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A Note on Dirichlet’s Theorem and GoldBach’s Conjecture Proof

Raúl Alberto R. C. de Sousa

1 Abstract

This article presents a alternative and simple proof to the Dirichlet’s Theorem and a proof for the Goldbach’s Strong

Conjecture, using the Complex Wave Model and its properties. The Complex Wave Model allows the definition

of an α function based on a sines product. As a consequence of the properties of trigonometric functions, with

emphasis to its periodicity and symmetry, some of the questions regarding the prime numbers distribution, k-tuples

and prime numbers arithmetic progressions, including the Dirichlet’s Theorem and Goldbach’s Conjecture, can be

solved.
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4 Introduction

As was shown in the article ”Prime Numbers: the Particle in the Box and the Complex Wave Model” (Sousa,

2015), it is possible to define a function α(x) which detects prime numbers and coprime numbers relatively to all

integers included in the definition of α(x), thus excluding other integers from been prime numbers. This function

never generates false negatives, regarding primality testing, and within the
√

x limit it also don’t generate false

positives.

It was also identified patterns in the distribution of primes and coprime, that thins out towards infinity. These

patterns are periodic with its smaller period represented by the product of the first prime factor of each integer

included in alpha′s definition. If only and all prime number are used up to a certain N, then the product will be

equal to the primorial of N.

It was also stated that the patterns generated by α function can represent any k-tuples, arithmetic progressions and

all kind of polynomial that generates primes. In this article, α function will be used to provide an alternative and

simple proof to the Dirichlet’s theorem and to provide a definitive prove to the Goldbach’s strong conjecture.

5 Dirichlet’s Theorem

In 1837, Dirichlet put forward one of his most famous theorem stating that:

”For any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is a

non-negative integer.”

Dirichlet used the characters of finite abelian groups and L-series to prove the theorem presented above. The proof

that Dirichlet presented is extremely technical and long. An alternative proof has been presented by Haifeng Xu

(Xu, 2016), through sieving analysis and induction. This inductive analysis allows the identification of periodic-

ity and symmetry in prime number candidates. These properties were formally demonstrated by Raúl de Sousa



through a alternative method using a sines product named Complex Wave Model.(Sousa, 2015). The α function

periodicity is of great importance in providing an alternative and simpler proof for the Dirichlet’s Theorem, as it

will be demonstrated.

Proof. Let us consider an α function defined as follows:

For all x, k and N ∈ integers,

α(x) :

l
∏

m=k

sin

(

π

m
x

)

(1)

It is evident that α(x) is a periodic function due to the definition of α(x) as an sines product, with its period been:

τ = px
1 p

y

2
...pz

n (2)

x, y,..., z represents the number of times that its pi is the lowest prime factor of every integer from k to l.

A note for τ definition and its coincidence with the Fundamental Theorem of Arithmetic, that states every positive

integer n > 1 can be represented in an unique product of prime powers. This will be useful further on in this article,

regarding the Goldbach’s Strong Conjecture.

If we use all PN from 2 up to N in α(x), then τ is the primorial of N:

τ = N♯ (3)

If we use in α(x), any number N, then τ is the radical of N, being the radical of any integer the product of the

distinct prime numbers dividing N:

τ = Rad(N) (4)

If k = 2 and all integers up to l are included in the α(x), all α’s solutions different from zero will signal all primes

for l < x ≤ l2 and candidates to primes for x > l2. These solutions are coprimes to all integers from k to l, by

definition, and include all prime numbers besides the ones in k to l, as well. Another way to stated the same is

stating that all candidates to prime are coprime to τ since τ is an integer product from k up to l.

Been α(x) a periodic function, we have that α(x) = α(τ + x), meaning that all solutions of α(x) , 0 from x =0 to

∞ are coprime to the set k,...,N and have the form:

x + nτ and x, τ are coprimes for every n ∈ Integers. (5)

Since it has stated in the second Complex Wave Theorem that all primes numbers are included in the α(x) , 0

solutions. It implies that all prime numbers have the Dirichlet’s Theorem form 5 and that there are infinite n for

which that the linear polynomial x+ nτ produces prime numbers, thus demonstrating the Dirichlet’s Theorem. �

Regarding Green-Tao’s Theorem, it is evident that we can choose any x and any τ so that, we can obtain arbitrarily,

but finite, long arithmetic progressions of prime numbers interrupted by non-primes, that are coprimes to x and

every factor in τ.

6 GoldBach’s Strong Conjecture

The Goldbach’s Strong, or Binary, conjecture stated by Euler asserts that all positive even integers greater than

4, represented by N, can be expressed as the sum of two prime numbers Py, Px: Py + Px = N. Although the

GoldBach’s Weak, or Ternary, conjecture has been prove by H. A. Helfgott, the Strong conjecture remains to be

proven.



Another way to put the Goldbach’s Strong conjecture is to state that, for all even N there exists at least one set

of two prime numbers, Py and Px, at the same distance from N
2

. In other words, there exist at least one pair of

prime numbers symmetric to N
2

. Please note that Py = Px is also a solution, which implies that Py = Px =
N
2

. The

symmetry pattern in the prime numbers location identified by the α(x) , 0, can demonstrate the existence of the

required type of symmetry in the prime numbers distribution, for all even numbers equal or above 4, as follows.

Proof. As showed above, α(x) is periodic. Also, because α(x) is a product of sines, it is implied that α(x) is

symmetric to τ
2
. This symmetry property was also been pointed by Haifeng Xu(Xu, 2016), by inductive analysis

of the Eratostones Sieve. Therefore, the prime numbers candidates, which includes all prime numbers besides the

ones included in α(x), therefore in τ, are symmetric to τ
2
. Since that the possible locations for prime numbers

through the pattern repetition can not change, there must be at least one prime number among the prime numbers

candidates on the second half of τ, symmetrical to a prime number in the first half. If it was not the case, that

would mean that there were not anymore locations for further prime numbers, thus implying the false conclusion

that the Prime Numbers’ set was to be finite.

It is possible to classify α(x) as a even function if the set cardinal #a, ...,N is even and as an odd function if the set

cardinal is odd. Since we are only interested in the center of symmetry, we can generalize and state that:

|α(x)| = |α(τ − x)|, (6)

with the center of symmetry been τ
2
. As already stated, one implication of this symmetry is that for every x solution

to α , 0, exists a τ − x that is also solution to α , 0 including all prime numbers that are not used in the α(x)

With a simple observation of the τ product, it is easy to verify that it has the form stated in the Arithmetic Funda-

mental Theorem, and in its short period is equal to the radical of an integer 4. A consequence of that observation

is that any number can be chosen to be the τ and, therefore, to construct an α(x) function.

So, we can write the unique integer factorization of any even number N and use those factors to define the set

{Px, Py, ...} for the {k, ..., l} of an α(x), so that τ is equal to the chosen even number N with α(x) defined as αpx ,py ,...(x).

Every x that is solution for α , 0 is coprime to the set {Px, Py, ...} as it is, also, its symmetric tau − x to the period

τ = N. Since all prime numbers have to be solution to α(x) , 0 and none is excluded, it implies that for every even

N there exists N = Px + Py.

Recalling eq. 4, it can be defined an αRad(N)(x) so that the solutions for αRad(N)(x) , 0 includes, at least, one set of

prime numbers that are symmetric to τ
2
, proving the Golbach’s Strong Conjecture. �
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