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2D/3D Object Recognition and Categorization
Approaches for Robotic Grasping

Nabila Zrira, Mohamed Hannat, El Houssine Bouyakhf and Haris Ahmad Khan

Abstract Object categorization and manipulation are critical tasks for a robot to
operate in the household environment. In this paper, we propose new methods for
visual recognition and categorization. We describe 2D object database and 3D point
clouds with 2D/3D local descriptors which we quantify with the k-means clustering
algorithm for obtaining the Bag of Words (BOW). Moreover, we develop a new
global descriptor called VFH-Color that combines the original version of Viewpoint
Feature Histogram (VFH) descriptor with the color quantization histogram, thus
adding the appearance information that improves the recognition rate. The acquired
2D and 3D features are used for training Deep Belief Network (DBN) classifier.
Results from our experiments for object recognition and categorization show an
average of recognition rate between 91% and 99% which makes it very suitable for
robot-assisted tasks.
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1 Introduction

In recent years, robots are being deployed in many areas where automation and
decision-making skills are required. Robots are not just mechanically advanced but
are becoming intelligent as well, and the idea behind these intelligent machines is
the creation of systems that imitate the human behavior to be able to perform tasks
which are actually infeasible for humans. The type of tasks for which robots are
well adapted includes those that are in unexplored environment such as outer-space
[63, 66] and undersea [4, 16, 27]. However, the robot tasks are not limited just to
complex and difficult problems, but they are covering some industrial [22], medical
[18], and domestic applications [21] as well.

A human can search and find an object visually in a cluttered scene. It is a very
simple task for human to pick an object and place it in the required place while
avoiding obstacles along the path, and without damaging the fragile objects. These
simple and trivial tasks for humans become challenging and complex for robots
and can overcome their capabilities. The majority of pick-up and drop applications
through robots are performed in fully known and structured environments. The key
question that arises in this context is how robots can perform as well as humans in
these tasks when the structure of the environment is varied?

Human vision is extremely robust and can easily classify objects among tens of
thousands of possibilities [11] within a fraction of a second [45]. The human system
is able to tolerate the tremendous changes in scale, illumination, noise, and viewing
angles for object recognition. Contrary to the human vision, the object recognition
is a very complex problem and still beyond the capabilities of artificial vision sys-
tems. This contrast between vision systems and the human brain for performing
visual recognition and classification tasks gave rise to the development of several
approaches to visual recognition.

The ability to recognize and manipulate a large variety of objects is critical for
mobile robots. Indoor environment often contains several objects on which the robot
should make different actions such as ”Pick-up the remote control TV!”, ”Drop
it inside the box!”. So, how to represent and classify objects to be recognized by
robots?

Several techniques have been explored in order to achieve this goal. Recently,
appearance-based methods have been successfully applied to the problem of object
recognition. These methods typically proceed with two phases. In the first phase,
a model is constructed from a set of training images that includes the appearance
of the object under different illuminants, scales, and multiple instances. Whereas,
in the second phase, the methods try to extract parts from the input image through
segmentation or by using the sliding windows over the whole image. The methods
then compare extracted parts of the input image with the training set. A popular
strategy of appearance-based methods is the Bag of Words (BoW). BoW is inspired
from text-retrieval systems that count how many times a word appears in a docu-
ment. It aims to represent an image as an orderless set of local regions. In general,
local regions are discretized into a visual vocabulary. This method obtains excellent
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results in image classification [5], image retrieval [68], object detection as well as
scene classification [25].

With the advent of new 3D sensors like Microsoft Kinect, 3D perception became
a fundamental vision research in mobile robotic applications. The Point Cloud Li-
brary (PCL) was developed by Rusu et al. [49] in 2010 and officially published
in 2011. This open source library, licensed under Berkeley Software Distribution
(BSD) terms, represents a collection of state-of-the-art algorithms and tools that op-
erate with 3D point clouds. Several studies have been made based on PCL detectors
and descriptors for 3D object recognition applications. PCL integrates several 3D
detectors as well as 3D local and global descriptors. In 3D local descriptors, each
point is described by its local geometry. They are developed for specific applica-
tions such as object recognition, and local surface categorization. This local cate-
gory includes Signature of Histograms of OrienTation (SHOT) [59], Point Feature
Histograms (PFH) [47], Fast Point Feature Histograms (FPFH) [46], and SHOT-
COLOR [60]. On the other hand, the 3D global descriptors describe object geometry
and they are not computed for individual points, but for a whole cluster instead. The
global descriptors are high-dimensional representations of object geometry. They
are usually calculated for subsets of the point clouds that are likely to be objects.
The global category encodes only the shape information and includes Viewpoint
Feature Histogram (VFH) [48], Clustered Viewpoint Feature Histogram (CVFH)
[2], Oriented Unique and Repeatable CVFH (OUR-CVFH) [1], and Ensemble of
Shape Functions (ESF) [64].

The ability to recognize objects is highly valuable for performing imperative
tasks in mobile robotics. In several works, authors use classification methods such
as Support Vector Machines (SVMs) [33] [67] [26], Nearest Neighbor (NN) [40],
Artificial Neural Network (ANN) [7], or Hidden Markov Model (HMM) [61] in
order to predict the object class. Recently, researchers got interested in deep learning
algorithms because they can simultaneously and automatically discover both low-
level and high-level features. Deep Belief Network (DBN) is a graphical model
consisting of undirected networks at the top hidden layers and directed networks in
the lower layers. The learning algorithm uses greedy layer-wise training by stacking
restricted Boltzmann machines (RBMs) which contain hidden layer for modeling
the probability distribution of visible variables [10].

In this paper, we present new 2D/3D object recognition and categorization ap-
proaches which are based on local and global descriptors. We describe 2D objects
and 3D point clouds using 2D/3D local and global descriptors. Then, we train sepa-
rately these features with Deep Belief Network. We summarize our contributions as
follows:

1. We describe an object database with SURF feature points which are quantified
with the k-means clustering algorithm to make the 2D Bag of Words;

2. We describe a point cloud with spin image features which we quantify with the
k-means clustering algorithm to generate the 3D Bag of Words;

3. We propose VFH-Color descriptor that combines both the color information and
geometric features extracted from the previous version of VFH descriptor. We
extract the color information for point cloud data, and then we use the color
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quantization technique to obtain the color histogram which is combined with
VFH histogram.

We organize the rest of our paper in the following way. In Section 2, we provide
a literature review on the relevant works of 2D/3D object recognition and catego-
rization. We describe in details our proposed approaches in Section 3. The imple-
mentation details and the experimental results are presented in Section 4. Finally,
we conclude the paper in Section 5.

2 State of The Art

2.1 2D recognition and categorization

Recently, the approaches that were based on Bag of Words (BoW), also known
as Bag of features produced the promising results on several applications, such as
object and scene recognition [13] [35], localization and mapping for mobile robots
[20], video retrieval [54], text classification [6], and language modeling for image
classification and retrieval [34] [39] [70].

Sivic et al. [53] used Latent Dirichlet Allocation (LDA) and probabilistic Latent
Semantic Analysis (pLSA) in order to compute latent concepts in images from the
cooccurrences of visual words. The authors aim to generate a consistent vocabulary
of visual words that is insensitive to viewpoint changes and illumination. For this
reason, they use vector quantized SIFT descriptors which are invariant to translation,
rotations, and re-scaling of the image.

Csurka et al. [15] developed a generic visual categorization approach for iden-
tifying the object content of natural images. In the first step, their approach detects
and describes image patches which are clustered with a vector quantization algo-
rithm to generate a vocabulary. The second step constructs a bag of keypoints that
counts the number of patches assigned to each cluster. Finally, they use Naive Bayes
and SVM to determine image categories.

Fergus et al. [19] suggested an object class recognition method that learns and
recognizes object class models from unlabeled and unsegmented cluttered scenes in
a scale invariant manner. The approach exploits a probabilistic model that combines
shape, appearance, occlusion and relative scale, as well as an entropy-based feature
detector to select regions and their scale within an image.

Philbin et al. [44] proposed a large-scale object retrieval system with large vo-
cabularies and fast spatial matching. They extract features from each image in a
high-dimensional descriptor space which are quantized or clustered to map every
feature to a ”visual word”. This visual word is used to index the images for the
search engine.

Wu et al. [65] proposed a new scheme to utilize optimized bag of words models
called Semantics Preserving Bag of Words (SPBoW) that aims to map semantically
related features to the same visual words. SPBoW computes a distance between
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identical features as a measurement of the semantic gap and tries to learn a codebook
by minimizing this gap.

Larlus et al. [32] combined a bag of words recognition component with spatial
regularization based on a random field and a Dirichlet process mixture for category-
level object segmentation. The random field (RF) component assures short-range
spatial contiguity of the segmentation while a Dirichlet process component assures
mid-range spatial contiguity by modeling the image as a composition of blobs. Fi-
nally, the bag of words component allows strong intra-class imaging variations and
appearance.

Vigo et al. [62] exploited color information in order to improve the bag of words
technique. They select highly informative color-based regions for feature extraction.
Then, feature description focuses on shape and can be improved with a color de-
scription of the local patches. The experiments show that color information should
be used both in the feature detection as well as the feature extraction stages.

Khan et al. [29] suggested integration of spatial information in the bag of vi-
sual words. The approach model the global spatial distribution of visual words that
consider the interaction among visual words regardless of their spatial distances.
The first step consists of computing pair of identical visual words (PIW) that save
all the pairs of visual words of the same type. The second step represents a spatial
distribution of words as a histogram of orientations of the segments formed by PIW.

2.2 3D recognition and categorization

Most of the recent work on 3D object categorization focused on appearance, shapes,
and Bag of Words (BoW) extracted from certain viewing point changes of the 3D
objects.

Savarese and Fei-Fei [50] proposed a compact model for representing and learn-
ing 3D object categories. Their model aims to solve scale changes and arbitrary
rotations problems using appearance and 3D geometric shape. Each object is con-
sidered as a linked set of parts that are composed of many local invariant features.
Their approach can classify, localize and infer the scale as well as the pose estima-
tion of objects in the given image.

Toldo et al. [58] introduced Bag of Words (BoW) approach for 3D object cate-
gorization. They used spectral clustering to select seed-regions then computed the
geometric features of the object sub-parts. Vector quantization is applied to these
features in order to obtain BoW histograms for each mesh. Finally, Support Vector
Machine is used to classify different BoW histograms for 3D objects.

Nair and Hinton [42] presented a top-level model of Deep Belief Networks
(DBNs) for 3D object recognition. This model is a third-order Boltzmann machine
that is trained using a combination of both generative and discriminative gradients.
The model performance is evaluated on NORB images where the dimensionality
for each stereo-pair image is reduced by using a foveal image. The final represen-
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tation consists of 8976-dimensional vectors that are learned with a top-level model
for Deep Belief Nets (DBNs).

Zhong [69] introduced an approach for 3D point cloud recognition based on a
new 3D shape descriptor called Intrinsic Shape Signature (ISS). ISS uses a view-
dependent transform encoding for the viewing geometry to facilitate fast pose es-
timation, and a view-independent representation of the 3D shape in order to match
shape patches from different views directly.

Bo et al. [12] introduced a set of kernel features for object recognition. The au-
thors develop kernel descriptors on depth maps that model size, depth edges, and
3D shape. The main match kernel framework defines pixel attributes and designs
match kernels in order to measure the similarities of image patches to determine
low dimensional match kernels.

Lai et al. [30] built a new RGBD dataset and proposed methods for recognizing
RGBD objects. They used SIFT descriptor to extract visual features and spin image
descriptor to extract shape features that are used for computing efficient match ker-
nel (EKM). Finally, linear support vector (LiSVM), gaussian kernel support vector
machine (kSVM) and random forest (RF) are trained to recognize both the category
and the instance of objects.

Mian et al. [41] suggested a 3D object retrieval approach from cluttered scenes
based on the repeatability and quality of keypoints. The authors proposed a qual-
ity measure to select the best keypoints for extracting local features. They also in-
troduced an automatic scale selection method for extracting scale and multi-scale
invariant features in order to match objects at different unknown scales.

Madry et al. [38] proposed the Global Structure Histogram (GSH) to describe
the point cloud information. Their approach encodes the structure of local feature
response on a coarse global scale to retain low local variations and keep the advan-
tage of global representativeness. GSH can be instantiated in partial object views
and trained using complete or incomplete information about an object.

Tang et al. [57] proposed a Histogram of Oriented Normal Vectors (HONV) fea-
ture which is based on local geometric characteristics of an object captured from
the depth sensor. They considered that the object category information is presented
on its surface. This surface is described by the normal vector at each surface point
and the local 3D geometry is presented as a local distribution of the normal vector
orientation.

Socher et al. [56] introduced the first convolutional-recursive deep learning
model for 3D object recognition. They computed a single CNN layer to extract low-
level features from both color and depth images. These representations are provided
as input to a set of RNNs with random weights that produce high-quality features.
Finally, The concatenation of all the resulting vectors forms the final feature vector
for a softmax classifier.

Schwarz et al. [51] developed a meaningful feature set that results from the pre-
trained stage of Convolutional Neural Network (CNN). The depth and RGB images
are processed independently by CNN and the resulting features are then concate-
nated to determine the category, instance, and pose of the object.
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Eitel et al. [17] presented two separate CNN processing streams for RGBD ob-
ject recognition. RGB and colorized depth images consist of five convolutional lay-
ers and two fully connected layers. Both streams are processed separately through
several layers and converge into one fully connected layer and a softmax layer for
the classification task.

Alex [3] proposed a new approach for RGBD object classification. Four indepen-
dent Convolutional Neural Networks (CNNs) are trained, one for each depth data
and three for RGB data and then trains these CNNs in a sequence. The decisions of
each network are combined to obtain the final classification result.

Ouadiay et al. [43] proposed a new approach for real 3D object recognition and
categorization using Deep Belief Networks. First, they extracted 3D keypoints from
point clouds using 3D SIFT detector and then they computed SHOT/SHOTCOLOR
descriptors. The performance of the approach is evaluated on two datasets: Wash-
ington RGBD object dataset and real 3D object dataset.

Madai et al. [37] reinvestigated Deep Convolutional Neural Networks (DCNNs)
for RGBD object recognition. They proposed a new method for depth colorization
based on surface normals, which colorized the surface normals for every pixel and
computed the gradients in a horizontal direction (x-axis) and vertical direction (y-
axis) using the Sobel operator. The authors defined two 3D vectors a and b in direc-
tion of the z-axis in order to calculate the surface normal n. As n has 3 dimensions,
the authors map each of the three values of the surface normal to a corresponding
RGB channels.

3 Our Recognition Pipelines

In this paper, we suggest new approaches for 2D/3D object recognition and cate-
gorization for mobile robotic applications. We introduce two different recognition
pipelines, one relies on 2D/3D detectors and descriptors which are quantified with
a k-means algorithm to obtain 2D/3D Bag of Words, while the other one uses our
new 3D global descriptor called VFH-Color. Figure 1 summarizes the main steps of
2D/ 3D Bag of Words approaches.

1. Training set: represents a set of data (images or point clouds) used on our ex-
periment. Training means, creating a dataset with all the objects which we want
to recognize.

2. Keypoint extraction: is the first step of our approach where keypoints (interest
points) are extracted from input data. It reduces the computational complexity by
identifying particularly those regions of images which are important for descrip-
tors, in term of high information density.

3. Keypoint description: once keypoints are extracted, descriptors are computed
on the obtained keypoints and these form a description which is used to represent
the data.

4. Vocabulary: after the extraction of descriptors, the approach uses the vector
quantization technique to cluster descriptors in their feature space. Each clus-
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ter is considered as ”visual word vocabulary” that represents the specific local
pattern shared by the keypoints in this cluster.

5. Bag of Words: is a vector containing the (weighted) count or occurrence of each
visual word in the data which is used as the feature vector in the recognition and
classification tasks.

6. Classificiation: all data in training set are represented by their Bag of Words
vectors which represent the input of DBN classifier.

Fig. 1: Overview of 2D/3D Bag of Words approaches.

For the global pipeline, we present a new VFH-Color descriptor that combines
both the color information and the geometric features extracted from the previous
version of VFH descriptor. Figure 2 summarizes the main steps of the global ap-
proach.

Fig. 2: Overview of 3D global approach.

1. Training set: represents a set of point clouds used on our experiment.
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2. 3D point description: extracts the color information for point cloud data, then
uses the color quantization technique to obtain the color histogram which is com-
bined with VFH histogram extracted from the previous version of VFH descrip-
tor.

3. Classificiation: all point clouds in training set are represented by their VFH-
Color features and are provided as the input to DBN classifier.

3.1 Object Representation

3.1.1 2D Bag of Words

2D Speeded-Up Robust Features (SURF) detector

Keypoints are important features that are becoming more and more widespread in
image analysis. The Speeded-Up Robust Features (SURF) [8, 9] is based on the
same steps and principles of SIFT detector [36], but it utilizes a different scheme
and provides better results than those obtained with SIFT extractor. SURF is scale
and rotation invariant keypoint detector that uses a very basic Hessian-matrix ap-
proximation because of its good performance in term of accuracy. Gaussian kernels
are optimal for scale-space analysis. SURF divides the scale space into levels and
octaves where each octave corresponds to a doubling of scale and is divided into
uniformly spaced levels. The method builds a pyramid of response maps with var-
ious levels within octaves. The keypoints represent the points that are the extrema
among 8 neighbors in the current level and its 2*9 neighbors in the above and below
levels.

2D Speeded-Up Robust Features (SURF) descriptor

SURF descriptor provides a unique and robust description of a feature that can be
generated on the area surrounding a keypoint. SURF descriptor is based on Haar
Wavelet responses and can be calculated efficiently with integral images. SURF de-
scribes an interesting area with size 20s, then each interest area is divided into 4*4
sub-areas and is described by the values of a wavelet response in the x and y direc-
tions. The interest areas are weighted with a Gaussian centered at the keypoint for
being robust in deformations and translations. For each sub-area, a vector v is calcu-
lated, based on 5*5 samples. The descriptor for keypoint consists of 16 vectors for
the sub-areas being concatenated. Finally, the descriptor is normalized, to achieve
invariance to contrast variations that will represent themselves as a linear scaling of
the descriptor.
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Visual vocabulary

Once the keypoint descriptors are obtained, the approach imposes a quantization on
the feature space of these descriptors. The standard pipeline to obtain ”visual vocab-
ulary” is also called ”codebook” which consists of (i) collecting a large sample of a
local feature; (ii) quantizing the feature space according to their statistics. Most vec-
tor quantization or clustering algorithms are based on hierarchical or iterative square
error partitioning methods. Hierarchical methods organize data on groups which can
be displayed in the form of the tree. Whereas, square-error partitioning algorithms
attempt to obtain which maximizes the between cluster scatter or minimizes the
within-cluster scatter. In our work, we use a simple k-means clustering algorithm.
The ”visual words” or ”codevector” represent the k cluster centers. A vector quan-
tizer takes a feature vector and maps it to the index of the nearest codevector in the
codebook using the Euclidean distance.

Bag of Words

Bag of Words is generated by computing the count or occurrence of each visual word
in the image which is used as the feature vector in the recognition and classification
tasks.

Fig. 3: The schematic illustrates visual vocabulary construction and word assignment. (a) the black
dot represents SURF keypoint, the object contains in total 240 SURF keypoints. Next, the approach
computes SURF descriptor on each keypoint. (b) Visual words (W1, W2, W3, and W4) denote
cluster centers. (c) The sampled features are clustered in order to optimize the space into a discrete
number of visual words. A bag of visual words histogram can be used to summarize the entire
image. It counts the occurrence of each visual word in the image.
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3.1.2 3D Bag of Words

3D Scale-invariant feature transform (SIFT) detector

Scale-invariant feature transform (SIFT) is an algorithm deployed in the field of
computer vision to detect and describe regions in an image and identify similar el-
ements between varying images. This process is called ”matching”. The algorithm
consists of the detected feature points of an image which are used to character-
ize every point that needs to be recognized by comparing its characteristics with
those of the points contained in other images. The general idea of SIFT is to find
the keypoints that are invariant to several transformations/changes: rotation, scale,
illumination and viewing angle. The 3D SIFT detector [52] use the Difference-of-
Gaussian (DoG) function to extract the extrema points in both spatial and scale
dimensions.

Spin image descriptor

The spin image was proposed to describe points of interest by [28]. This descriptor
translates the local properties of the surface oriented in a coordinate system fixed and
linked to the object. This system is independent of the viewing angle. The spin is
defined at a point oriented and designated by its 3D position (p) as well as associated
direction (n the normal to the local surface). A 2D local coordinate base is formed
using the tangent plane P in the point p, oriented perpendicularly to the normal
n, and the line L through p parallel to n. A cylindrical coordinate system (α,β )
of the point p is then deduced. The radial coordinate defining the distance (non-
negative) is perpendicular to L and the elevation coordinate of the defined distance
is perpendicular to P (signed positive or negative). The resulting histogram is formed
by counting the occurrences of different pairs of discretized distances.

Visual vocabulary

After describing each of the point clouds inside a class with the spin image, we need
to make the visual categorization using the probabilistic approach. The method we
use consists of applying a quantization operation with the k-means clustering and
constructs visual words with the well-known method of the bag of features.

Bag of Words

Instead of considering each feature point a visual word, we consider thanks to the
quantization that each of the clusters’ center represent a word. The bag of words
algorithm consists of computing the number of occurrences of each word in the
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model database. It is like a probability of the number of words inside the class of
objects.

3.1.3 Viewpoint Feature Histogram Color (VFH-Color)

The viewpoint feature histogram (VFH) [48] computes a global descriptor of the
point cloud and consists of two components: a surface shape component and a
viewpoint direction component. VFH aims to combine the viewpoint direction di-
rectly into the relative normal angle calculation in the FPFH descriptor [46]. The
viewpoint-dependent component of the descriptor is a histogram of the angles be-
tween the vector (pc− pv) and each point’s normal. This component is binned into
a 128-bin histogram. The other component is a simplified point feature histogram
(SPFH) estimated for the centroid of the point cloud, and an additional histogram of
distances of all points in the cloud to the cloud’s centroid. The three angles (α,φ ,θ)
with the distance d between each point and the centroid are binned into a 45-bin
histogram. The total length of VFH descriptor is the combination of these two his-
tograms and is equal to 308 bins.

Fig. 4: VFH-Color. (a) VFH descriptor. (b) Color quantization.

Color quantization is a vector quantization that aims to select K vectors in N di-
mensional space in order to represent N vectors from that space (K << N). In gen-
eral, color quantization is applied to reduce the number of colors in a given image
while maintaining the visual appearance of the original image. Color quantization
is applied in a 3-dimensional space RGB and follows the following steps:

1. Extract RGB features for each point from the point cloud data;
2. Obtain the matrix of RGB features (number of points×3);
3. Compute k-means algorithm for the RGB matrix in order to generate the code-

book (cluster centers);
4. Count the occurrence of each codebook in the point cloud.

The codebook size represents the bins of color quantization histogram. After a
set of experiments, we fix the codebook size to 100 bins (see Figure 6). Therefore,
VFH-Color histogram concatenates 308 values of original VFH descriptor and 100
values of color quantization histogram, thus giving the total size of 408 values.
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Fig. 5: Color quantization process. (a) point cloud data. (b) codebook (C1, C2, C3, and C4) denote
cluster centers. (c) The RGB features are clustered in order to optimize the space. The histogram
counts the occurrence of each codebook in the point cloud.
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Fig. 6: The classification performance with respect to the codebook size.

3.2 Object Classification

3.2.1 Restricted Boltzmann Machines (RBMs)

Restricted Boltzmann Machines (RBMs) [55] are a specific category of energy
based model which include hidden variables. RBMs are restricted in the sense so
that no hidden-hidden or variable-variable connections exist. The architecture of a
generative RBM is illustrated in Figure 7.

RBMs are a parameterized generative stochastic neural network which contain
stochastic binary units on two layers: the visible layer and the hidden layer.

1. Visible units (the first layer): they contain visible units (x) that correspond to the
components of an observation (i.e. 2D/3D features in this case of study);
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2. Hidden units (the second layer): they contain hidden units (h) that model depen-
dencies between the components of observations.

The stochastic nature of RBMs results from the fact that the visible and hidden
units are stochastic. The units are binary, i.e. xi,h j ∈ {0,1}∀ i and j, and the joint
probability which characterize the RBM configuration is the Boltzmann distribu-
tion:

p(x,h) =
1
Z

e−E(x,h) (1)

The normalization constant is Z = ∑x,h e−E(x,h) and the energy function of an
RBM is defined as:

E(x,h) =−b
′
x− c

′
h−h

′
Wx (2)

where:

• W represents the symmetric interaction term between visible units (x) and hidden
units (h);

• b and c are vectors that store the visible (input) and hidden biases (respectively).

RBMs are proposed as building blocks of multi-layer learning deep architectures
called deep belief networks. The idea behind is that the hidden neurons extract per-
tinent features from the visible neurons. These features can work as the input to
another RBM. By stacking RBMs in this way, the model can learn features for a
high-level representation.

Fig. 7: RBM model. The visible units x and hidden units h are connected through undirected and
symmetric connections. There are no intra-layer connections.

3.2.2 Deep Belief Network (DBN)

Deep Belief Network (DBN) is the probabilistic generative model with many layers
of stochastic and hidden variables. Hinton et al. [24] introduced the motivation for
using a deep network versus a single hidden layer (i.e. a DBN vs. an RBM). The
power of deep networks is achieved by having more hidden layers. However, one
of the major problems for training deep network is how to initialize the weights W
between the units of two consecutive layers ( j−1 and j), and the bias b of layer j.



2D/3D Object Recognition and Categorization Approaches for Robotic Grasping 15

Random initializations of these parameters can cause poor local minima of the error
function resulting in low generalization. For this reason, Hinton et al. introduced a
DBN architecture based on training sequence of RBMs. DBN train sequentially as
many RBMs as the number of hidden layers that constitute its architecture, i.e for
a DBN architecture with l hidden layers, the model has to train l RBMs. For the
first RBM, the inputs consist of the DBN’s input layer (visible units) and the first
hidden layer. For the second RBM, the inputs consist of the hidden unit activations
of the previous RBM and the second hidden layer. The same holds for the remaining
RBMs to browse through the l layers. After the model performs this layer-wise
algorithm, a good initialization of the biases and the hidden weights of the DBN
is obtained. At this stage, the model should determine the weights from the last
hidden layer for the outputs. To obtain a successfully supervised learning, the model
”fine-tunes” the resulting weights of all layers together. Figure 8 illustrates a DBN
architecture with one visible layer and three hidden layers.

Fig. 8: DBN architecture with one visible layer x and three hidden layers h1, h2, and h3.

4 Experimental Results and Discussion

4.1 Datasets

4.1.1 ALOI dataset

Amsterdam Library of Object Images (ALOI) [23] dataset is an image collection of
1000 small objects recorded for recognition task. 111,250 images are captured by
Sony DXC390P 3CCD cameras varying viewing angle, illumination angle and illu-
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mination color for each object, and additionally images are captured wide-baseline
stereo images.

Fig. 9: The sample images extracted from Amsterdam Library of Object Images (ALOI) dataset.

4.1.2 Washington RGBD Dataset

Washington RGBD dataset is a large dataset built for 3D object recognition and cat-
egorization applications. It is a collection of 300 common household objects which
are organized into 51 categories. Each object is placed on a turntable and is captured
for one whole rotation in order to obtain all object views using Kinect camera that
records synchronized and aligned 640x480 RGB and depth images at 30 Hz [31]
(see Figure 10).

Fig. 10: The sample point clouds extracted from Washington RGBD Dataset.



2D/3D Object Recognition and Categorization Approaches for Robotic Grasping 17

4.2 2D/3D object classification

DBN aims to allow each RBM model in the sequence to receive a different represen-
tation of the data. In other words, after RBM has been learned, the activity values
of its hidden units are used as the training data for learning a higher-level RBM.
The input layer has a number N of units, equal to the size of sample data x (size of
2D/3D features). The number of units for hidden layers, currently, are pre-defined
according to the experiment. We fixed DBN with three hidden layers h1, h2 and h3.
The general DBN characteristics are shown in Table 1.

Table 1: DBN characteristics that are used in our experiments.

Characteristic Value

Hidden layers 3
Hidden layer units 600
Learn rates 0.01
Learn rate decays 0.9
Epochs 200
Input layer units size of descriptor

4.2.1 2D Bag of Words

Images contain local points or keypoints defined as salient region patches which rep-
resent rich local information of the image. We used SURF to automatically detect
and describe keypoints from images. Then, we used the vector quantization method
in order to cluster the keypoint descriptors in their feature space into a large number
of clusters using the k-means clustering algorithm. We test in a set of experiments
the impact of the number of clusters on classifier accuracy and we select k=1500 as
the size of the codebook (number of visual words) that represents the best accuracy
value. We conduct the experiments on ALOI dataset on which we select ten cate-
gories: teddy, jam, ball, mug, food box, towel, shoes, pen, can, and bottle. Figure 9
shows some examples from ALOI dataset which are used in our experiments.

As shown in the confusion matrix (Figure 12), the classes which are consistently
misclassified are the teddy, ball, shoes, can, mug, and bottle which are very similar in
appearance (Figure 11). The results show also that 2D Bag of Words approach which
is based on SURF features works perfectly with the accuracy rate of 91%. BoW
representation encodes only the occurrence of the appearance of the local patches
and ignores the object geometry. The lack of geometric features can provide some
misclassification especially when the objects are similar in appearance. In Table 5,
we report accuracy values for 2D Bag of Words with both SVM and DBN classifiers.
The first row reports the accuracy value of SVM whereas the second row shows the
accuracy value of DBN. We notice that the combination of 2D Bag of Words and
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DBN outperforms the 2D Bag of Words with SVM and rises steadily from 88.86%
to 90.83%. This result shows the power of deep learning architectures that learn
multiple levels of representation depending on the depth of the architecture.

Fig. 11: The objects which are missclassified using 2D Bag of Words classification.

Classes Metrics
wrong class f1-score recall precision

(1) (3,4,7,9,10) 86% 86% 87%
(2) (1,7,10) 96% 98% 95%
(3) (1,4,7) 95% 92% 98%
(4) (1,3,5,8,9) 95% 96% 93%
(5) (4,8) 96% 96% 96%
(6) (1) 100% 99% 100%
(7) (1,2,8,9,10) 78% 79% 77%
(8) (2,4,5,7,9,10) 82% 81% 84%
(9) (5,8,10) 92% 93% 92%
(10) (1,2,4,5,7,9) 86% 86% 85%
Average – 91% 91% 91%

Table 2: The performance of 2D Bag of Words.
Fig. 12: Confusion Matrix of 2D Bag of
Words model.

4.2.2 3D Bag of Words

After extracting the spin image for the set of point clouds, we constructed a shape
dictionary whose size is fixed at k=250, by clustering all spin image acquired from
the whole training set with k-means method. For each bin, a representative local 3D
feature description is required. These descriptions are taken from the centroids of
each cluster (visual words) determined by k-means clustering on precomputed spin
image descriptors.

Figure 13 represents the confusion matrix across all 10 classes. Most model’s
results are reasonable showing that 3D Bag of Words can provide high-quality fea-
tures. The classes that are consistently misclassified are ball-mug-can, bowl-mug-
notebook-plate, and food box-cereal box-notebook which are very similar in shape.
Table 3 illustrates the performance metrics of 3D Bag of Words that encodes only
the surface shape of 3D point clouds thanks to the use of spin images descriptor.
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Classes Metrics
wrong class f1-score recall precision

(1) (5,7,10) 94% 95% 94%
(2) (5,8,9,10) 97% 98% 96%
(3) (5,6,7,10) 95% 94% 96%
(4) (6,8) 84% 80% 89%
(5) (2,3,7,10) 91% 91% 91%
(6) (4,5,8,10) 87% 90% 84%
(7) (1,3,5,10) 89% 90% 88%
(8) (4,6,9,10) 98% 98% 98%
(9) (2,8) 99% 99% 100%
(10) (1,2,3,5,6,7,8) 87% 85% 88%
Average – 92% 92% 92%

Table 3: The performance of 3D Bag of Words.
Fig. 13: Confusion Matrix of 3D Bag of
Words.

4.2.3 Global Pipeline

VFH-Color descriptor combines both the color information and the geometric fea-
tures extracted from the previous version of VFH descriptor. We extract the color
information for point cloud data, then we use the color quantization technique to
obtain the color histogram which is combined with VFH histogram. For each point
cloud, we extract two types of features: 1) geometric features extracted from View-
point Feature Histogram (VFH) (308 bins), and 2) color features extracted from
color quantization (100 bins). These features are then combined into a single vector,
being 308+100=408 dimensional. Figure 15 represents the confusion matrix across
all 10 classes. Most model’s results are very reasonable showing that VFH-Color can
provide meaningful features. The classes that are consistently misclassified are mug-
cap, cereal box-food box, and shampoo-cap-mug-food can which are very similar
in appearance and shape.

Classes Metrics
wrong class f1-score recall precision

(1) (6) 100% 100% 100%
(2) (–) 100% 100% 100%
(3) (4,5,6) 99% 99% 99%
(4) (6,10) 86% 95% 79%
(5) (6) 100% 100% 100%
(6) (3,4,7,10) 88% 83% 94%
(7) (1,6) 97% 98% 96%
(8) (–) 100% 100% 100%
(9) (–) 100% 100% 100%
(10) (3,4,6,7,8) 95% 92% 97%
Average – 95% 96% 97%

Table 4: The performance of global pipeline using VFH
descriptor.

Fig. 14: Confusion Matrix of global
pipeline using VFH descriptor.
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Moreover, we evaluate the performance of VFH-Color against the previous ver-
sion of VFH and SHOTCOLOR. The accuracy using VFH-Color performs 3% bet-
ter than VFH that models only the geometric features. This result shows the ef-
fectiveness of the approach after adding the color information. We also notice that
SHOTCOLOR presents a good accuracy (Table 7), although this descriptor encoun-
ters a problem when it is not able to compute the local reference frame for some
point clouds. In this set of experiments, 15% of point clouds from the dataset are
not computed with SHOTCOLOR. This problem becomes significant when 3D ob-
ject recognition is in real time. Indeed, VFH-Color descriptor can be used in the
real-time applications thanks to its estimation for every point cloud as well as its
good recognition rate.

Table 6 shows also that our global pipeline works perfectly with the accuracy
rate of 99.63% with DBN architecture that performs the use of SVM classifier. In
general, the use of DBN instead of SVM in our approaches increases the accuracy
rate thanks to the performance of deep learning algorithms which outperformed the
shallow architectures (SVM).

Table 5: Accuracy of different proposed approaches using DBN and SVM classifiers.

Classifier BOW2D BOW3D VFH VFH-Color SHOTCOLOR

SVM 88.86% 86.68% 95.01 % 98.34% 97.21 %
DBN 90.83% 92.03% 96.41 % 99.63% 98.63 %

Classes Metrics
wrong class f1-score recall precision

(1) (–) 100% 100% 100%
(2) (–) 100% 100% 100%
(3) (–) 100% 100% 99%
(4) (6) 99% 99% 99%
(5) (3) 100% 100% 100%
(6) (4) 99% 99% 99%
(7) (–) 100% 100% 99%
(8) (–) 100% 100% 100%
(9) (–) 100% 100% 100%
(10) (3,4,5,6,7) 99% 98% 100%
Average – 99% 99% 99%

Table 6: The performance of global pipeline using
VFH-Color descriptor.

Fig. 15: Confusion Matrix of global
pipeline using our VFH-Color descrip-
tor.
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Classes Metrics
wrong class f1-score recall precision

(1) (7) 100% 99% 100%
(2) (–) 100 % 100% 100%
(3) (–) 100% 100% 100%
(4) (6,8) 93% 92% 95%
(5) (–) 100% 100% 100%
(6) (4,7,10) 95% 96% 94%
(7) (6) 99% 100% 99%
(8) (–) 100% 100% 99%
(9) (–) 100% 100% 100%
(10) (7) 99% 100% 99%
Average – 99 % 99% 99%

Table 7: The performance of SHOTCOLOR descriptor.
Fig. 16: Confusion Matrix of SHOT-
COLOR descriptor.

4.3 Comparison to Other Methods

In this subsection, we compare our contributions to related state-of-the-art ap-
proaches. Table 8 shows the main accuracy values and compares our recognition
pipelines to the published results [12, 30, 51] and [17, 37]. Lai et al. [30] extract
a set of features that captures the shape of the object view using a spin image and
another set which captures the visual appearance using SIFT descriptors. These fea-
tures are extracted separately from both depth and RGB images. A recent work by
Schwarz et al. [51] uses both colorizing depth and RGB images that are processed
independently by a convolutional neural network. CNN features are then learned
using SVM classifier in order to successively determine the category, instance, and
pose. The previous approaches [17, 37] used the color-coding depth maps and RGB
images for training separately CNN architecture.

Table 8: The comparison of 3D object recognition accuracies and PCL descriptors on the Wash-
ington RGBD dataset.

Approaches Accuracy rates

Lai et al. [30] 90.6%
Bo et al. [12] 84.5%
Eitel et al. [17] 91%
Madai et al. [37] 94%
Schwarz et al. [51] 94.1%
VFH and DBN 96.41%
3D BoW and DBN 92%
VFH-Color and DBN 99.63%
SHOTCOLOR and DBN 98.63%

In our work, we learn our 3D features using DBN with three hidden layers that
model a deep network architecture. The results show also that our global pipeline
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works perfectly with the accuracy rate of 99.63% thanks to the efficiency of our
VFH-Color descriptor and outperforms all methods that are mentioned in the state-
of-the-art.

5 Conclusion and Future Work

In this paper, we proposed new approaches for object categorization and recognition
in real-world environment. We used the Bag of Words (BoW) that aims to represent
images and point clouds as an orderless of local regions that are discretized into a
visual vocabulary. Also, we proposed the VFH-Color descriptor which combined
geometric features extracted from Viewpoint Feature Histogram (VFH) descriptor
and color information extracted from color quantization method. Then, we learned
the 2D and 3D features with Deep Belief Network (DBN) classifier.

The experimental results on ALOI dataset and Washington RGBD dataset clearly
ascertain that the proposed algorithms are able of categorizing objects and 3D point
clouds. These results are encouraging, especially that our new VFH-Color descriptor
performed the state-of-the-art methods in recognizing 3D objects under different
views. Also, our approach improved the recognition rates thanks to the use of color
information.

In a future work, we will attempt to embed our algorithms in a mobile robot in
order for it to recognize and manipulate the real-world objects. We will also develop
a new approach using 3D sensors and other deep learning methods.
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