-definable if and only if

• Every section of R (i.e. every subset of N d-1 obtained from R by fixing a component) is FO[<, mod m]definable and • apart from a finite number of sections, R is equal to R + (m, . . . , m).

The logics FO[<, mod m] and FO[<, mod] admit another characterization: Theorem 3.15 states that a set R is FO[<, mod m]-definable if and only every FO[<, R]-definable set of integers is FO[<, mod m]-definable, and similarly Theorem 3.17 states that a FO[+]-definable set R is FO[<, mod]-definable if and only if every unary FO[<, R]-definable function is definable in FO [<, mod].

It should be noted that FO[<] has the same expressive power as FO[<, mod 1], hence every result about FO[<, mod 1] holds for FO [<].

Then in Section 4 (Theorem 4.4) we prove that satisfiability of FO[<, f ] over words is undecidable as soon as f is increasing enough. We use this result and the characterization of FO[<, mod]-definable sets to prove Theorem 4.6 that states that satisfiability of FO[<, R] is undecidable over words when R is a FO[+]-definable set which is not FO[<, mod]-definable.

Finally, in the Appendix, we give a new proof of Theorem 5.1 of [START_REF] Michaux | Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of cobham's and semenov's theorems[END_REF], that is, that R ⊆ N d is FO[+]-definable if and only if every FO[+, R]-definable subset of N is FO[+]-definable. We do it for two reasons. The first one is that even if the construction is essentially the same as the one in [START_REF] Michaux | Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of cobham's and semenov's theorems[END_REF] -that is, we take a non FO[+]-definable set R and extract from it a set of integers S(R) which is not ultimately periodic -, our proof is much shorter. And because we use this shorter path we can prove a stronger result: for each arity d there exists a FO[+, R]-formula ϕ d with one free variable x such that S(R) = {x ∈ N | (N, +, R) |= ϕ d (x)} is not ultimately periodic. Hence we can choose an uniform definition of S(R) while the definition in [START_REF] Michaux | Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of cobham's and semenov's theorems[END_REF] was a function of R.

Definitions and notations

In this section, we recall useful definitions and fix some notations. To avoid ambiguity, the "=" symbol is used for mathematical equality and definitions, but in logical formulas, we denote the equality relation by " . =". We denote by N the set of natural numbers and by N * the set of positive numbers. Let Z denote the set of relative integers, let Q denote the set of rational numbers and let Q + denote the set of non-negative rational numbers.

For a set S we denote by #S its cardinality. Let

a, b ∈ N, then [b] = {n ∈ N | 0 ≤ n ≤ b} and [a, b] = {n ∈ N | a ≤ n ≤ b}.
For d ∈ N, we use bold letters to denote d-tuples of variables, such as x ∈ N d , which is an abbreviation for (x 0 , . . . , x d-1 ). The variable x i is called the i-th component of x. We denote by m ⊗d the dtuple (m, . . . , m). For x ∈ N d , we define min(x) as min{x i | i ∈ [d -1]}, and x as d-1 i=0 x i . We write x + y for (x 0 + y 0 , . . . , x d-1 + y d-1 ) and xy for (x 0y 0 , . . . , x d-1y d-1 ).

First-order logic over a vocabulary V (FO[V])

Definition 2.1 (Universe). An universe U is a set. In this paper, we only consider universes which are N or [n] for n ∈ N. Definition 2.2 (Vocabulary). A vocabulary is a set with n + p + q elements

V = {R 0 /d 0 , . . . , R n-1 /d n-1 , f 0 /d 0 , . . . , f p-1 /d p-1 , c 0 , . . . , c q-1 }.
The R i 's are the relation symbols and their arity is d i , the f i 's are the function symbols and their arity is d i and the c i 's are the constant symbols.

Definition 2.3 (Structure). Let V be a vocabulary. A V-structure S over the universe U is a tuple

(U, R S 0 , . . . R S n-1 , f S 0 , . . . , f S p-1 , c S 0 , . . . , c S q-1 )
where andc S i ∈ U. For ς a symbol of relation, function or constant, we write S[ς/i] for the V ∪ {ς}-structure of universe U where ς S[ς/i] = i and τ S[ς/i] = τ S for every symbol τ different from ς. Definition 2.4 (S |n ). Let n ∈ N, V a vocabulary without function symbol and let S be a V-structure of cardinal at least n and such that for each constant symbol c i we have c S i < n. Then S |n is the V-structure over the universe [n -1] such that c

R S i ⊆ U di , f S i : U d i → U,
S |n i = c S i and R S |n i = R S i ∩ [n -1] di .
Definition 2.5 (Terms). Let V be a vocabulary, the set of V-terms is defined by the following grammar:

t[V] ::= c i | f i (t 0 , . . . , t d i -1 )
where the t i 's are V-terms.

Usually in finite model theory, the vocabulary does not contain function symbols, hence terms are either constants or variables. Instead, d -ary functions f i (t 0 , . . . , t d i -1 ) are replaced with a (d i + 1)-ary set f i , such that for every d -tuple t 0 , . . . , t d i -1 , there is at most one t d such that f i (t 0 , . . . , t d i -1 , t d i ) holds. For example, the addition is represented as a ternary set +(x, y, z). It is written x + y . = z for clarity. The distinction is important because in finite model theory, x + y may be undefined.

In this paper, if V contains a symbol with a canonical semantic over N, such as "+" or "<" then we only consider the V-structures where this symbol has this canonical semantic. For example, we always assume that

+ S = {(i, j, k) ∈ U 3 | i + j = k}.
We can now define fragments of the first and second order logic used in this paper.

Definition 2.6 (V-Formulas). The set of first-order V-formulas, denoted by FO[V], is defined by the grammar:

FO[V] ::= ∃x.ψ | ¬ϕ 0 | ϕ 0 ∨ ϕ 1 | R i (t 0 , . . . , t di-1 ) | t 0 . = t 1
where the t i 's are V-terms, the ϕ i 's are

FO[V]-formulas and ψ is a FO[V ∪ {x}]-formula.
We denote by Σ 0 [V] the set of quantifier-free formulas; by induction we denote by

Π i [V] the set of negation of Σ i [V]-formulas, and by Σ i [V] the set of formulas of the form ∃x 0 , . . . , x n .ψ with ψ ∈ Π i-1 [V, (x i ) i∈[n] ].
We denote by

D i [V] the set of boolean combinations of formulas of Σ i [V] and Π i [V].
Finally, for a logical fragment L[V], we denote by ∃MSOL[V] the set of formulas of the form ∃R 0 , . . . , R n .ψ where the arity of each R i is 1 and ψ is a L[V, R 0 , . . . , R n ]-formula.

We define ϕ 0 ∧ ϕ 1 as syntactic sugar for ¬(¬ϕ 0 ∨ ¬ϕ 1 ), ∀x.ϕ as ¬∃x.¬ϕ and ϕ 0 =⇒ ϕ 1 as ¬ϕ 0 ∨ ϕ 1 . Moreover we omit the arity and curly brackets in logics' notations. For instance, we write

FO[+] instead of FO[{+/3}].
We often want to replace a variable or a set symbol by a term or a formula. We explain how to do it formally:

Notation 2.7. Let V and W be vocabularies. If ϕ is a FO[V ∪ {R}]-formula, R is a relation symbol with arity d that does not belong to V, x a d-tuple of variables that does not belong to V ∪ W, and

χ(x) a FO[W ∪ {x}]-formula, then ϕ[R(x)/χ(x)] is the FO[V ∪ W]
-formula ϕ where for every d-tuple t of terms, every occurrence of R of the form R(t) is replaced by χ(t).

Formulas are interpreted over N in Section 3 and over intervals of the form [n -1] in Section 4, for n ∈ N * . The set of V-formulas with arity d is the set of (V ∪ {x 0 , . . . , x d-1 })-formulas. The x i 's are called the free variables and do not belong to V. Given some V-structure S, the semantic of a formula is defined recursively as usual.

Definition 2.8 (Definability). Let d ∈ N and ϕ(x 0 , . . . , x d-1 ) be a formula with d free variables in a logic L[V]. For a V-structure S, we say that ϕ defines the d-ary set ϕ(x

) S = {x ∈ U d | S |= ϕ(x)}.
We say that a set R ⊆ U d is L[V]-definable in S if there exists ϕ(x 0 , . . . , x d-1 ) ∈ L[V] such that R = ϕ(x 0 , . . . , x d-1 ) S . For d = 0, the subsets of U 0 are a singleton and the empty set. By convention they are

L[V]-definable. Furthermore, if f is a function from U d to U, we say that f is L[V]-definable if its graph is L[V]- definable.
In this paper we have many definability results, and we obtain them by explicitly constructing a formula that defines the definable set. Hence for the sake of readability we introduce some abbreviations.

We want to restrict quantifiers to elements that satisfy a certain property χ.

Notation 2.9 (Relativization). If χ is a quantifier-free formula, we write (∀x.χ)ϕ for ∀x.(χ =⇒ ϕ) and (∃x.χ)ϕ for ∃x.(χ ∧ ϕ).

We often need to express that a (quantified) variable or a parameter represents an element which is the lexicographically minimal one for the standard natural order over N that satisfies some property.

Notation 2.10. Let F be a finite ordered set, i a variable (whose interpretation belongs to F) and x = (x 0 , . . . , x d-1 ) a tuple of integer variables. Let (ϕ i (x)) i∈F be a set of Π j [V]-formulas. We denote by

min i∈F,x ϕ i (x)
the Π j+1 [V, <]-formula that states that ϕ i (x) is true and (i, x) is lexicographically minimal with this property. Formally it is syntactical sugar for:

ϕ i (x) ∧ j∈F, j<i ∀y.¬ϕ j (y) ∧ [∀y. d-1 j=0 (y j < x j ∧ j-1 k=0 y k . = x k )]¬ϕ i (y).
When F is a singleton (resp. when d is 0), then we do not write i ∈ F (resp. the x).

When we construct a formula that defines a set S, we sometimes need to state "If there exists some (i ∈ F, x ∈ N d ) such that ϕ i (x) holds, then we define S by χ i (x), otherwise we define it by ψ". In our context there is always at most one i and one x for which the property ϕ i (x) holds. Hence we introduce a new notation.

Notation 2.11. For i ∈ F, let ϕ i (x), χ i (x) and ψ be formulas. Then we write i∈F ∃x.ϕ

i (x) | χ i (x) | ψ for [ i∈F ∃x.ϕ i (x) ∧ χ i (x)] ∨ [ i∈F ∀x.¬ϕ i (x) ∧ ψ].
Finally we also need to define functions. Notation 2.12. Let ϕ ∈ FO[<, R] be a formula with x, y as free variables. When we define it, we denote by ϕ(x; y) the fact that for all x, there exists exactly one y(x) such that ϕ(x, y(x)) holds, that is, ϕ is a function mapping x to y(x). We then use the abbreviation ϕ(x) for the value y(x).

Words

An alphabet α is a finite non-empty set. The set α + stands for the set of finite non-empty sequences of elements of α, which are called words. The vocabulary of a logic over words always include the unary set symbol P a for a ∈ α and the order relation "<" or the successor relation "+1". Let w = w[0] . . . w[n -1] with w[i] ∈ α, then |w| = n is the length of w. We associate with w the {+1, <, (P a ) a∈α }-structure: 

S w = ([n -1], {(i, i + 1) | i ∈ [n -2]}, {(i, j) | 0 ≤ i < j ≤ n -1}, ({i | w[i] . = a}) a∈α

Relations

Our vocabularies V contain relation symbols whose interpretation we want to fix. In this subsection, we are going to list those symbols and their interpretation over the universe N. To have more readable formulas we use infix notation when it is more standard than the prefix one. Let x, y be variables. Let c ∈ Z, m ∈ N * , N ⊆ Z and a ∈ [m -1] be constants.

• Let + c = {(n, n + c) | n ∈ N}.
Clearly + 0 is the equality relation and + 1 is the successor relation. We write x + c . = y instead of + c (x, y). We define + N as the set of relations {+ c | c ∈ N}. • Similarly we define < c = {(x, y) ∈ N 2 | x + c < y}. Of course we use < for < 0 , and < N is the set of relations {< c | c ∈ N}. We write x + c < y instead of < c (x, y). • We use N >c for {x ∈ N | x > c}. We write N >N for the set {N >c | c ∈ N}. We write x > c instead of > c (x).

• The relation "≡ a mod m" is {x ∈ N | x ≡ a mod m}, and "mod m" is the set containing the m sets ≡ a mod m. For N ⊆ N we write "mod N" for m∈N mod m, and "mod" for mod N * . We write x ≡ a mod m in place of ≡ a mod m(x) and we consider that x + c ≡ y mod m is syntactic sugar for m-1 a=0 x ≡ a mod m ∧ y ≡ (a + c) mod m.

First-order logic and arithmetic

In this section, we work with N as the universe. In particular we study tuples of integers that satisfy a formula.

Logic over N

If the vocabulary contains < or +1 we assume that we can use constants and consequently the relation x i + c . = x j for every c ∈ N.

In Section 4 we deal with finite models. Hence we need to define a notion of convergence to state that properties of the formulas over N can also be used on finite models. Definition 3.1 (Set convergence). Let V be a vocabulary. Let S be a V-structure over N. Let ϕ(x) be a formula of arity d such that its interpretation in S |n (resp. in S) is a set S n (resp. S). Then we say that ϕ is converging (in S) if for all c ∈ N d , there exists N ∈ N such that for all i ≥ N, c ∈ S i if and only if c ∈ S.

For formulas that define functions, this notion is equivalent to pointwise convergence.

Example 3.1. Let f n be defined on [n -1] by f n (c) = c + 2c n . Then (f n (c))
n∈N is a sequence of integers converging to c, so (f n ) n∈N converges to the identity function.

In fact, in our proofs, we study the value of f n on [c n -1] for some c n ≤ n and c n increasing to infinity, and we do not care about the value of f n (b) for b ≥ c n .

Furthermore we care about the number of alternation of quantifiers. We first work with the set of relations + N and < Z , but we want our result to use only < or +1. So we explain how to count when the terms are x + c and not only variables. We do not need c × x or x i + x j since we assume that we cannot use addition.

Let p ≤ 0 and q ≥ 0, and let Q be a quantifier. Let us consider a formula Qx.ϕ that uses the terms x + c with p ≤ c ≤ q. If we are interested in FO[+1, <]-formulas then Qx.ϕ is considered as an abbreviation for

(Qx p , . . . , x 0 , . . . , x q . q-1 i=p x i + 1 . = x i+1 )ϕ
where ϕ is obtained from ϕ by replacing every term of the form x + a with x a . Otherwise if we are interested in FO[<]-formulas, it is an abbreviation for

(Qx p , . . . , x 0 , . . . , x q q-1 i=p x i < x i+1 ∧ [∀y q i+1=p x i+1 . = y ∨ y ≤ x p ∨ x q ≤ y])ϕ .
This leads to the following tabular, where we see the class of Qx.ϕ depending on the class of ϕ and of Q.

Table 1.

Q\ϕ Σ i [+1, <] Π i [+1, <] D i [+1, <] Σ i [<] Π i [<] D i [<] ∀ Π i+1 [+1, <] Π i [+1, <] Π i+1 [+1, <] Π i+1 [<] Π max(2,i) [<] Π max(2,i+1) [<] ∃ Σ i [+1, <] Σ i+1 [+1, <] Σ i+1 [+1, <] Σ max(2,i) [<] Σ i+1 [<] Σ max(2,i+1) [<]

Sections, diagonals and subsets

In this paper, when we consider a set, we often consider some of its subsets with a specific form. In this Subsection we introduce some notations that let us speak about the interesting part of a set.

Definition 3.2 (Section, diagonal and straight subspace).

Let d ≥ 1, R ⊆ N d , i, j ∈ [d -1] distinct and c ∈ N.
Then we define the section R xi=c ⊆ N d-1 as the set obtained from R by fixing the ith component to c:

R xi=c = {(x 0 , . . . , x d-2 ) ∈ N d-1 | (x 0 , . . . , x i-1 , c, x i , . . . , x d-2 ) ∈ R}.
Similarly, we define the diagonal R xi=xj+c ⊆ N d-1 as follows:

R xi=xj+c = {(x 0 , . . . , x i-1 , x i+1 , . . . , x d-1 ) ∈ N d-1 | (x 0 , . . . , x i-1 , x j + c, x i+1 , . . . x d-1 ) ∈ R}.
A straight subspace is either R, or a section of a straight subspace, or a diagonal of a straight subspace. Hence it is defined by equations of the form x i = c and x j = x k + c.

Example 3.2. We are going to study the sections and diagonals of the addition relation x 0 + x 1 = x 2 . Let c ∈ N. We have:

+ x0=c =+ x1=c ={(n, n + c )| n ∈ N}, + x2=c ={(n, c -n) | n ≤ c}, + x0=x1+c =+ x1=x0+c ={(n, 2n + c ) | n ∈ N}, + x2=x1+c ={(c, n ) | n ∈ N}, + x0=x2+c+1 =+ x1=x2+c+1 =∅ + x2=x0+c ={(n, c ) | n ∈ N}.
If R is defined by a formula ϕ(x), then R xi=c is defined by ϕ(x 0 , . . . , x i-1 , c, x i , . . . , x d-2 ) and R xi=xj+c with i > j (resp., i < j) by ϕ(x 0 , . . . , x i-1 , x j + c, x i , . . . , x d-2 ) (resp., ϕ(x 0 , . . . , x i-1 , x j-1 + c, x i , . . . , x d-2 )). Definition 3.3 (l-inside). Let d ∈ N * , l ∈ N, the l-inside of R, denoted by R ≥l is the set R moved by l in every direction, removing tuples with a coordinate less than l:

R ≥l = {x ∈ N d | x + l ⊗d ∈ R}.
Example 3.3. We resume Example 3.2. We have

+ ≥l = {(x, y, z) ∈ N 3 | (x -l) + (y -l) = (z -l)} = {(x, y, x + y -l) | x, y ∈ N, x + y ≥ l}.
If R is defined by ϕ(x), then R ≥l is defined by ϕ(x + l ⊗d ). Intuitively a set R ⊆ N d can be considered as a finite union of the l-inside and of the sections R xi=c for i ∈ [d -1] and c < l. More formally, if all of those sets are 

L[V]-definable then R is L[V, + l ]-definable,
i ∈ [d -2] we have x σ(i) ≤ x σ(i+1) : R σ = {x ∈ R | x σ(0) ≤ x σ(1) ≤ • • • ≤ x σ(d-1) }.
Example 3.4. We resume Example 3.2. We have:

+ 0,1,2 ={( p, p + q, 2p + q ) |p, q ∈ N }, + 1,0,2 ={( p + q, p, 2p + q ) | p, q ∈ N}, + 0,2,1 ={( p, 0, p ) | p ∈ N }, + 1,2,0 ={( 0, p, p ) | p ∈ N }, + 2,0,1 ={( 0, 0, 0 ) | }, + 2,1,0 ={( 0, 0, 0 ) | }. The set R is the union of the R σ 's. Therefore, if all of the R σ 's are FO[V]-definable then R is FO[V, <]-definable.

FO[<, mod]-definable set, FO[<, mod m]-definable set

We state some well-known facts about FO[<, mod]-definable and FO[<, mod m]-definable sets.

Lemma 3.5. Each formula in any of the languages that we consider in this paper is equivalent to a formula that does not use the negation symbol.

Proof. We only have to show how to remove the negation on the relation symbols.

• c . = x is equivalent to c-1 i=0 x . = i ∨ c < x, • ¬(c < x) is equivalent to c i=0 x . = i, • y + c . = x is equivalent to y + c < x ∨ x < y + c, • ¬(y + c < x) is equivalent to x < y + c + 1, • t ≡ a mod m is equivalent to b∈[m-1] b =a t ≡ b mod m.
We need two lemmas. The first is about unary sets and the second about unary functions over integers.

Definition 3.6 (Ultimately (m-)periodic). A set R ⊆ N, is ultimately m-periodic if there exists l such that for n > l, n ∈ R if and only if n + m ∈ R.
In particular the ultimately 1-periodic unary sets are the finite or co-finite sets. The set R is ultimately periodic if it is ultimately m-periodic for some m ∈ N * .

Lemma 3.7 ([Pre27]

). Let R be a subset of N. The set R is FO[<, mod m]-definable if and only if it is ultimately mperiodic. Similarly R being FO[+]-definable is equivalent to R being FO[<, mod]-definable, and it is also equivalent to R being ultimately periodic.

Lemma 3.8 ([FL08]

). An unary function f : N → N is FO[+]-definable if and only if there exist m, N ∈ N and r 0 , . . . , r m-1 ∈ Q + , s 0 , . . . , s m-1 ∈ Q such that f (n) = r j n + s j for all n > N congruent to j modulo m. Furthermore, f is FO[<, mod]-definable if and only if r j ∈ {0, 1} for every j.

Note that if f is an unary FO[+]-definable function which is not FO[<, mod]-definable, then one of the r i is different from 0 and 1. Cooper's algorithm [START_REF] Cooper | Theorem proving in arithmetic without multiplication[END_REF] let us remove quantifiers of Presburger arithmetic. More precisely it transforms a firstorder FO[+]-formula into an equivalent quantifier-free Σ 0 [+, <, mod m]-formula for some m ∈ N.

Let N ⊆ N be closed by least common multiple. We show that Cooper's algorithm also works for FO[<, mod N] and the algorithm leads to boolean combinations of formulas of the form x i + c . = x j , x i + c < x j , and

x i ≡ k mod m with m ∈ N and k ∈ [m -1].
We do not show that the algorithm is correct since it is already done in [START_REF] Cooper | Theorem proving in arithmetic without multiplication[END_REF]. We only need to prove that the result has the correct form.

Proposition 3.9. Every FO[<, mod N]-formula is equivalent over N to a Σ 0 [N, < N , + N , N >N , mod N]-formula. Proof. Cooper's algorithm proceeds recursively. Let ϕ ∈ FO[N, < N , + N , N >N , mod N].
If ϕ is quantifier free, there is nothing to prove, otherwise ϕ is equivalent to a formula of the form ∃x.χ or ¬∃x.χ. By induction hypothesis we can assume χ to be quantifier free. Then the algorithm removes negations as explained in Lemma 3.5, and rewrites the formula in disjunctive normal form. Hence ∃x.χ is equivalent to ∃x. j i ψ i,j where ψ i,j is an atomic formula. It is also equivalent to j ∃x. i ψ i,j . Then the algorithm rewrites the formula of the form χ = ∃x.ϕ with ϕ = i ψ i,j , where ψ i,j are atomic formulas, as a quantifier free formula. We only have to show that the formula it creates uses only relation symbols which belongs to our vocabulary.

Let c be the least common multiple of elements c i 's that appear in the atomic formulas c i × x < t i , c i × x = t i and c i × x > t i of χ. Cooper's algorithm multiplies all of those equalities by c/c i such that the coefficients of all x are the same. By induction hypothesis every c i equals 1, hence c = 1. Hence the latter transformation does not change the formula. Then the algorithm replaces ∃x.ϕ(c × x) by ∃x.x ≡ 0 mod c ∧ ϕ(x), and since c = 1, this means that x is congruent to 0 modulo 1, hence the formula is not changed.

Let B = {0} ∪ {t | t < x, t . = x or t > x appear in ϕ(x)}.
Let m be the least common multiple of the m i 's that appear in atomic formulas x ≡ k mod m i of χ. By hypothesis B contains constants and terms of the form y + c with y a variable. If ϕ(x) is satisfiable then the set {i ∈ N | N |= ϕ(i)} of values that satisfy ϕ is not empty, hence there exists a smallest value s that satisfies it. The value s belongs to

C = {b ± i ∈ N | b ∈ B, i ∈ [m]}.
That is, s is at distance at most m from the term t used in y . = t, y < t or y > t, or from 0. Then ∃y.ϕ(y) is equivalent to c∈C ϕ(c) over N, and we can conclude with the induction hypothesis.

Example 3.5. The formula ∃x.(x . = y ∧ x . = 0) ∨ (x + 4 ≤ y ∧ x ≡ 0 mod 2) is equivalent to the following disjunction, where x takes the values 0, 1, 2 (because x . = 0 and mod 2 appear in the formula) and y + i with i ∈ {-6, . . . , 2}:

2 i=0 { ( i . = y ∧ i . = 0 ) ∨ ( i + 4 ≤ y ∧ i ≡ 0 mod 2) }∨ 2 i=-6 {[ (y+ i . = y ∧y+ i . = 0 ) ∨ (y+ i + 4 ≤ y ∧y+ i ≡ 0 mod 2)] ∧ y+ i ≥ 0 }.

Characterization of FO[<, mod m]

We first recall Muchnik's characterization of FO[+]. Our characterization of FO[<, mod m] is similar. For this we must define a notion of periodicity in a subset, then the notion of V-periodicity for a set V of tuples.

Definition 3.10 (p-periodicity in F). Let S be a subset of N d , and F a finite subset of

N d . Let p ∈ N d . Then S is p-periodic in F if for all x ∈ F such that x + p ∈ F, we have x ∈ S ⇐⇒ x + p ∈ S. For P ⊆ Z d \ {0 ⊗d }, (a set of possible periodicities), S is P-periodic in F if it is p-periodic for some p ∈ P.
We also need the notion of cube.

Notation 3.11. We denote by C k (x) the cube of length k with x at its least corner, that is

C k (x) = {x + c | c i ∈ [k -1] for every i ∈ [d -1]}.
We can now state Muchnik's theorem [START_REF] Muchnik | The definable criterion for definability in Presburger arithmetic and its applications[END_REF][START_REF] Bruyère | Logic and precognizable sets of integers[END_REF] 

∈ N d with x > l(k), R is P-periodic in C k (x).
Moreover the latter property only has to be verified for k = p∈P p , and there exists a

FO[+, R]-formula µ d such that S |= µ d if and only if R S is FO[+]-definable.
Intuitively the set P is the set of possible periods, k is the size of the cube and l(k) is the "lag" for the periodicity. We now give a similar theorem for FO[<, mod m]-definable sets. We call l m (R) the lag of R, and we always assume in this paper that l m (R) is minimal.

Proof. Let us show by induction on d ∈ N that properties (1), (2) and (3) are equivalent for every R ⊆ N d .

x Proof of (1) =⇒ (3). Let R be a set defined by χ ∈ FO[<, mod m]. By Prop. 3.9, χ is equivalent to a quantifierfree Σ 0 [N, < N , + N , N >N , mod N]-formula χ . It is clear that each straight subspace S of R of dimension d is defined by a formula of the form χ S = χ (t 0 , . . . , t d-1 ) where t i is either c or x j + c with j ∈ [d -1] and c ∈ Z. The formula χ S is a boolean combination of formulas of the form

1 x 0 l m (R) l m (R) 0 l m (R) + m l n n -m ⊗d b b+ (0, m ⊗(d-1) ) p
x i -x j ∼ c, x i ∼ c with ∼∈ {<, . = , >} and x i ≡ a mod m for a ∈ [m -1]. Let l m (S) = max{c ∈ N | x i ∼ c appears in χ S } + 1. Then let x ∈ N d with min(x) > l m (S). It is clear that min(x + m ⊗d ) > l m (S). Furthermore every equation x i ≡ a mod m is equivalent to x i + m ≡ a mod m, every equation x i -x j ∼ c to (x i + m) -(x j + m) ∼ c, and every equation x i ∼ c to x i + m ∼ c: indeed if ∼ is < or .
= then by definition of l m (S) those equations are false, and otherwise if ∼ is > then the first equation is true, hence the second too. So χ S (x) ⇐⇒ χ S (x + m ⊗d ) holds, and so S >lm(S) is m ⊗d periodic.

Proof of (3) =⇒ (2). The set R is a straight subspace of R hence there exists l such that R ≥l is m ⊗d -periodic. Its sections and diagonals satisfy property (3), hence by induction hypothesis they are FO[<, mod m]-definable.

Proof of (2) =⇒ (1). Let R be such that all sections R xi=c and diagonals R xi=xj+c are FO[<, mod m]-definable by formulas, denoted by ϕ R x i =j (x 0 , . . . , x d-2 ) and ϕ R x i =x j +c (x 0 , . . . , x d-2 ) respectively, and such that there exists l m (R) such that R ≥lm(R) is m ⊗d -periodic.

The Figure 1 illustrates the proof, giving a possible interpretation of the variables that we introduce. We are going to explain how to state if a given value n ∈ N d belongs to R.

We create a formula ϕ R (x 0 , . . . ,

x d-1 ) ∈ FO[<, mod m] which defines R. That is such that for n ∈ N d , ϕ R (n) is true if and only if n ∈ R.
We give a definition that depends on whether min(n) is less than l m (R) or not. Since the set of tuples n that satisfy the first condition is included in a finite union of sections, we can use the hypothesis (2b) for them. Otherwise, we assume that ϕ R ≥lm(R) (x) defines R ≥lm(R) . It leads to

ϕ R (x) = d-1 i=0 l-1 j=0 min i∈[d-1], j∈[l-1] x i . = j | ϕ R x i =j (x 0 , . . . , x i-1 , x i+1 , . . . , x d-2 ) | ϕ R ≥lm (R) (x + l m (R) ⊗d ) .
We now define ϕ R ≥lm(R) (x). For the sake of simplicity, we can now assume that l m (R) = 0, hence R = R ≥lm(R) . We are going to construct ϕ R by taking the disjunction of d! formulas ϕ Rσ (x), one for each set R σ with σ ∈ S d . Then we set:

ϕ R ≥lm (R) (x) = σ∈S d ( d-2 i=0 x σ(i) ≤ x σ(i+1) ∧ ϕ Rσ (x)).
We only explain how to construct ϕ R 0,...,d-1 (x). The (d! -1) other formulas are defined similarly. Let us assume that n ∈ N d 0,...,d-1 . It follows from hypothesis (2b) that for p ∈ N, the section R x0=p is FO[<, mod m]-definable, so by induction hypothesis there exists

l m (R x0=p ) such that (R x0=p ) ≥lm(R x 0 =p ) is m ⊗d-1 -periodic. Let l = max{l m (R x0=p ) | p ∈ [m -1]}.
We now look at two cases, depending on whether n 1n 2 is less than l or not. The set corresponding to the first case is a finite union of diagonals R x1=x0+i σ for i ≤ l , and by hypothesis they are FO[<, mod m]-definable. Let us assume that the formula ϕ Rσ (x) corresponds to the second case. Then we can take :

ϕ Rσ (x) = l i=0 x 0 + i . = x 1 | ϕ R x 1 =x 0 +i σ (x 0 , x 2 . . . , x d-1 ) | ϕ Rσ (x) .
Let us assume now that n 0 + l ≤ n 1 . Let q = n0 m , and r = nq × m ⊗d , then n ∈ R if and only if r ∈ R, and we can see furthermore that 0 ≤ r 0 < m and r 0 + l ≤ r 1 . Then (r 1 , . . . , r d-1 ) belongs to the m ⊗d-1 -periodic part of R x0=r0 . Let p = r + q × (0, m ⊗d-1 ). Hence (r 1 , . . . ,

r d-1 ) ∈ R x0=r0 is equivalent to (p 1 , . . . , p d-1 ) ∈ R x0=r0 . But (r 1 , . . . , r d-1 ) + q × m ⊗d-1 is equal to (n 1 , . . . , n d-1 ). Hence n ∈ R if and only if (r 0 , n 1 , n 2 , . . . , n d-1 ) ∈ R, which can be stated in FO[<, mod m] by: ϕ Rσ (x) = x 1 > x 0 + l ∧ m-1 k=0 x 0 ≡ k mod m ∧ ϕ x0=k R x 0 =k (x 1 , . . . , x d-1 ).
Example 3.6. As we have seen in Example 3.2, all strict straight subspaces of + are FO[<, mod]-definable sets. So + satisfies the criterion (2a) of Theorem 3.13. For each l ∈ N, we have (l, l, 2l) ∈ +, and for every m ∈ N, we have (l + m, l + m, 2l + m) ∈ +, so + does not satisfy the criterion (2b). Let us consider another example. Let R = {(0, n 2 ) | n ∈ N}. The set R ≥1 is (1, 1)-periodic, so it satisfies the criterion (2b). But clearly R x0=0 = {n 2 | n ∈ N} is not FO[<, mod]-definable, so it does not satisfy the criterion (2a).

We are going to give a formula that defines the value of l m (R). Proof. The formula is straightforward from the definition.

Λ d,m (l) = min l (∀x 0 , . . . , x d-1 . d-1 i=0 x i ≥ l)R(x 0 , . . . , x d-1 ) ⇐⇒ R(x 0 + m, . . . , x d-1 + m) .
This is a Π 2 [+1, <, R]-formula, and it can be considered as a Π 3 [<, R]-formula using Tabular 3.1. And for any universe of cardinal greater than l d,m (R S ) + m, the integer l d,m (R S ) is the only value that satisfies the formula, hence it is converging.

Unary function and set

Michaux and Villemaire proved [MV96, Theorem 5.1] that if R ⊆ N d is not FO[+]-definable then there is a FO[+, R]-definable set of integers that is not FO[+]-definable.

In this section we prove similar theorems but for sets that are not FO[<, mod m]-definable. On the one hand, the above result of [START_REF] Michaux | Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of cobham's and semenov's theorems[END_REF] over FO[+] does not extend over FO[<, mod]. Indeed, the addition relation is not FO[<, mod]-definable but Lemma 3.7 states that every FO[<, +]-definable subset of N is ultimately periodic, hence FO[<, mod]-definable. On the other hand, we have the following theorem.

Theorem 3.15. Let d, m ∈ N * , R be a relation symbol with arity d. Let S be a {<, R}-structure with universe N such that R S is not FO[<, mod m]-definable. Then there exists a FO[<, R]-formula ν m,R (x) such that ν m,R (x) S is not FO[<, mod m]-definable.

In other words, a set R is FO[<, mod m]-definable if and only if every unary FO[<, R]-definable set is FO[<, mod m]-definable. By Lemma 3.7, it is equivalent to state that ν m,R (x) S is not ultimately m-periodic.

Proof. The proof is by induction on d. If d = 1 then we can take ν m,R (x) = R(x). Let us assume d > 1 and that the theorem is true for d -1.

If there exists a section or a diagonal R of R that is not FO[<, mod m]-definable, the fact that R is FO[<, R]definable allows us to use the inductive hypothesis on R to get our result. Let us now assume that R S is not FO[<, mod m]-definable, and all of its sections and diagonals are FO[<, mod m]-definable. The set R S is the union of the d! sets R S σ for σ ∈ S d . Since R S is not FO[<, mod m]-definable, at least one of the sets R S σ is not FO[<, mod m]-definable. For the sake of simplicity, we may assume that σ = (0, . . . , d -1) and even that R S ⊆ N d 0,...,d-1 . (i.e. R S = R S σ ). Let λ (i) = l m ((R S ) x0=i ) be the function that gives the lag when the second component is fixed to i, and λ(i) = max{λ (j) | j ≤ i} the function that gives the maximal lag when the component is fixed to a value less or equal to i. Let λ σ,d,m (i; l) be the FO[<, R]-formula that is true if λ (i) = l. The formula λ σ,d,m (i; l) uses the formula Λ d,m of Lemma 3.14, and is defined by:

λ σ,d,m (i; l) = min l ∀j ≤ i.Λ d-1,m [R(x 0 , . . . , x d-2 )/R(x 0 , j, x 1 . . . , x d-2 )] ≤ l . Since d ≥ 2, R S ⊆ N d 0,...,d-1
, and all of its sections and diagonals are FO[<, mod m]-definable, then we may assume that λ is unbounded and not FO[<, mod m]-definable. The proof of this fact is delayed to Lemma 3.16. Since λ is not FO[<, mod m]-definable, according to Lemma 3.8 there exists k ∈ [m -1] such that there is no p, r ∈ N such that λ(n) = n + r for every n > p and n ≡ k mod m. If there is some k ∈ [m -1] such that λ(mN + k) is not ultimately m-periodic, then we take

ν d,m (x) = ∃y ≡ k mod m.λ σ,d,m (y) . = x.
Let us assume that for every k, λ(mN

+ k) is FO[<, mod m]-definable. Let F be the set of integers k ∈ [m -1] such that (mN + k) ∩ λ(mN) is infinite.
We must remark that F = ∅ as the sets mN + k partition N, and λ is defined on N and unbounded. We must consider two cases: whether #F = 1 or #F ≥ 2. We assume first that F contains two distinct elements k and k . Then the inverse of mN + k by λ is not co-infinite in mN, hence is not ultimately m-periodic and thus we can set:

ν d,m (x) = λ σ,d,m (x) ≡ k mod m.
We now assume that F is a singleton {k}. Since λ is not FO[<, mod m]-definable and the image of mN + k is ultimately m-periodic, then the set N = {n ∈ mN | λ(n) = λ(n + m)} is infinite. But since λ is increasing and unbounded, mN \ N is also infinite. Hence N is not ultimately m-periodic. So we can take:

ν d,m (x) = λ σ,d,m (x) . = λ σ,d,m (x + m)
It now remains to prove the lemma that we delayed.

Lemma 3.16. Let d ≥ 2, R S ⊆ N d 0,...,d-1 be such that all of its sections and diagonals are FO[<, mod m]-definable, and the function λ(n) = max j≤n {l m ((R S ) x0=j )} is bounded or FO[<, mod]-definable. Then R S is FO[<, mod m]-definable.

Proof.

As with the last proof, we will proceed by a sequence of disjunctions. We will see in each case that R S is FO[<, mod m]-definable. The first disjunction is : is λ bounded or not?

x 1 x 0 n 0 t p -(0, m ⊗d-1 ) p Figure 2.
First, let us assume that λ is bounded. In this case its value is ultimately equal to some n ∈ N since the function is increasing. We denote by (*) the property "For each p ∈ R S , p 0 < n + m". If we assume (*), then R S is a finite union of sections (R S ) x0=i , and since all sections are FO[<, mod m]-definable, then R S is FO[<, mod m]-definable.

Let us now prove (*). Let p ∈ R S . We have R S ⊆ N 0,...,d-1 , hence p i ≤ p i+1 for all i ∈ [d -2]. Let us assume for the sake of contradiction that n + m < p 0 . The Figure 2 illustrates the proof, giving a possible interpretation of the variables that we introduce. Let q = p1-n m . We know that

l m (R S ) x0=p0 ≤ n < p 0 ≤ p i for i ∈ [d -1], and l m ((R S ) x0=p0 ) + m ≤ p 1 -q × m, hence p ∈ R S if and only if (p 1 -q × m, . . . , p d-1 -q × m) ∈ (R S ) x0=p1 , that is, t = (p 0 , p 1 -q × m, . . . , p d-1 + q × m) ∈ R S .
We have t 0 ≥ t 1 by construction of q, hence t ∈ R S . Hence p ∈ R S which is a contradiction.

Let us assume now that λ is unbounded and FO[<, mod m ]-definable for some m ∈ N. By Lemma 3.8 there exist N ∈ N, r ∈ {0, 1} m and s ∈ N m such that for all i > N, λ(i) = r (i mod m ) × i + s (i mod m ) .

Let us prove that r k = 1 for all k ∈ [m -1]. For the sake of contradiction, let us assume that there exists a k such that r k = 0. Since the function is increasing then for every k ∈ [m -1] we have r k = 0, hence λ is bounded, which is false by hypothesis. Hence

r k = 1 for all k ∈ [m -1]. Let s = max{s i | i ∈ [m -1]}. x 1 x 0 0 N s s + m q p t n -(0, m ⊗(d-1) ) n Figure 3.
We now show how to define the formula for R S . Let

S 0 = {x ∈ N d | x 0 + s < x 1 }. Then R S = (R S \ S 0 ) ∪ (R S ∩ S 0 ). The set R S ∩ S 0
is the union of the sets (R S ) x0+i=x1 for i ∈ [s -1], hence a finite union of FO[<, mod m]-definable sets. We now define the set R S \ S 0 . Let R 0 = R S \ S 0 . We give a definition for s = 0, the other cases are similar.

Let D be the maximal lag of the diagonals R x0+i=x1 0 for i < m, and let

N = max{N, D}. Then let S 1 = {x ∈ N d | x 0 < N }. The set R 0 ∩ S 1 is the union of the sets (R 0 ) x0=m for m ∈ [N -1]. Those sets are FO[<, mod m]-definable hence R 0 ∩ S 1 is also FO[<, mod m]-definable. We now define the set R 1 = R 0 \ S 1 .
We give a definition for the case N = 0, the other cases are similar.

We can now assume that λ(i) = i for each i ∈ N and that (R 1 ) x1=x0+c for c ≤ m are m ⊗d-1 -periodic. The Figure 3 illustrates the proof, giving a possible interpretation of the variables that we introduce. We are going to show that with those conditions, R 1 is m ⊗d -periodic, which implies that R 1 is FO[<, mod m]-definable. Let n ∈ N d . If n ∈ N 0,...,d-1 then n ∈ R 1 by hypothesis, and similarly n + m ⊗d ∈ N 0,...,d-1 , then n + m ⊗d ∈ R 1 , so we only have to prove the periodicity for n ∈ N 0,.. x0=p0 have lag less than p 0 and p 1 ≥ p 0 , we have q ∈ R 1 ⇐⇒ p ∈ R 1 , and by transitivity n ∈ R 1 ⇐⇒ n + m ⊗d ∈ R 1 .

.,d-1 . Let t = n -n1 m × (0, m . . . , m). Then t 1 -t 0 ∈ [m -1]. Since the lag of (R 1 ) x0=n0 is at most n 0 , n ∈ R 1 if and only if t ∈ R 1 . Let p = t + m ⊗d ; since the diagonal of equation x 0 + (t 1 -t 0 ) = x 1 is m ⊗d-1 -periodic, we have t ∈ R 1 ⇐⇒ p ∈ R 1 . Let q = p + (0, n 0 m, . . . , n 0 m) = n + m ⊗d . Since (R 1 )
So R 1 is m ⊗d -periodic, and by Theorem 3.13, R 1 is FO[<, mod m]-definable.

Let us give an example of application of Theorem 3.15. We start from a set which is not FO[<, mod m]-definable and study which subset of N can be defined from it.

Example 3.7. Let m = 1 and R = {x | x 1 + x 2 = x 3 x 0 }. Fixing x 0 to 1 gives the addition relation, which is not FO[<]-definable. So a FO[R, <]-definable set which is not FO[<]-definable can be generated by generating a FO[+, <]-definable set which is not FO[<]-definable.

Every section of + is FO[<, mod m]-definable, so we can not use induction anymore. We can set σ = (0, 1, 2), then

S = + 0,1,2 = {x | x 0 ≤ x 1 , x 1 + x 0 = x 2 }. Let T n = S x1=n = {(x, x + n) | x ≤ n}.
We have (n, 2n) ∈ T n and (n + 1, 2n + 1) ∈ T n , so l 1 (n) > 2n, and since for all y, z > n we have (y, z) ∈ T n and (y + 1, z + 1) ∈ T n , then l 1 (n) = 2n + 1, and so λ(n

) = 2n + 1.
The image of λ is the set of odd numbers, hence our formula defines {n | n ≡ 1 mod 2} which is not

FO[<]-definable. Note that this set is FO[<, mod 2]-definable. Observe that, if R S is FO[+]-definable, then every subset of N which is FO[+, R]-definable is FO[+]-definable, hence FO[<, mod]-definable.
Then we know that if we replace "FO[<, mod m]-definable" by "FO[<, mod]-definable" in Theorem 3.15, the new theorem would be false. Hence we give a new theorem that states which non-FO[<, mod]-definable simple sets we can define.

Theorem 3.17. Let d ∈ N * , R be a relation symbol with arity d. Let S be a {<, +1, R}-structure with universe N such that R S is FO[+]-definable.

Then either R S is FO[<, mod]-definable, or there exists a converging formula ν R in Π 2 [R, +1, <] (and also one in Π 3 [R, <]) such that ν S R is the graph of some function f which is not FO[<, mod]-definable.

In other words, a

FO[+]-definable set R is FO[<, mod]-definable if and only if every unary FO[<, R]-definable function is FO[<, mod]-definable.
Then we explain how those automata compute. Definition 4.2 (Configuration and Simulation). Let A be a 2-counter automaton. A configuration of A is a 3-tuple of integers (q, n 0 , n 1 ) where q is the next instruction of the automaton and n j is the value of the j-th counter.

We write κ[l], c i [l] for the lth step's instruction and value of the i-th counter. The simulation of A is a list, finite or infinite, of configurations of A that satisfies the following properties. The first configuration satisfies

c i [0] = κ[0] = 0, the last configuration, if it exists, satisfies κ[last] = #A -1, and for every l ∈ N such that A κ[l] = Halt, that is κ[l] < #A -1, we have: if A κ[l] = incr(i) then c i [l + 1]= c i [l] + 1, c 1-i [l + 1] = c 1-i [l],
and

κ[l + 1] = κ[l] + 1, if A κ[l] = decr(i) then c i [l + 1]= max(c i [l] -1, 0), c 1-i [l + 1] = c 1-i [l],
and

κ[l + 1] = κ[l] + 1, if A κ[l] = jmp(m) then ∀i. c i [l + 1]= c i [l],
and

κ[l + 1] = m, if A κ[l] = jz(i, m) then ∀i. c i [l + 1]= c i [l], if c i [l] = 0 then κ[l + 1] = m and otherwise κ[l + 1] = κ[l] + 1.

Undecidability of ∃MSO[f , <] for some function f

We are going to define a class of functions F such that adding a function f belonging to F to ∃MSO[<] is enough to obtain undecidability. Moreover such a function f can be defined from any FO[+]-definable set that is not FO[<, mod]-definable. Definition 4.3 (Increasing enough function). We define the set of increasing enough functions, and denote by F, the set of triples (N, f , s 0 ) such that N is an infinite subset of N, the function f is strictly increasing from N to N and that the sequence of integers

(s i ) i∈N ∈ N with s i+1 = f (s i ) is such that #([s i , s i+1 ] ∩ N) > #([s i-1 , s i ] ∩ N) for all i.
Theorem 4.4. Let d ∈ N * . Let S be a {<, +1, mod, R}-structure over N such that R S ⊆ N d is such that there exists (N, f , s 0 ) ∈ F such that N, f and s 0 are Π 2 [<, +1, mod, R]-definable. Then satisfiability of ∃MSOΠ 2 [<, +1, R] is undecidable (in S).

It should be noted that the variant of Theorem 4.4 where ∃MSO is replaced by MSO was already proven in [START_REF] Thomas | A note on undecidable extensions of monadic second order successor arithmetic[END_REF].

We first prove an easy lemma.

Lemma 4.5. Let V be a vocabulary that contains the successor relation and the constant 0. Then decidability of satisfiability of ∃MSOΠ p [V] is equivalent to the one of ∃MSOΠ p [V, mod] for p ≥ 1.

Proof. We prove this lemma by showing that formulas of both classes define the same sets.

If ϕ ∈ ∃MSOΠ p [V] then trivially ϕ ∈ ∃MSOΠ p [V, mod], therefore it remains to prove the other inclusion. Let ϕ ∈ ∃MSOΠ p [V, mod], then there is a m ∈ N such that ϕ is equivalent to a ∃MSOΠ p [V, mod m]-formula ψ. For k ∈ [m -1]
we introduce a second-order variable M k that represents k + mN. Let ψ be obtained from ψ by replacing every atomic formula of the form n ≡ k mod m by M k (n). Then

∃M 0 , . . . , M m-1 .ψ ∧ M 0 (0) ∧ m-1 i=1 ¬M i (0) ∧ (∀x, y.x + 1 . = y)[ k∈[m-1] M k (x) ⇐⇒ M k+1 mod m (y)].
is a ∃MSOΠ p [V]-formula that is satisfiable if and only if ψ is satisfiable.

We can now prove Theorem 4.4.

Proof. We proceed by reduction from the halting problem for 2 counter automaton. We encode the simulation of a 2-counter automaton A with a formula ϕ A in ∃MSOΠ 2 [<, +1, f ] such that ϕ A is satisfiable if and only if A's simulation halt. By Lemma 4.5 it is equivalent to work on ∃MSOΠ 2 [<, +1, mod, f ], and since

N is Π 2 [<, +1, mod]-definable, we can even work in ∃MSOΠ 2 [<, +1, mod, f , N]. ... ... Q q+1 Q q S S C 1 C 1 C 1 C 1 C 1 Figure 4.
Example of a simulation of incr(1) in a 2-counter automaton

Let us assume that the simulation halts after n steps, then we divide our finite structure in n segments. The ith segment, denoted by S i , encodes the ith step of the simulation. More precisely, we have

S i = [s i , s i+1 -1] and our structure is [s n ].
More precisely, we use monadic second order variables, S for the s i 's, (Q q ) q∈[#A-1] for the instruction number, and C j such that #(C j ∩ S i ) is equal to the value of the j-th counter at the ith step. That is, S(n) holds if and only if n = s 0 or there exists n < n such that f (n ) = n and S(n

) holds. For i ∈ [n], for q ∈ [#A -1], Q q (s i ) holds if and only if κ(i) = q, and #(C j ∩ S i ) = c j [i].
The main issue with this encoding is that in order to ensure that two successive segments encode two successive configurations, we need to compare the cardinality of two sets, which does not seems possible in our logic. To overcome this, we use the property of the function f . For example if the ith step is a jump, then c j [i] = c j [i + 1], and in this case we can choose C j in S i+1 to be the image by f of C j in S i . Hence we require that C j ⊆ N. If the ith step is incr(j) then it is enough to add a single position to C j in S i+1 . Note that the properties of the sequence (s i ) i∈N and N ensure that such a position exists. The other cases are encoded similarly.

Formally, the formula states the following requirements:

• the initial state is 0, that is Q 0 (s 0 ), • the last state is #A, that is Q #A (last),
• two successive segments encodes a step of the computation. We give two examples, the other cases are similar:

-If the ith step is jz(1, q ), that is Q q (s i ) with A κ(q) = jz(1, q ), then if there exists a position p ∈ [s i , s i+1 -1] such that C 1 (p) then Q q+1 (s i+1 ), otherwise Q q (s i+1 ). Furthermore for p ∈ [s i+1 , s i+2 -1], for j ∈ {0, 1}, C j (p) holds if and only if there exists p with f (p ) = p and C j (p ) holds. -If the ith step is incr(1), that is Q q (s i ) with κ(q) = incr(j), then * Q q+1 (s i+1 ), * there exists a position p ∈ [s i+1 , s i+2 -1] such that C 1 (p) holds and p has no antecedent by f , * C 0 (p) does not hold, and * for every p ∈ [s i+1 , s i+2 -1] \ {p}, for j ∈ {0, 1}, C j (p ) holds if and only if there exists p with f (p ) = p and C j (p ) holds. This case illustrated in Figure 4.

Each item above is of the form "for all positions p, f (p) and p + 1 satisfy those and those properties", and each property is Σ 1 [<, +1, f , N]-definable. Which is why the set is ∃MSOΠ 2 [<, +1, f , N, mod]-definable.

Undecidability of ∃MSO[R, <] when R is FO[+]-definable not FO[<, mod]-definable

We can now state a dichotomy theorem. Corollary 4.7. For every c ∈ Q with c > 1, let ×c be the binary relation which holds for (x, y) ∈ N if and only if x × c = y. The logic ∃MSOΠ 2 [<, +1, ×c] is undecidable. As a consequence ∃MSO[+] is also undecidable.

The FO[+]-definability condition stated in Theorem 4.6 is used in the proof to construct the increasing enough function in Theorem 3.17. Theorem 4.6 does not hold anymore if we remove this condition. Indeed the relation R = {2 m | m ∈ N} is clearly not FO[+]-definable but [START_REF] Elgot | Decidability and undecidability of extensions of second (first) order theory of (generalized) successor[END_REF] proved that MSO[<, R] is decidable. Similarly [START_REF] Semenov | Logical theories of one-place functions on the set of natural numbers[END_REF] proved that MSO[<, sin(x) ] is decidable while the graph of sin(x) is not FO[+]-definable.

Words

Finally, we explain how the previous results relate to words. Proof. For a first-order formula ϕ over words over an alphabet α with n letters, we construct a formula ϕ ∈ ∃MSO[V] that is satisfiable if and only if ϕ is satisfiable. In ϕ we can quantify the letter relations (P a ) a∈α as monadic second order variables and make the conjunction of ϕ with a formula that states that the monadic sets partition the universe. Hence the formula ϕ is

∃(P a ) a∈α .(ϕ ∧ ∀x. a P a (x) ∧ a ∈α a =a ¬P a (x)).
It is clear that ϕ is satisfiable if and only if ϕ is. Conversely, if an ∃MSO[V]-formula ϕ begins by a set F of n monadic second order variables existentially quantified, there exists an FO[V]-formula ϕ over words that is satisfiable if and only if ϕ is satisfiable. Its alphabet is the set of subsets of F, and for all Q ∈ F we replace Q(x) in ϕ by Q∈a a⊆F P a (x).

If we combine the above Lemma with Theorem 4.6 we get: Theorem 4.9. Let d ∈ N * and R ⊆ N d be a FO[+]-definable set. Then either R is FO[<, mod]-definable, or the satisfiability of Π 2 [R, <] over words is undecidable.

Finally we prove that the above result is true even on a two-letter alphabet, which amounts to consider ∃MSO[<, R] with at most one second-order quantifier. Proof. We show how to adapt the proof of Theorem 4.9. Let A be a 2-counter automaton and ϕ A be the FO[R, <]formula described by the proof of Theorem 4.4 that is satisfiable if and only if A halts. Note that the proof of Theorem 4.9 uses Theorem 4.6, which in turn uses some value m, and constructs a set N which is FO[<, mod m]-definable and allows to define a function ×c with c > 1.

Let α be the alphabet of the formula ϕ A . Without loss of generality, we can assume that α = [n -1]. Moreover let m be the value of the proof of Theorem 4.6. Up to multiplying m and adding new letters, we can assume that m = 7 + n. Let {0, 1} be our two-letter alphabet. Let γ n : α → {0, 1} + be such that γ n (i) = 01101100 i-1 10 n-i where 0 i denotes the letter 0 repeated i times. We construct a FO[R, <]-formula ϕ (A) such that ϕ (A) is true over a word w ∈ {0, 1} + if and only if there exists a word w ∈ {0, 1} + such that w = γ n (w) and ϕ A is true over w.

We can define the set of multiples of m over γ n (w): indeed it is the set of positions n such that the subword of length 7 starting at n is 0110110. This allows to define (N, f , s 0 ) of Theorem 4.4, Then ϕ (A) is obtained from the formula ϕ A by the following modifications:

• ∃x.χ is replaced by (∃x ≡ 0 mod m)χ ,

• ∀x.χ is replaced by (∀x ≡ 0 mod m)χ ,

• x + i = y is replaced by x + mi = y, and • P i (x) is replaced by P 1 (x + i + 7). We see many directions for further research. We may want to minimize the number of alternations of quantifiers needed to have undecidability, and conversely to find an algorithm to decide those logics with one or two alternations.

Conclusion

We may also study the number of quantifiers required to obtain undecidability. Finally, let us note that a construction similar to the proof of Theorem 4.9 can be used to prove undecidability of some other related logics, such as FO[R, +1] when R is FO[+]-definable and not FO[<, mod]-definable, FO[+1, f ] as soon as f is not interpreted, or FO[<, f ] when f is a strictly increasing function that is not ultimately equal to x → x + c where c is a constant. true over a structure S if and only if R S is FO[+]-definable. Let us assume that we have a formula ν

1 d (x) ∈ FO[+, R] such that, if R S is not FO[+]-definable then ν 1 d (x) S is not FO[+]-definable.
Then we can set:

ν d 1 (x) = ¬µ d ∧ ν 1 d (x).
Indeed, if R is FO[+]-definable, the formula µ d does not hold, hence the formula is false for every x.

It remains to define ν 1 d . Let us now assume that R S is not FO[+]-definable. We construct ν 1 d (x) by induction over d. If d = 1, then we can take ν 1 d (x) = R(x). Let us assume that d > 1 and that the theorem is true for d -1. The next disjunction is between sets with or without a section that is not FO[+]-definable. We introduce the formula µ d,i (c) that states that (R S ) xi=c is FO[+]-definable. It is defined by

µ d,i (c) = µ d-1 [R(y 0 , . . . , y d-2 )/R(y 0 , . . . , y i-1 , c, y i , . . . , y d-2 )]
In the formula µ d-1 , the relation symbol R has arity d -1. In our structure, R has arity d, hence we see that we can not use the same formula, and indeed we are interested by the section of R S . Hence as defined in Notation 2.7, the formula µ d-1 [R(y 0 , . . . , y d-2 )/R(y 0 , . . . , y i-1 , c, y i , . . . , y d-2 )] represents the formula µ d-1 where the atomic formula R(y 0 , . . . , y d-2 ) is replaced by R(y 0 , . . . , y i-1 , c, y i , . . . , y d-2 ).

If some section of R S is not FO[+]-definable, we take the minimal one and use the induction hypothesis on it. Otherwise let us assume that ν

2 d (x) is a FO[+, R]-formula such that, if R S is not FO[+]
-definable and all of its sections are FO[+]-definable then ν 2 d (x) S is not ultimately periodic. Then we can take

ν 1 d (x) = d-1 i=0 ∃c min i∈[d-1],c ¬µ d,i (c) | ν d-1 [R(y 0 , . . . , y d-2 )/R(y 0 , . . . , y i-1 , c, y i , . . . , y d-2 )] | ν 2 d (x) .
It remains to define ν 2 d . Let us now assume that R S is not FO[+]-definable, and that all of its sections are FO[+]-definable. For any s ∈ N, let P s = {(n 0 , . . . , n d-1 ) ∈ Z d | |n i | ≤ s} d . Then we use the second hypothesis of Muchnik's Theorem (Theorem 3.12) to construct ν 2 d (x), that is, a set which is not ultimately periodic. By Muchnik's Theorem we know that for every s ∈ N there exists an integer 2 k(s) such that for every l ∈ N there is some x(s, l) with x(s, l) > l such that R is not P s -periodic in C k(s) (x(s, l)). We choose the lexicographically smallest value for k(s) and x(s, l). We see that we can use (x(s, l)) s,l∈N to obtain the desired set. More precisely, we use a subset of this sequence, when l varies and then when s varies.

We denote by C(s, l) the set (C k(s) (x(s, l)) ∩ R) -x(s, l). We call it the cube of size k(s) at x(s, l). It is a subset of [k(s) -1] d . We are going to logically define every set and function that we have mathematically defined.

First, we define π d (k, x, p) ∈ FO[+, R] that states that the set R is p-periodic in C k (x):

π d (k, x, p) = (∀y. d-1 i=0 x i ≤ y i < x i + k ∧ d-1 i=0 x i ≤ y i + p i < x i + k)R(x) ⇐⇒ R(x + p). Then we define π d (s, k, x) ∈ FO[+, R] that states that the set R is P s -periodic in C k (x): π d (s, k, x) = (∃p. d-1 i=0 p i ≤ s ∧ d-1 i=0 p i . = 0)π d (k, x, p).
2 The proof would be easier if we could give a precise value to k(s). By Theorem 3.12 we can set k(s) = p∈Ps p = ds(s + 1)(2s + 1) d-1 , but this function is not FO[+]-definable, hence we need to quantify the variable k.

Then we define the function ψ d (s, l, k; x) ∈ FO[+, R], a function from s, l and k that computes the lexicographically minimal x with x ≥ l such that R is not P s -periodic in C k (x). In particular, ψ d (s, l, k(s)) = x(s, l). This allow to define the function κ d (s; K) ∈ FO[+, R] stating that K = k(s). We require K to be the minimal integer such that there is an infinite number of x such that C k (x) is not P s -periodic: x i ≥ l.)ψ d (s, l, K; x)

To create our non FO[+]-definable set, we consider the repetition of cubes of size k(s), in particular repetition of cubes that appear infinitely often. Some of them are distant enough to let us describe a set that is not ultimately periodic.

First, let β d (x, y, k) ∈ FO[+, R] state that cubes of size k at x and at y are the same:

β d (x, y, k) = (∀d. d-1 i=0 d i < k)[R(x + d) ⇐⇒ R(y + d)].
For s ∈ N, the set {C(s, l) | l ∈ N} is finite, hence there exists some set S(s) ∈ [k(s) -1] d that appears infinitely often in the sequence (C(s, l)) l∈N . Let c(s) be minimal such that there exists an infinite number of l such that C(s, l) = C(s, c(s)). Let S(s) = C(s, c(s)). We write ψ d (s, l) for ψ d (s, l, κ d (s)) and ψ d,i (s, l) for the ith element of the tuple. We define γ d (s; c) ∈ FO[+, R] to be the formula that defines c(s). We are going to construct a set of integers X i (s) ⊆ L(s) such that (x i (s, j)) j∈Xi(s) is strictly increasing. We choose the set with minimal elements, and then maximal cardinality. Formally j ∈ X i (s) if for all h < j, x i (s, j) is greater than x i (s, h). Let χ d,i (s, j) ∈ FO[+, R] be the formula that is true for j ∈ X i (s): χ d,i (s, j) = λ d (s, j) ∧ ∀j < j.ψ d,i (s, j ) < ψ d,i (s, j).

Then ν 2 d (x) is a disjunction of two cases. If there is some X i (s) that is not ultimately periodic then we take the minimal one. Otherwise let us assume that ν 3 d (x) is a FO[+, R]-formula such that if for all i ∈ [d -1], s ∈ N, the set X i (s) is ultimately periodic then ν 3 d (x) S ∈ FO[+, R] is not ultimately periodic. Then we can take: It remains to define ν 3 d . Let us assume that for all i, s, the set X i (s) is ultimately periodic. We also define its image by x i , Z i (s) = {x i (s, j) | j ∈ X i (s)}. Let ζ d,i (s, x) be true if x ∈ Z i (s):

ν 2 d (x) =
ζ d,i (s, x) = (∃j.χ d,i (s, j))(ψ i (s, j) . = x).

Similarly, ν 3 d (x) is a disjunction of two cases. If there is some Z i (s) that is not ultimately periodic then we take the minimal one. Otherwise let us assume that ν It remains to define ν 4 d . Since Z i (s) is ultimately periodic, let b i (s) be its minimal period. We show that we can define the desired set from (b i (s)) s∈N . We can note that for the first time s is a parameter of the sequence and is not assumed to be fixed. Let By construction, the cube C(s, l) = C k(l) (x(s, l)) can not be shifted by some vector p ∈ Z d with p ≤ s, hence there is i ∈ [d -1] such that b i (s) > s. Let θ d,i (s) ∈ FO[+, R] be the formula that is true for such an i:

θ d,i (s) = σ d,i (s) > s.
Morever, there is an infinite number of s ∈ N such that C(s, l) can not be shifted by any p ∈ Z d with p ≤ s. Hence there is an i such that b i (s) > s is true for infinitely many s. Let Θ d,i ∈ FO[+, R] be a formula that is true for such an i: Θ d,i = ∀s.∃s ≥ s.θ d,i (s ).

From now on, let us assume that i is such that b i (s) > s for infinitely many s's. We use b i (s) to construct the desired set. We assume that ν 5 d,i (x) ∈ FO[+, R] is a FO[+, R]-formula such that if the above properties are satified, then ν 5 d,i (x) S is not ultimately periodic. We take i minimal:

ν 4 d (x) = d-1 i=0 min i∈[d-1] Θ d,i ∧ ν 5 d,i (x).
It remains to define ν 5 d . We can finally describe the desired set as the image of the function e(s) = lcm{b i (t) | t ≤ s}. Clearly e(s) divides e(s + 1), hence either e(s + 1) = e(s) or e(s + 1) ≥ 2e(s), and since b i (•) takes an infinite number of values, e(•) grows infinitely often and the difference between two successive positions is not bounded. Hence E = {e(s) | s ∈ N} is not ultimately periodic. This is not a direct definition since for an arbitrary finite set F, the value of lcm(F) does not seems to be FO[+, F]-definable, but in this case we can define e(s) by stating that it is the smallest integer such that for all t < s, the set Z i (t) is e(s)-periodic. 
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 4 Quantifier elimination for FO[< N , mod N] and FO[+ N , mod N]

  Theorem 3.13. Let d ∈ N * , R ⊆ N d , and m ∈ N. The following three statements are equivalent:1. The set R is FO[<, mod m]-definable. 2. (a) There exists l m (R) ∈ N such that R ≥lm(R) is m ⊗d -periodic and(b) all sections and diagonals of R are FO[<, mod m]-definable. 3. For every integer d ≤ d, and every straight subspace S of R of dimension d , there exists l m (S) such that S ≥lm(S) is m ⊗d -periodic.
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 14 Let d ∈ N * , let m ∈ N. Let R be a relation symbol with arity d. There exists a formula Λ d,m (l) in Π 3 [<, R], and one in Π 2 [+1, <, R], such that for S a {+1, <, R}-structure over the universe N, if R S is FO[<, mod m]-definable then Λ d,m (l) S = {l m (R S )}, and for n > l m (R S ) + m, then Λ d,m (l) S |n = {l m (R S )}. We simply denote by Λ d,m the unique value l such that S |= Λ d,m (l).
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 6 Let d ∈ N * and R ⊆ N d be a FO[+]-definable set. Then either R is FO[<, mod]-definable, or the satisfiability of ∃MSOΠ 2 [R, <, +1] is undecidable. Proof. If R is FO[<, mod m]-definable then satisfiability of ∃MSO[<, mod m, R] is decidable, since we can replace R by its definition, and apply the algorithm to decide satisfiability of ∃MSO[<, mod m] [Bü60].Now let us assume that R is not FO[<, mod]-definable. By Theorem 3.17 we can define aFO[+]-definable converging function f ∈ Π 2 [<, +1, R] that is not FO[<, mod]-definable. Hence by Lemma 3.7 there is m, n ∈ N, k ∈ [m -1], r ∈ Q + \ {0, 1}, s ∈ Q such thatfor every c ∈ N, which represents the cardinal of the universe, there exists p(c) such that for every b ∈ N with n ≤ b ≤ p(c) and b ≡ k mod m, we have f (b) S |c = r × b + s with r × b + s ∈ N. If r < 1 we can work with the inverse of f . Let N = mN + k. The function f sends N to N. Let g(n) be the least integer greater than f (n) equivalent to k modulo n. Then g(n) = r × b + s + i for some i ∈ [m -1]. Hence (N, g, n) is an FO[<, +1, mod, R]-definable increasing enough function, therefore by Theorem 4.4, ∃MSOΠ 2 [<, +1, R] is undecidable. If in Theorem 4.6 we consider R to be the graph of the function ×c : n → c × n we obtain the following corollary.
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 8 Satisfiability of formulas of Π p [V] over words is equivalent to satisfiability of formulas of ∃MSOΠ p [V] over arbitrary finite structures.
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 10 Let d ∈ N * and R ⊆ N d be a FO[+]-definable set. Then either R is FO[<, mod]-definable, or the satisfiability of Π 2 [R, <] over words over a two-letter alphabet is undecidable.
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  d (s, l, k; x) = min x l) ∧ ¬π d (s, k, x) }.

  γ d (s; c) = min c ∀l.∃l > l.β d (ψ d (s, c), ψ d (s, l ), κ d (s)) Let L(s) = {n ∈ N | C(s, n) . = S(s)}, that is the set of positions n such that the nth cube is equal to S(s). Let λ d (s, n) ∈ FO[+, R] be true if n ∈ L(s): λ d (s, n) = β d (ψ d (s, n), ψ d (s, γ(s)), κ d (s)) By construction {x(s, l) | l ∈ L(s)} is an infinite set of n-tuples, hence there is i ∈ [d -1] such that {x i (s, l) | l ∈ N} is infinite.

  i∈[d-1],s ¬µ 0 [R(x)/χ d,i (s, x)] | χ d,i (s, x) | ν 3 d (x) .

  4 d (x) is a FO[+, R]-formula such that if for all i ∈ [d -1], s ∈ N, the set Z i (s) is ultimately periodic then ν 4 d (x) S ∈ FO[+, R]is not ultimately periodic. Then we can take:ν 3 d (x) = min i∈[d-1],s ¬µ 0 [R(x)/ζ d,i (s, x)] | ζ d,i (s, x) | ν 4 d (x) .

  σ d,i (s, b) ∈ FO[+, R] state that b is a period of Z i (s): σ d,i (s, b) = ∃N.(∀n > N)[ζ d,i (s, n) ⇐⇒ ζ d,i (s, n + b)].

  Let d,i (s; E) ∈ FO[+, R] state that E = e(s): d,i (s; E) = min E ∀t ≤ s.σ d,i (t, E) .Finally we set ν 5 d,i (x) = ∃s. d,i (s; x).

  ).So P a (i) is true if and only if the i-th letter is a. And for a formula ϕ, the satisfaction relation S w |= ϕ is defined as usual. More generally, let V be a vocabulary and S a V-structure over N. ThenS w = S ||w| [(P a /{i < |w| | w[i] = a}) a∈α ].

  which characterizes FO[+]. Let d ∈ N * and R ⊆ N d . The following properties are equivalent; 1. The set R is FO[+]-definable. 2. (a) All sections of R are FO[+]-definable and (b) there exists a finite set P ⊆ Z d \ {0 ⊗d } such that for every k ∈ N, there exists l(k) ∈ N such that for all x

	Theorem 3.12. [Muc03, Theorems 3 and 4] 1

We can see that the proof of this Theorem given in [Muc03, page 1436] contains a minor error which appears also in[START_REF] Bruyère | Logic and precognizable sets of integers[END_REF]. The existence of y = (y 0 . . . y d-1 ) ∈ A and of q ∈ Z such that xy = qv is not enough. Indeed we also need that y i ≥ l for all i ∈ {1, . . . , n}, and this may be false. The proof becomes correct if we see that we have to choose q such that there is a j such that y j ∈ [l, l + v j ] and for all i = j we have y i ≥ l, by taking a section with the j-th component.

We first need a lemma: Lemma 3.18. Let d ∈ N * , R ⊆ N d be a FO[+]-definable set. Then there exists m ∈ N such that every straight subspace of R of dimension 1 is FO[<, mod m]-definable.

Proof. By [START_REF] Presburger | Über de vollständigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchen, die addition als einzige operation hervortritt[END_REF], we can assume that R is defined by a quantifier-free formula ϕ. We can w.l.o.g. assume that all modular relations are of the form x i ≡ a mod m with only one value m, and that there is no equality relation.

Then all straight subspaces T of dimension 1 are defined this way: there exists I [d -1], and c ∈ N d such that T = {n ∈ N | (t 0 , . . . , t d-1 ) ∈ R} where t i = c i if i ∈ I and t i = n + c i otherwise. That is, T is defined by a formula ψ(x) which is obtained from ϕ by replacing every variable x j by c j or x + c j .

Since x is the only variable, every use of

We can rewrite q × x > p (resp. q × x < p) as x > p q (resp x < p q ) and obtain a FO[<, mod m]-formula.

We can now prove Theorem 3.17.

Proof. We assume that R S is not FO[<, mod]-definable. We construct ν R .

Let ϕ be a definition of R S in FO [+]. By Lemma 3.18, all straight subspaces of dimension 1 are FO[<, mod m]-definable for some m ∈ N * .

Let d ≤ d be the smallest integer such that R S has a straight subspace P of dimension d that is not FO[<, mod m]-definable. We have d > 1 so there is σ ∈ S d such that P σ is not FO[<, mod m]-definable. For the sake of simplicity, we may assume that d = d, σ = (0, . . . , d -1) and even that R S ⊆ N d 0,...,d-1 . By hypothesis every section (R S ) x0=c is FO[<, mod m]-definable. Let us define f (c) to be l m ((R S ) x0=c ). We claim that the function f satisfies the hypothesis of the Theorem. By Lemma 3.14,

Considering finite models, Lemma 3.14 proves that Λ d,m converges. Since +c is a relation and not a function anymore, some quantifiers are introduced, but the values of their variable are bounded, hence the formula indeed converges to f . Let us prove that f is not FO[<, mod]-definable.

For the sake of contradiction, we assume that

mod]-definable. Since all sections and diagonals are FO[<, mod m]-definable, R ⊆ N 0,...,d-1 and f is FO[<, mod]-definable, then by Lemma 3.16 R is FO[<, mod m]-definable, which is a contradiction.

In the above theorem, we needed R to be FO[+]-definable because the construction required that there exists a m such that all straight subspaces of dimension 1 are FO[<, mod m]-definable. To the best of our knowledge, it is an open question to know whether a function f which is not FO[<, mod]-definable can be created for any R ∈ FO[+].

About satisfiability of some class of existential-monadic formulas

In this section, we are going to study finite models. We fix a vocabulary and a structure over N and prove that the problem of deciding whether a formula ϕ in this vocabulary is true in a restriction of this structure to [n] is undecidable.

In this section, we fix V to be a vocabulary, and S to be a V-structure over N.

Let ϕ be a ∃MSO[V]-formula without free variable. Then we say that ϕ is (finitely) satisfiable in the structure S if there exists n ∈ N such that S |n |= ϕ. Since this section is about finite models, we omit the "finitely".

Our undecidability result is obtained by reduction from the halting problem for 2-counter automata which is undecidable [START_REF] Minsky | Recursive Unsolvability of Post's Problem of "tag[END_REF]. Let us briefly recall the definition of a 2-counter automaton. Definition 4.1 (2-counter automaton). A 2-counter automaton A consists of a list of instructions. Let #A denote the number of instruction of A. The instructions are "incr(h)", "decr(h)", "jmp(j)", "jz(h, j)" with h ∈ {0, 1}, j ∈ [#A -1] and "Halt". The j-th instruction is written A j . W.l.o.g. we assume that only one Halt instruction appears in the list and that it appears as the last instruction.

Appendix A. A new proof of Michaux-Villemaire's theorem

In this appendix, we intend to give a new proof of Theorem 5.1 of [START_REF] Michaux | Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of cobham's and semenov's theorems[END_REF]. Let us state it. We use the notation of the present paper.

Our proof is shorter but mostly uses the ideas of [START_REF] Michaux | Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of cobham's and semenov's theorems[END_REF]. Moreover it exhibits an uniformity property not mentioned in this paper:

Let R be a relation symbol with arity d. There exists a formula

The difference between the two theorems is that in the original proof, the defining formula depends on the interpretation of R in the structure, while in the latter it depends only on the dimension d.

Before starting the proof, we recall Lemma 3.7, that is, a subset R of N is FO[+]-definable if and only if it is ultimately periodic, hence we require that if R is not FO[+]-definable then ν d (x) S is not ultimately periodic.

Proof. In this proof, we reduce the problem of constructing a formula such as ν d (x) to the one of constructing two formulas for two subcases. We introduce a formula for all cases and explain how to combine them. Our first disjunction is: is R S FO[+]-definable or not ? By Theorem 2 of [START_REF] Muchnik | The definable criterion for definability in Presburger arithmetic and its applications[END_REF] there exists a formula µ d ∈ FO[+, R] that is • (q, n 0 , n 1 ), 15