

Earliest salt working in the world: From excavation to microscopy at the prehistoric sites of Ţolici and Lunca (Romania)

Dominique Sordoillet, Olivier Weller, Nicolas Rouge, Martine Buatier, Jean-Pierre Sizun

▶ To cite this version:

Dominique Sordoillet, Olivier Weller, Nicolas Rouge, Martine Buatier, Jean-Pierre Sizun. Earliest salt working in the world: From excavation to microscopy at the prehistoric sites of Ţolici and Lunca (Romania). Journal of Archaeological Science, 2018, 89, pp.46 - 55. 10.1016/j.jas.2017.11.003. hal-01676289

HAL Id: hal-01676289

https://hal.science/hal-01676289

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Earliest salt working in the world: from excavation to microscopy at the prehistoric sites of Tolici 2 and Lunca (Romania) 3 4 Dominique SORDOILLET*, INRAP, UMR 6249 - CNRS - Université Bourgogne Franche-Comté -5 UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon cedex, France 6 7 Olivier WELLER, Trajectoires, UMR 8215 - CNRS - Université Paris 1 Panthéon-Sorbonne 8 21 allée de l'Université, 92023 Nanterre cedex, France 9 10 Nicolas ROUGE, UMR 6213 - UTINAM - Université Bourgogne Franche-Comté 11 UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon cedex, France 12 13 Martine BUATIER, UMR 6249 - CNRS Université Bourgogne Franche-Comté 14 UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon cedex, France 15 16 Jean-Pierre SIZUN, UMR 6249 - CNRS Université Bourgogne Franche-Comté 17 UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon cedex, France 18 19 Corresponding author 20 tel.: 00 33 (0)3.81.66.63.53 21 dominique.sordoillet @univ-fcomte.fr

26 Abstract

Since the Early Neolithic, salt has played an important role in the social and economic development of populations. Consequently, the study and comprehension of salt management strategies have become a significant component of current archaeological research. This study is part of an interdisciplinary research program consisting of excavations and detailed analyses at two earliest salt working sites situated in the sub-Carpathian region of Romania, Lunca and Tolici (county Neamt). These remarkably well-preserved sites are characterized by stratified deposits of several meters thick. Detailed stratigraphic descriptions were followed by optical microscopy analysis (soil micromorphology) and scanning electron microscopy (SEM) coupled with geochemical analysis (EDS). The aim of these analyses was to identify specific sedimentary, petrographic and chemical characteristics that could be linked to salt working process. The results enable us to describe the main site formation process over time and to detect chemical components of edible salt (Na and Cl) in Early Neolithic ashes. These new data and consolidate previous interpretations of the operating procedures implemented from the Early Neolithic to the Early Bronze Age. Two techniques appear to have been preferentially adopted: pouring natural brine onto combustion structures during the Early Neolithic and evaporation in specific ceramic containers from the Chalcolithic onwards.

Keywords:

 Neolithic; salt working; brine; hearth; micromorphology; SEM-EDS; Romania

1. Introduction

Since the Early Neolithic, salt has played an important role in societies for the consumption and conservation of foodstuffs, livestock farming or for therapeutic purposes (Weller 2015). The control of deposits and production sites, the mastery of extraction techniques and the transport of salt over long distances all contributed to the social and economic development of populations. Consequently, the study and comprehension of salt management strategies have become a significant component of current archaeological research, as shown by recent studies and collective works in Europe (Alexianu et al. 2011; Biddulph et al. 2012; Nikolov, Bacvarov 2012; Harding 2013, Alexianu et al. 2015; Brigand, Weller 2015) as well as in Asia (Flad 2011; Horiuchi et al. 2011; Kawashima 2015), America (McKillop 2005; Williams 2015; Graham et al. 2017) or Africa (Alabi 2000; Antonites 2016).

Since 2003, the Franco-Romanian research program "The prehistoric exploitation of salt springs in Moldova", aims to describe the different technical, socio-economic or ecological aspects of salt exploitation in this region in the north-east of Romania, from the early Neolithic until the end of the Chalcolithic (6000-3500BC). Several approaches contribute to this research: prospecting and recording salt springs and archaeological sites, spatial analyses of territorial dynamics, ethnographic investigations among riverine communities, archaeological excavations and paleo-environmental and geo-archaeological studies (see the compilation of studies in Alexianu et al. 2016; Brigand and Weller 2018). The study zone is located along the Carpathian thrust on the Moldavia Plain (Fig. 1). On the north-south branch of this thrust, more than 200 salt springs and fifteen archaeological sites linked to salt exploitation were recorded during archaeological survey (Weller et al. 2008a; Weller and Brigand 2017). This dense concentration of sites is due to the upwelling of brine springs in sub-Carpathian

Tertiary argillites rich in salt, through the numerous fault lines running through the massif.

Two of them which have our attention are Halabutoaia, near Tolici, and Poiana Slatinei, in Lunca (county Neamt) (Fig. 1 and 2). The site of Poiana Slatinei was first excavated in 1984-1987 by a team led by G. Dumitroaia (1987), These first excavations highlighted the potential of the site about the question of salt making since Neolithic time, so we decided to re-excavate the site in 2004 and to implement new methods of investigation as micromorphology (Weller et al. 2008b). The site of Halabutoaia was discovered during prospection in 2005, then excavated and studied by our team from 2007 onwards (Weller et al. 2008a, 2015; Danu et al. 2010). Both sites are located near salt springs which are still used today and currently represent the oldest known salt production sites in Europe (Weller and Dumitroaia 2005; Weller et al. 2015). They occur as thick archaeological sedimentary accumulations, which are several metres high and comprise numerous lenticular layers of clay, ash and charcoal. The salinity of both mineral springs is very high, with extreme chlorine and sodium contents (Table 1).

The location of the sites near salt sources still in use today and the presence of thick stratified archaeological sedimentary accumulations, the upper part of which contain pottery generally used for

making salt blocks (called briquetages), give rise to the following working hypotheses: a) at Lunca, like at Tolici, the whole sedimentary sequence, and not just the upper part, may be linked to salt making; b) the sedimentary changes in these sequences may reflect the evolution of exploitation techniques during the course of time. Therefore a detailed study of these deposits was carried out, beginning with chrono-stratigraphic description in the field, and followed by soil micromorphology and scanning electron microscopy (SEM) coupled with geochemical analysis (EDS). The aim of these analyses was to identify specific sedimentary and petrographic characteristics that could be linked to salt making process and perhaps to detect chemical components of edible salt (Na and Cl). Such combined use of soil micromorphology and SEM-EDS has already obtained pertinent results from salt working sites, as at the Iron Age and Roman coastal site of Essex (Macphail et al. 2012) or at Maya Marco Gonzalez, Belize (Macphail et al. 2017). Other workers employing SEM-EDS found traces of Na and Cl in pottery from the first millennium BC (Flad et al. 2005) and, in Romania, identified salt in briquetage at the early 4th millennium sites of Tolici and Cacica (Weller 2000; Sandu et al. 2012; Tencariu et al. 2015). However, to our knowledge, no analysis of this type has yet been conducted on sedimentary deposits produced by the first exploitation of salt springs during the 6th millennium B.C. These new data would be able to provide a much better understanding of salt working processes and test the hypothesis of pouring brine on earth, previously proposed to explain salt making at Early Neolithic of Lunca (Weller et al. 2008b; Dufraisse et al 2010). Identifying edible salt in deposits dating to the second quarter of 6th millennium at Lunca and Tolici could be an important first step for any discussion of salt making in the early European Neolithic.

109110

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

2. Material and method

111112

2.1. Stratigraphic study and sampling

113114

115

116

117

118

119

120

121

122

123

124

2.1.1. General principles

The stratigraphic study of both sites was based on classically used methods in archaeology (Loustaud 1985; Wheeler 1989; Sordoillet 2009; Harris 2014). Stratigraphic sections were drawn and the main pedo-sedimentary characteristics of the deposits were described. The main types of deposits were identified and the first hypotheses concerning site formation processes were advanced, guiding our sampling strategy. The micromorphological samples were taken from the stratigraphic profiles by removing blocks of sediment (Murphy 1986). At both sites we have tried to realise the most regular sampling as possible, in the differents deposits and periods. It was relatively easy to do at Tolici, where we had a complete archaeological sequence, but not at Lunca, where most of the Chalcolithic and Bronze Age deposits have been removed. The micromorphological samples were also used for making uncovered thin sections for the scanning electronic microscope and spectrometry studies (Table 2).

The location of these uncovered thin sections was chosen according to the micromorphological results,

in order to get chemical composition of specific components that were believed to be salt residues.

2.1.2. The site of Tolici

The Tolici site forms a circular mound of about twenty meters in diameter (Fig. 1). The trench in the median part allowed the study of the 7-m-thick stratified anthropogenic accumulation (Fig. 2a-b). The main litho-stratigraphic characteristics of the 29 recorded strata reveal abundant combustion structures, as shown by the superposition of ashy-charcoal residues on reddened clays. The earliest deposits show the presence of elongated hollow shapes (Fig. 2a), while the latest deposits are horizontal (Fig. 2b). These elongated hollows have a gentle slope toward the stream running at the foot of the depositional mound. White ashy deposits are preserved inside and their outer edges are rubefied. Radiocarbon dating and typical ceramic material place the beginning of exploitation at around 5700 BC and the end towards 3500 BC (Weller et al. 2015).

Seventeen micromorphological samples were taken from deposits that were considered to be representative of the whole accumulation (Fig. 3a-b). These samples were also used for making five smaller uncovered thin sections for the SEM-EDS study. The chronological distribution of the samples is as follows: eight micromorphological thin sections for the Early Neolithic deposits (Cris cultural period), one thin section for the Middle Neolithic (Linear Pottery), two thin sections for the final Neolithic (Precucuteni), and six thin sections from the Chalcolithic (Cucuteni). SEM-EDS analyses were conducted on all these different exploitation periods, apart from the Middle Neolithic, where the deposits showed signs of mixing with the surrounding levels.

2.1.3. The site of Lunca

The site of Lunca forms a vast dome 65 m long by 25 m wide (Fig. 1). Two of the 1995 excavation sectors were reopened in 2004 and permitted the study of several sections, revealing a 3-m-thick stratified accumulation (Fig. 2c-d). Several tens of lenticular layers, with varied textures and colours, were brought to light and about a hundred combustion structures were recorded, sometimes with hollow or trough shapes, like at Tolici. Charcoal dating shows that the first exploitations date to about 6000 BC at the earliest, with a phase of intensification at about 5900-5600 BC, and the most recent at about 1500 BC (Weller, Dumitroaia 2005).

Samples were taken from different points of the site, using residual sedimentary sequences not reworked by the earlier excavations (Weller et al. 2008b; Dufraisse et al. 2010). Twelve micromorphological samples are from the Early Neolithic deposits, located in the centre of the site, and three are from the Bronze Age levels, located on the eastern edge of the site. SEM-EDS analyses were carried out on five thin sections from the well preserved Early Neolithic deposits.

2.2. Micromorphology and scanning electronic microscopy

Sample consolidation and micromorphological thin section manufacture were carried out by Th. Beckmann (Schwülper-Lagesbüttel, Germany), who also produced smaller uncovered thin sections for the scanning electron microscope. The locations for these smaller thin sections were selected in accordance with the micromorphological results, by targeting the sectors with crystallitic assemblages possibly linked to salt manufacture.

Established descriptive methods were applied to the micromorphological thin sections (Bullock et al. 1985; Courty et al. 1989). Each microstratigraphic unit identified in the thin sections was described and numbered in relation to its field number. The description of the sedimentary microfacies was carried out at the Chrono-environment laboratory at Besançon (France), employing a Leica DMLM microscope equipped with a DFC320 camera. The observation of the different types of organic, mineral and anthropogenic components, as well as the microstructure of the deposits result in the identification of the archaeo-sedimentary processes involved in site formation and enable us to advance hypotheses concerning salt fabrication techniques. As this salt production involves the neoformation of crystals by the evaporation of brines, particular attention was paid to the identification of these salt crystals and their stratigraphic position. During this micromorphological study, some specific features, believed to be salt residues, were selected for spectrometric analysis.

The scanning electron microscopy - energy dispersive X-ray spectroscopy analyses (SEM-EDS), were carried out at Besançon (France), initially in the UMR 6213 laboratory – Utinam, then in the UMR 6174 facility - Femto. The samples were examined with JEOL 5600 and FEI 450 microscopes, respectively coupled with EDS Fondis Electronic and Edax systems. In some cases, the analyses focused on specific crystalline forms (spot mode), and in others on average measurements over larger zones (window mode over about 10 µm). For these analyses, the thin sections were covered with a 20 nm layer of carbon by thermal sublimation using a Cressington 108 evaporator. The electronic microscopy observations were conducted with Backscatter Electron Images in composition mode. For each site, five uncovered thin sections underwent SEM-EDS analyses (Table 2, Fig. 6). At Tolici, 65 measurements were made, and at Lunca, 23 measurements were taken. The aim was to verify if edible salt residues, characterised by Na and Cl elements, could exist in the archaeological deposits, despite the fact that no halite crystal has been recognized during the micromorphological observations.

3. Results and preliminary discussion

3.1. Micromorphology

Five main deposit facies have been identified during the stratigraphic and micromorphological studies of the two archaeological mounds. They appear in the form of superimposed layers of various thickness and length. They have been named according to their most striking characteristics: yellowish to

greenish massive clay layers, reddened clayey lenses, charcoal-rich and ashy beds, microstratified fine deposits (identified only in thin section) and heterogeneous brownish accumulations. Different salt crystals have been observed in these deposits and are summarised at the end of this section.

201202

203

204

205

199

200

- 3.1.1. Yellowish to greenish massive clay layers
- At both sites, yellowish to greenish clays form the substratum of the archaeological deposits. The same kind of clays are also present as interstratified beds in the archaeological mounds. The thickness of
- these clay beds ranges from a few millimetres to a few centimètres.
- Under the microscope, the clay forming the substratum at Lunca, just below the first archaeological
- levels, is homogeneous and massive, but penetrated by a few biological channels (Fig. 4a). Sand- and
- silt-size quartz, granite and gneiss, very numerous organic plant fragments and grass phytoliths are
- scattered in the groundmass. Pedofeatures consist of oxidized or yellow clay coatings and dusty clay
- intercalations. A few gypsum crystals are present.
- Yellowish clay layers interbedded in the archaeological mounds, have the same massive fabric as the
- substratum, or show particule redistribution evident as banded distribution patterns or parallel striated
- b-fabrics (Fig. 4b). These dense and massive beds are in some ways similar to constructed floors or
- clay plastering (Boivin 2000; Weller et al. 2008b; Karkanas and Van de Moortel 2014). These
- supposed floors would have been made with wet and plastic clay that had been collected locally. As
- in the substratum, crystallitic material, but mostly gypsum, is presents in these clay layers.

218219

- 3.1.2. Reddened clayey lenses
- Numerous reddened silty clayey lenses, from a few centimetres to a few metres in diameter, and a few
- millimetres to a few centimetres in thickness, are interbedded in the archaeological mounds. Most of
- them were overlain by microstratified ashes and charcoal (Fig. 2d and 4a). The microscopic study
- revealled that their fabric and microstructure are approximately similar to those of the greenish clays,
- and that the main difference is the reddening of the matrix (Fig. 4c-d). This rubefaction, brought about
- by fire, decreases from the top to the bottom indicating *in situ* fire places (Dammers and Joergensen
- 226 1996; Linford and Canti 2001; Weller et al. 2008b).

227

- 3.1.3. Charcoal-rich and ashy beds
- The charcoal-rich beds are often located over the rubefied clay lenses, and in some cases on greenish,
- gray or gray-brown deposits. The ashy layers are superimposed on charcoal-rich beds or on rubefied
- clayey lenses (*in situ* hearths). These combustion deposits are characterized by microstratified ashes
- and charcoals (Fig. 4e), and contain various amounts of sherds, fragments of mudbrick, aggregates of
- heated or melted clays, vitreous slag, and leaf or grass phytoliths (Canti 2003). The different
- combustion residues indicate temperature from 300°C to more than 1000°C, but salt can bring down
- the melting points. The calcitic wood ash crystals are often altered and, in some case, calcium

carbonate (resulting from the dissolution of ashes) recrystallizes lower down and cements the charcoal-rich deposits (Dufraisse et al. 2010). This charcoal is generally characterised by strong fragmentation and vitrified surfaces. Often, thick clay or silty clay coatings and intercalations are present inside the porosity of charcoal and ash accumulations, indicating significant amounts of dusty water throughflow (Fig. 4f-i). Crystals or vesicular isotropic nodules which may correspond to salt residues, are present in these deposits (Fig. 4i and 6).

3.1.4. Microstratified fine deposits

Fine microstratified deposits, a few millimetres to one centimetre in thickness, and extending over a few centimetres, have been identified during the microscopic observations (Fig. 4j-k), while they were simply described as greenish clays in field profiles. In these beds, at least ten thin lenses of fine sands, silts or clays are superimposed, with upward-fining characteristics and a relatively high fine charcoal content. These laminated deposits are interpreted as waterlaid deposits. Periodic settling phases in quiet standing water could have led to such microstratified layers. The limpid and dusty clay intercalations observed in the ashy and charcoal-rich layers (Fig. 4f-h), are believed to be linked to the same sedimentation process. Water infiltration through the deposits would have led to the migration and the trapping of clay and micro-charcoals in voids. At both sites, these fine microstratified deposits are particularly characteristic of the Early Neolithic.

3.1.5. Heterogeneous and chaotic accumulations

This last deposit facies appears as heterogeneous accumulations of ashes, charcoal, broken pottery and fragments of fired earth, in variable quantities from one layer to another, which have an open structure and no preferentially orientated components (Fig. 4l). Such deposits are believed to result from the remains of demolition and accumulations resulting from human activities (Courty et al. 1989). In our case, these dump facies could be associated with salt working, as in the case of the Maya site of Marco Gonzalez in Belize (Macphail et al. 2017). At Lunca and Tolici, such dumped deposits exist for all occupation periods, but are most frequent from the Chalcolithic onwards.

3.1.6. Salt crystals

At both sites, the different archaeological facies revealed the presence of crystals petrologically identified as salts. Salt crystals are naturally present in the clayey substratum at Lunca, but some of those observed in archaeological layers could be linked to salt-making. Fibro-radial crystals, observed in natural and archaeological deposits, are identified as sulfate salts (CaSO₄, 2H₂O; from the gypsum family; selenite, Fig. 5a). Gypsum crystals are also present as elongated laths in the Chalcolithic deposits of Tolici (Fig. 5b). Lastly, at Lunca, a Neolithic ash level contained small orthorhombic crystals of thenardite (Fig. 5c), a sodium sulfate (Na₂SO₄). But no sodium chloride crystals (NaCl, halite) were identified in thin sections, which can be explained by the high solubility of this edible salt.

3.2. Scanning Electron Microscope Analyses (SEM-EDS)

For each site, five thin sections underwent SEM-EDS analyses (Table 2, Fig. 6). The aim was to verify if edible salt residues, characterised by Na and Cl elements, could exist in the archaeological deposits, despite the fact that no halite crystal has been recognized during the micromorphological observations. Measurements were done on specific features and over larger zones selected during micromorphological study.

At Tolici, analyses concern the sedimentary accumulations from the Early Neolithic to the Chalcolithic (Fig. 6). No less than 65 measurements were made at different points of the five thin sections. The results only rarely reveal the presence of chlorine in association with sodium and these two elements were only detected together in the deepest deposits from Tolici, in the Early Neolithic hollow structures (Fig. 6d). These elements were associated with potassium and magnesium in ashy accumulations. Some were included in the composition of small crystals, but larger amounts were located in massive units with a melted aspect (Fig. 6c).

At Lunca, 23 measurements were taken on the five thin sections from the Early Neolithic deposits. Sodium, potassium and chlorine elements were detected in ashes and waste deposits, associated with sherds.

In conclusion, presence of Na and Cl in the Neolithic ashes, and not in the more recent deposits, seem to indicate that different techniques to collect salt have been used over time. Maybe, leaching could have contributed to the removing of Na and Cl in recent deposits, but if so, why not in the older ones? Salt could have move through porous deposits as found in porous ceramics (Raad et al. 2014), but in this case why did it stop in the Early Neolithic ashes and not in the other deposits? It certainly would be useful to get complementary data from other sites to go farther in the discussion.

4. Discussion and conclusion

Archaeological and stratigraphic study, soil micromorphology and SEM/EDS analyses conducted at Lunca and Tolici enabled us to identify the main sedimentary processes involved in site formation and to be able to discuss their link with salt-working techniques.

At both sites, the excavation and chrono-stratigraphic study showed that the most recent deposits, which are generally more recent than 4300 BC, contained remains of salt moulds (briquetages), whereas the older deposits were characterized by vast combustion structures. Due to the absence of briquetage in the early deposits, the hypothesis has been advanced that pouring of brine onto hot embers could be a salt making process during the Early Neolithic. This hypothesis is partly based on descriptions by Ancient writers (Varro, Pliny the Elder and Tacitus, see Moinier, Weller 2015: 43-44), but also upon 18th century ethno-historic records, which describe Romanian farmers pouring brine

onto embers (Ceausu 1982: 379). This technique was also experimentally tested by pouring salt water with a concentration of 30 g/l NaCl, onto a fire, which led to the recovery, after evaporation, of a grey salt with a high sodium chloride content (Dufraisse et al. 2004).

Micromorphology of the Early Neolithic deposits reveals the presence of numerous *in situ* hearths, characterised by microstratified charcoal-rich and ashy beds overlying reddened deposits. At first, these hearth fires were lit on yellowish silty clay layers showing characteristics of man-made floors (Karkanas and Van de Moortel 2014; Macphail et al. 2017), and became reddened in their upper parts. These hearths have been used repeatedly, with considerable supplies of fuel (Dufraisse et al 2010). The presence of clay, dusty clay or silty clay waterlaid deposits, interbedded in the combustion residues, seem to be consistent with the hypothesis of salt making carried out by pouring brine onto hearth embers. The existence of neoformed automorphic crystals similar to those characterizing evaporite contexts (Warren 2006; Mees and Tursina 2010) could be evidence of the evaporation of brine. Although the neoformed salts observed with the optical microscope are not edible salt (halite), the identification of Na and Cl with SEM-EDS in the Early Neolithic ashes at Lunca and Tolici, and never in the more recent ashy deposits, also seems to support the link between the hearth structures and the brine evaporation. In this case, the hollow shape of the combustion structures excavated at Tolici would be designed to avoid the excessive dispersion of the brine and concomitant concentration of salt.

On the other hand, during the Chalcolithic, dumped deposits take precedence over microlayered combustion beds and waterlaid deposits, underlining the evolution of salt-making techniques. The very abundant sherds characterizing these discharge facies are not only from pottery used for transporting and storing brines, but also represent the remains of salt moulds (briquetages), which were widely used at that time (Tencariu et al. 2015).

Finally, although more research is required, the analyses of the sedimentary facies of the sites of Lunca and Tolici, using optical and electronic microscopy associated with dispersive energy X-ray spectrometry, is already helping our team to discern several aspects of the likely techniques used to produce edible salt. The combustion and waterlaid deposits, the neoformed salt crystals, and the presence of Na and Cl elements in ashes, seem to attest to salt making by the direct evaporation of brine on embers, during the Early Neolithic, or about 6000-5300 BC. At both of the studied sites, exploitation techniques change after 4300 BC during the Chalcolithic, with the advent of briquetage use, but which disappear at the beginning of the Bronze Age.

In addition to these advances in understanding salt making processes, one positive result is that the identification of Na and Cl with SEM-EDS has improved our detection of edible salt in micromorphological thin sections. Edible salt, which is an invisible substance before crystallisation and which is easily soluble in water, appear as isotropic colourless vitreous nodules with vesicular porosity (Fig. 6). Of course, care is needed in order not to confuse these salt-associated nodules with melted phytoliths that have similar aspect. Continued microscopic analyses, or other bulk soil

chemistry analyses, at Tolici, Lunca and other production sites will undoubtedly provide more information on salt making deposits and the processes involved. Other components of the interdisciplinary study are currently being explored, such as the evaluation of the environmental impact of exploitation techniques, the underlying social functions and the different uses of this earliest salt working in the world.

352353

347

348

349

350

351

Acknowledgements

354

- We would like to thank the Commission for Foreign Excavations (French Ministry of Foreign Affairs),
- 356 the National Institute of Preventive Archaeological Research (INRAP) and the National Centre of
- 357 Scientific Research (CNRS, UMR 8215 Trajectoires and UMR 6249 Chrono-environnement) for their
- support. The authors also thank the History & Archaeology Museum of Neamt for their continued
- cooperation. This work was partly supported by the French RENATECH network and the FEMTO-
- 360 ST technological facility. We also express our gratitude to Isabelle Jouffroy-Bapicot, Jacques Mudry,
- Christophe Loup, Bruno Régent, Louise Byrne, Boris Vannière and Nick Marriner for their help during
- different stages of this work. Finally, we greatly thank the reviewers of this article for their constructive
- 363 comments.

364365

Bibliography

- Alabi, R.A., 2000. Gberefu and Agorin sea beach: intensive salt-making site of the south-west coast
- of Nigeria. West African Journal of Archaeology 30, 41-67.
- Antonites, A., 2016. The organization of salt production in early first millennium CE South Africa,
- Journal of Anthropological Archaeology 44, 31-42.
- Alexianu, M., Weller, O., Curcă, R. (Eds.), 2011. Archaeology and Anthropology of salt. A diachronic
- approach. Proceedings of the International Colloquium (Iași, Romania, 2008). BAR International
- 373 Series 2198. Archaeopress, Oxford.
- Alexianu, M., Curcă, R., Cotiugă, V. (Eds.), 2015. Salt Effect. From the ethnoarchaeology to the
- anthropology of salt. BAR International Series 2760. Archaeopress, Oxford.
- Alexianu, M., Weller, O., Curcă, R., Brigand, R., Asăndulesei, M., 2016. White Gold. French and
- Romanian Projects on Salt in the Extra-Carpathian Areas of Romania. Parthenon Verlag,
- 378 Kaiserslautern.
- 379 Biddulph, E., Foreman, S., Stafford, E., Stansbie, D., Nicholson, R., 2012. London Gateway. Iron Age
- and Roman salt making in the Thames Estuary; Excavations at Stanford Wharf Nature Reserve, Essex.
- 381 Oxford Archaeology monograph 18, Oxford.
- Boivin, N. L., 1999, Life rythms and floor sequences: excavating time in rural Rajasthan and Neolithic
- Catalhöyük. World Archaeology 31 (3) 367-388.

- Brigand, R., Weller, O. (Eds.), 2015. Archaeology of Salt. Approaching an invisible past. Sidestone
- 385 Press, Leiden.
- 386 Brigand, R., Weller, O., 2018. Neo-Eneolithic settlement pattern and salt exploitation in Romanian
- 387 Moldavia. J. Archaeol. Sci. Rep. 17, 68-78.
- Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., Tursina, T., Babel, U., 1985. Handbook for soil
- thin section description. Waine Research Publications, London.
- Canti, M., 2003. Aspects of the chemical and microscopic characteristics of plant ashes found in
- archaeological soils. Catena 54, 339-361.
- Ceausu, M., 1982. Contributii la istoricul exploatarii sarii la sfîrsitul secolului al XVIII-lea si în prima
- jumatate a secolului al XIX-lea în Bucovina. Suceava IX, 377-392.
- Courty, M.-A., Goldberg, P., Macphail, R-I., 1989. Soils and micromorphology in archaeology.
- Cambridge manuals in Archaeology, Cambridge University Press, Cambridge.
- Dammers, K., Joergensen, R. G., 1996. Progressive loss of Carbon and Nitrogen from simulated daub
- 397 on heating. J. Archaeol. Sci. 23, 639-648.
- Danu, M., Gauthier, E., Weller, O., 2010. Human impact and vegetation history on salt spring
- 399 exploitation (Halabutoaia-Tolici, Petricani, Neamt, Romania). International Journal of Conservation
- 400 Science 1 (3), 167-173.
- Dufraisse, A., Gauthier, E., Pétrequin, A.M., Pétrequin, P., Weller O., 2004. Techniques d'exploitation
- préhistorique du sel en Franche-Comté et en Bourgogne. In: Bodu, P., Constantin, C. (Eds.),
- 403 Approches fonctionnelles en Préhistoire. Actes du XXVe Congrès Préhistorique de France (Nanterre,
- 404 2000). Société Préhistorique Française, Paris, 427-444.
- Dufraisse, A., Sordoillet, D., Weller, O., 2010. The alteration of Neolithic wood charcoal from the salt
- spring of Poiana Slatinei in Lunca (Neamt, Romania): a natural evolution or consequence of
- exploitation techniques ?, in: Théry-Parisot, I., Chabal, L., Costamagno, S. (Eds.), Taphonomie de la
- 408 combustion des résidus organiques et des structures de combustion en contexte archéologique. Actes
- de la table ronde du CEPAM (Nice, 2008). Palethnologie 2, 121-132.
- Dumitroaia, G., 1987. La station archéologique de Lunca-Poiana Slatinei, in: Petrescu-Dîmbovita, M.,
- Ursulescu, N., Monah, D., Chirica, V. (Eds.), La civilisation de Cucuteni en contexte européen. Editura
- 412 Universitătii Alexandru Ioan Cuza, Iasi, 253-258.
- 413 Flad, R., Zhu, J., Wang, C., Chen, P., von Falkenhausen, L., Sun, Z., Li, S., 2005. Archaeological and
- chemical evidence for yearly salt production in China. PNAS 102 (35), 12618-12622.
- 415 Flad, R.K., 2011. Salt Production and Social Hierarchy in Ancient China: An Archaeological
- 416 Investigation of Specialization in Chinas Three Gorges. Cambridge University Press, Cambridge.
- Graham, E., Macphail, R., Turner, S., Crowther, J., Stegeman, J., Arroyo-Kalin, M., Duncan, L.,
- Whittet, R., Rosique, C., Austin, P., 2017. The Marco Gonzalez Maya site, Ambergris Caye, Belize:
- Assessing the impact of human activities by examining diachronic processes at the local scale.
- 420 Quaternary International 437 (B), 115–142. doi:10.1016/j.quaint.2015.08.079

- Harding, A., 2013. Salt in Prehistoric Europe. Sidestone Press, Leiden.
- Harris, E.C., 2014. Principles of Archaeological Stratigraphy. Second ed. Elvesier Science, Kent.
- Horiuchi, A., Ochiai, N., Kurosumi, H., Miyata, Y., 2011. Detection of chloride from pottery as a
- marker for salt: a new analytical method validated using simulated salt-making pottery and applied to
- 425 Japanese ceramics. J. Archaeol. Sci. 38 (11), 2949-2956.
- Karkanas, P., Van de Moortel, A., 2014. Micromorphological analysis of sediments at the Bronze Age
- site of Mitrou, central Greece: patterns of floor construction and maintenance. J. Archaeol. Sci. 43,
- 428 198-213. doi:10.1016/j.jas.2014.01.007.
- Kawashima, T., 2015. Prehistoric salt production in Japan, in: Brigand, R., Weller, O. (Eds.),
- 430 Archaeology of Salt. Approaching an invisible past. Sidestone Press, Leiden, 125-138.
- Linford, N. T., Canti, M. G., 2001. Geophysical Evidence for Fires in Antiquity: Preliminary Results
- from an Experimental Study. Paper Given at the EGS XXIV General Assembly in The Hague, April
- 433 1999. Archaeol. Prospect. 8, 211-225.
- Loustaud, J.-P., 1985. Techniques de fouilles terrestres, in: Pelletier, A. (Ed.), L'archéologie et ses
- méthodes. Prospection, fouille, analyse, restauration. Horvath, Roanne-Le Coteau, 61-81.
- McKillop, H., 2005. Finds in Belize document Late Classic Maya salt making and canoe transport.
- 437 PNAS 102 (15), 5630-5634.
- Macphail, R.I., Crowther, J., Berna, F., 2012. Stanford Warf, Essex (London Gateway Compensation
- sites A and B; compa 09): Soil micromorphology and microchemistry, chemistry and magnetic
- susceptibility, and FTIR, in: Biddulph, E. et al., London Gateway. Iron Age and Roman Salt Making
- 441 in the Thames Estuary; Excavations at Stanford Wharf Nature Reserve, Essex
- https://library.thehumanjourney.net/909/ (chap. 24, accessed 2017.06.30).
- Macphail, R.I., Graham, E., Crowther, J., Turner, S., 2017. Marco Gonzalez, Ambergris Caye, Belize:
- 444 A geoarchaeological record of ground raising associated with surface soil formation and the presence
- of a Dark Earth. J. Archaeol. Sci. 77, 35–51. doi:10.1016/j.jas.2016.06.003
- Mees, F., Tursina, T. V., 2010. Salt minerals in saline soils and salt crusts. In Stoops, G., Marcelino,
- V., Mees, F., (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier,
- 448 Amsterdam, 441-469.
- Moinier, B., Weller, O., 2015. Le sel dans l'Antiquité ou les cristaux d'Aphrodite. Les Belles Lettres,
- 450 Paris.
- Murphy, C.P., 1986. Thin section preparation of soils and sediments. AB Academic Publishers,
- 452 Berkhamsted.
- 453 Nikolov, V., Bacvarov, K. (Eds.), 2012. Salt and Gold: The Role of Salt in Prehistoric Europe. Acts
- of international colloquium Humboldt-Kolleg (Provadia-Bulgaria, 2010). Faber, Veliko Tarnovo.
- Raad, D. R., Li, S., Flad, R. K. 2014. Testing a novel method to identify salt production pottery via
- release and detection of chloride ions. J. Archaeol. Sci. 43, 186-191.

- Sandu, I., Weller, O., Stumbea, D., Alexianu, M., 2012. Analyses archéométriques sur les moules à
- sel chalcolithiques de l'est de la Roumanie, in: Nikolov, V., Bacvarov K. (Eds.), Salt and Gold: The
- Role of Salt in Prehistoric Europe. Faber, Veliko Tarnovo, 143-154.
- Sordoillet, D., 2009. Géoarchéologie de sites préhistoriques : Le Gardon (Ain), Montou (Pyrénées-
- Orientales) et Saint-Alban (Isère). DAF 103. Maison des Sciences de l'Homme, Paris.
- Tencariu, F.-A., Alexianu, M., Cotiuga, V., Vasilache, V., Sandu, I., 2015. Briquetage and salt cakes:
- an experimental approach of a prehistoric technique. J. Archaeol. Sci. 59, 118-131.
- Warren, J.K., 2006. Evaporites. Sediments, Resources and Hydrocarbons. Springer, Berlin-New York.
- Weller, O., 2000. Les premières formes d'exploitation du sel durant le Néolithique et le Chalcolithique
- européens : de la reconnaissance des techniques à l'analyse des dimensions socio-économiques. PhD
- diss., University of Panthéon-Sorbonne, Paris, unpublished.
- Weller, O., Dumitroaia, G., 2005. The earliest salt production in the world: an early Neolithic
- exploitation in Poiana Slatinei-Lunca, Romania. Antiquity 79 (306).
- http://antiquity.ac.uk/projgall/weller306/ (accessed 2017.06.30).
- Weller, O., Brigand, R., Alexianu M., 2008a. Recherches systématiques autour des sources salées de
- 472 Moldavie. Bilan des prospections 2004-2007. Memoria Antiquitatis XXIV (2007), 121-190.
- Weller, O., Dumitroaia, G., Sordoillet, D., Dufraisse, A., Gauthier, E. 2008b. Première exploitation de
- sel en Europe. Techniques et gestion de l'exploitation de la source salée de Poiana Slatinei à Lunca
- (Neamt, Roumanie), in: Weller, O., Dufraisse, A., Pétrequin, P. (Eds.), Sel, eau et forêt. D'hier à
- aujourd'hui. Actes de colloque international (Arc-et-Senans, 2006). Cahiers de la MSH Nicolas
- Ledoux 12 (Homme et Environnement 1). PUFC, Besançon, 205-230.
- Weller, O., Brigand, R., 2017. Recherches systématiques autour des sources salées de Moldavie. Bilan
- 2011-2013 et synthèse de 10 ans de prospections. Memoria Antiquitatis, XXXI-XXXII (2016), 163-
- 480 270.
- Weller, O., 2015. First salt making in Europe: an overview from Neolithic times. Documenta
- 482 Praehistorica 42, 185-196.
- Weller, O., Brigand, R., Dumitroaia, G., Garvăn, D., Munteanu, R., 2015. A pinch of salt in the
- Prehistoric Eastern Carpathians Mountains (Ro.), in: Alexianu, M., Curcă, R.-G., Cotiugă, V. (Eds.),
- Salt Effect. From the Ethnoarchaeology to the Anthropology of Salt. BAR International Series 2760.
- 486 Archaeopress, Oxford, 125–133.
- Wheeler, M., 1989. Archéologie: la voix de la terre, Trad. Archaeology from the Earth (1968, Penguin,
- 488 London), Edisud, Aix-en-Provence.
- Williams, E., 2015. The Salt of the Earth: Ethnoarchaeology of Salt Production in Michoacán, Western
- 490 Mexico. BAR International Series 2725. Archaeopress, Oxford.

493 Figure captions

A rajouter à la légende de la figure 3 : Samples $\mu 1$ to $\mu 4$ were taken when the site was discovered, at the base of the archaeological mound (Fig. 3a). The 13 other samples are from the trench excavated in the archaeological accumulation the following year (Fig. 3b).

Earliest salt working in the world: from excavation to microscopy at the prehistoric sites of Tolici and Lunca (Romania)

Sordoillet D., Weller O., Rouge N., Buatier M., Sizun J.-P.

Figures captions

Fig. 1. Location of the archaeological sites

The extension of the archaeological deposits is approximately indicated by white dotted ellipses.

(1.5 column; color online)

Fig.2. Stratigraphic sections at the Tolici (a-b) and Lunca (c-d) excavations

 ${\bf a}$ - Elongated hollow with white ashy deposits and rubefied outer edges, at the base of the archaeological mound (see also figure 3); ${\bf b}$ - horizontal stratification of the deposits in the upper part of the mound; ${\bf c}$ - north section of pit 1, with multiple superimposed hollow hearths above massive grey Tertiary clays (scale: 50 cm); ${\bf d}$ - detail of the previous section showing the overlapping white ashes, lenticular charcoal and rubefied layers.

(1.5 column; color online)

Fig. 3. Stratigraphic section and sampling

a - First samples from the elongated hollow at the base of the archaeological mound at Tolici, when it was discovered (samples 3 and 4 were taken 1 metre higher, in Cucuteni horizontal levels; see also online AppendixA-FigA1-A5); **b** - illustration of sampling from the different levels of the main stratigraphic section.

(full page width; color online)

Fig. 4. Archaeological micro-sedimentary facies

a – Scan of thin section from Lunca, with yellowish clay of substratum at the bottom, and charcoals layers upon reddened clay in the upper part; \mathbf{b} – Banded distribution of silt and clay in an interbedded yellowish layer at Tolici; \mathbf{c} – Superimposed lenses of silt and clay, reddened by fire; \mathbf{d} – Same kind of deposit as \mathbf{c} , partly deformed by the fall of a grain of sand; \mathbf{e} - Hearth deposits with microstratified white ashes and wood charcoal; \mathbf{f} - Charcoals and ashes with limpid clay intercalations overlying cooked clay "floor" at Lunca; \mathbf{g} – White ashes with limpid and dusty clay intercalations at Tolici; \mathbf{h} – Detail of previous thin section showing several superimposed layers of silt and fine sand with many charcoal particles, and clay or dusty clay lenses; \mathbf{i} – Isotropic white vesicular nodule and leaf residue embedded in microlayered clays; \mathbf{j} - Scan of thin section from Lunca with fine microstratified deposits; \mathbf{k} – Detail of previous thin section showing fining up from fine sand to dusty clay in successive layers: \mathbf{l} – heterogeneous deposit, with charcoal and sherds.

cf - clay "floor"; ch - wood charcoal; dc - dusty clay; fs- fine sand; lc-limpid clay; lr- leaf residue; rc - rubefied clay; sh- sherd; vn- vesicular nodule; wa- white ashes.

PPL – plane polarised light; XPL – cross polarised light.

(full page width color online)

Fig. 5. Salt crystals

 ${\bf a}$ – Fibrous selenite crystal (CaSO₄ 2H₂O) in rubefied Neolithic deposit at Lunca; ${\bf b}$ – elongated gypsum crystals in Chalcolithic ash deposit at Tolici; ${\bf c}$ – orthorhombic thenardite crystal (Na₂SO₄) in Neolithic ashes at Lunca;

 $PPL-plane\ polarised\ light;\ XPL-cross-polarised\ light.$

(single column size color online)

Fig. 6. Example of SEM-EDS analysis (Tol- μ 15): **a** – uncovered thin section before carbon coating; **b** – optical microscope views; **c** –electronic microscope views; **d** – chemical analysis diagrams. (supplementary results online: AppendixA-FigA6-A22)

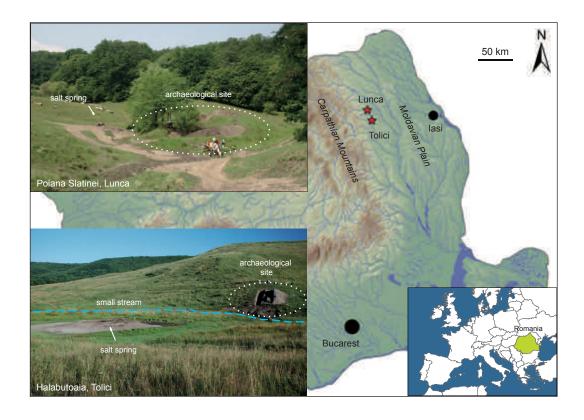
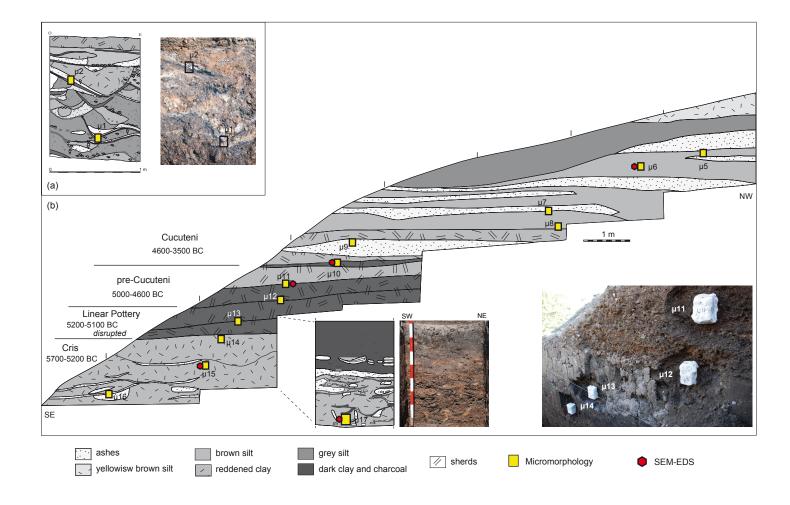
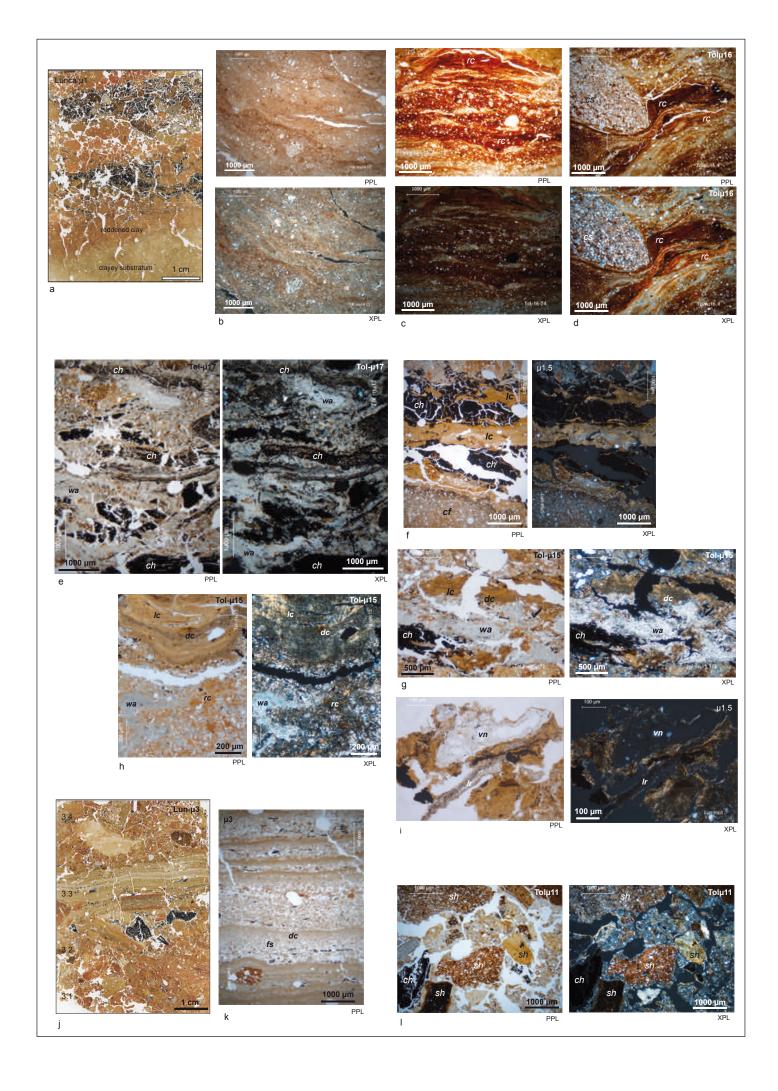
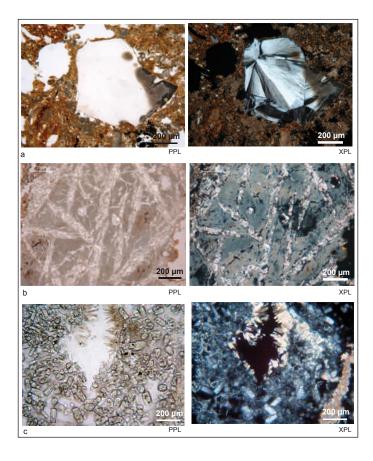
(1.5 column; color online)

	Cl (mg/l)	SO ₄ (mg/l)	Ca (mg/l)	Na (mg/l)	Mg (mg/l)	K (mg/l)
Poiana Slatina, Lunca, summer 2004	158,000.00	9,400.00	760.00	94,000.00	210.00	80.00
Halabutoaia, Tolici, summer 2007	190,597.00	7,463.00	1,040.00	113,000.00	190.00	35.00

Table 1. Chemical composition of the spring waters from Tolici and Lunca Analyses J. Mudry and C. Loup, Laboratoire de Chimie des Eaux, Université de Franche-Comté.

	Cultural period	Micromorphology	SEM-EDS (number of analyses)
Tolici	Cucuteni (Chalcolithic)	μ3, 4, 5, 6, 7, 8, 9, 10	μ6e- (5) μ10e- (18)
	Precucuteni (Late Neolithic)	μ11, μ12	μ11e- (10)
	Linear Pottery (Middle Neolithic)	μ13	
	Cris (Early Neolithic)	μ1, 2 μ14, 15, 16, 17	μ15e- (13) μ17e- (10)
Lunca	Cucuteni (Chalcolithic)	Excavation SXI : µ12, 13, 14	
	Cris (Early Neolithic)	Excavation S1-02, section: - W: µ1, 2, 3, 6, 7 - N: µ8 - E: µ9, 10, 11 - S: µ15, 16	μ1e- (7) μ3e- (5) μ6e- (3) μ7e- (7) μ10e- (10)

 Table 2. List of the analysed samples

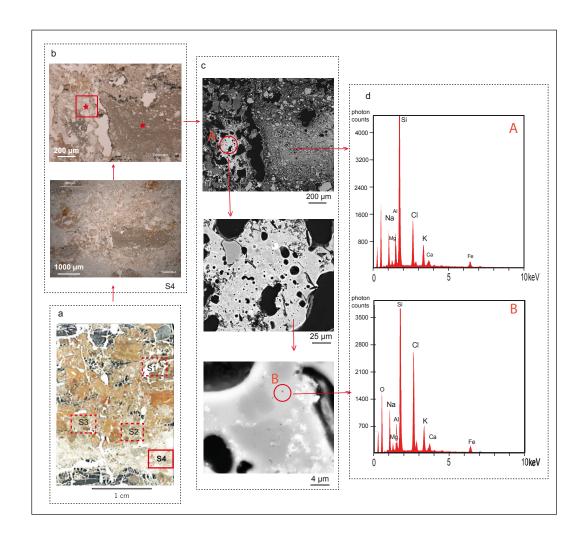


Figure 3

