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Abstract

The principal-agent problem in economics leads to variational problems sub-
ject to global constraints of b-convexity on the admissible functions, capturing the
so-called incentive-compatibility constraints. Typical examples are minimization
problems subject to a convexity constraint. In a recent pathbreaking article, Fi-
galli, Kim and McCann [19] identified conditions which ensure convexity of the
principal-agent problem and thus raised hope on the development of numerical
methods. We consider special instances of projections problems over b-convex
functions and show how they can be solved numerically using Dykstra’s iterated
projection algorithm to handle the b-convexity constraint in the framework of [19].
Our method also turns out to be simple for convex envelope computations.

Keywords: Principal-agent problem, b-convexity constraint, convexity constraint,
convex envelopes, iterated projections, Dykstra’s algorithm.

Mathematics subject classification: 49M25, 65K15, 90C25.

1 Introduction

Variational problems subject to a convexity constraint arise in several different contexts
such as mathematical economics [30], Newton’s least resistance problem [7], [8], [20],
optimal transport for the quadratic cost [6] or shape optimization [9], [21]. Existence
of minimizers is generally not an issue since the set of convex functions have good
local compactness properties in most reasonable functional spaces. However, on the one
hand, the convexity constraint makes it difficult to write optimality conditions in the
form of a tractable Euler-Lagrange PDE (see [22]) which could be used for instance to
derive regularity results (see [13]). On the other hand, handling the convexity constraint
numerically in a consistent and efficient way is also a challenging problem which has
received a lot of attention in the last fifteen years. Choné and Le Meur [15] have first
identified specific difficulties, one of which being that one cannot use conformal convex
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finite-elements since they form, as the meshsize vanishes, a set of functions which is
not (by far!) dense in the set of convex functions. From this negative result, a lot
of proposals have been made: use of interpolates of convex functions [14], supporting
hyperplanes [18], finite-differences and semi-definite programming for nonnegativity of
the Hessian [1], polyhedral approximation and directional convexity in the spirit of
wide stencils for nonlinear PDEs [29], splitting of the directional convexity constraints
and proximal algorithms [25]. . .Whatever method is used, some subtle tradeoff has to
be made between provable convergence, accuracy and the computational cost resulting
from the number of convexity constraints enforced at the discretized level (typically
O(N2) with an N points grid). A major breakhtrough (for two dimensions) has been
made recently by Mirebeau [26] who introduced a hierarchy of subcones of the cone of
interpolates of convex functions and an adaptative refinement strategy leading typically
on a grid with N points to essentially only O(N ln2(N)) convexity constraints.

It turns out that in optimal transport (for non quadratic transportation costs) and in
principal-agent problems in economics (see section 2 for a brief presentation), the case of
the convexity constraint is somehow special and corresponds to a very particular choice
of the transport cost (quadratic) or of the valuation function (bilinear). The general
form of the principal-agent problem typically involves a (valuation) function b of two
variables x and y (in R

d, say) and the relevant constraint on the admissible functions
is that they are b-convex (a b-convex function is a function u of the variable x which
can be written as a supremum of the form u(x) = supy{b(x, y)− v(y)} so that when b
is the scalar product, we recover the convexity constraint). One then has to minimize
a certain integral functional among b-convex functions; general existence results can
be proved but not much more in general and this has been a serious limitation for
understanding principal-agent models in several dimensions. It is only recently with the
pathbreaking work of Figalli, Kim and McCann [19] that some conditions (intimately
related to the conditions of Ma, Trudinger and Wang [24] for the regularity of optimal
transport maps) were identified to make the principal-agent problem a convex program
and, in the first place, the set of b-convex functions a convex set (see section 4 below
for an elementary presentation in a special case). This raised the hope to use convex
optimization algorithms to solve numerically some convex minimization problems posed
over the set of b-convex functions, provided it is convex. To the best of our knowledge,
the present paper is the first one which addresses b-convexity numerically (even for
a quite resticted class of b). What makes the analysis of Figalli, Kim and McCann
amenable to a computational approach is that, under some conditions detailed in section
3, the fact that u is b-convex and that q = ∇u can be rewritten as a single condition:

u(x′)− u(x) ≥ Γb(x
′, x, q(x)), ∀x′, x,

for a certain function Γb depending (in a somehow indirect way) on the primitive datum
b and which, provided it is convex in its last argument, immediately implies convexity of
the set of b-convex functions. Now, discretizing this constraint on an N -points grid gives
N2 convex constraints. We will restrict ourselves to projection problems, i.e. quadratic
minimization problems, so that, once discretized on a grid with N points, we face a
projection on the intersection of convex sets, each of whom being given by one of the
constraints above corresponding to two grid points x′ and x. This can be solved with
Dykstra’s iterative projection algorithm (see the original papers by Dyskstra [17] for the
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case of convex cones, Boyle and Dykstra [5] for general closed convex sets; see also the
extension to general Bregman projections by Bauschke and Lewis [3] or to monotone
operators by Bauschke and Combettes [2], Combettes [16]). Each step of the algorithm
consists in a projection onto only one of the convex sets; if these elementary projections
are easy (it depends on the complexity and geometry of Γb, note that they are explicit
in the case of the convexity constraint), Dykstra’s algorithm can effectively be used even
if it is computationally costly.

In the case of the convexity constraint, the use of Dykstra’s iterative projection algo-
rithm is not really competitive with most of the approaches recalled above. Nevertheless,
as far as we know, it is the only one which can be quite directly adapted to the case of
the b-convexity constraint. It is also worth noting that our numerical approach presents
some similarities with the one of Ekeland and Moreno-Bromberg [18] in the sense that
it replaces finite families of supporting hyperplanes by finite families of graphs of the
nonlinear functions Γb(., xj , qj). It also shares at least in spirit some similarities with
the method of Mérigot and Oudet [25]: both methods somehow split the huge number
of constraints into smaller subsets on which projections can be performed quickly.

The paper is organized as follows. In section 2, we motivate the study of variational
problems with a b-convexity constraint by the principal-agent problem in economics.
Section 3 recalls the structural conditions of Figalli, Kim and McCann under which
b-convex functions form a convex set and thanks to which existence and uniqueness of a
minimizer can be established. In section 4, we specify a particular class of b satisfying the
conditions of Figalli, Kim and McCann, which can be seen as perturbations of the scalar
product and for which we give an elementary and self-contained presentation. In section
5, we restrict ourselves even further to the case of quadratic objectives, i.e. to projection
problems, and give some examples, in particular related to envelope computations. In
section 6 we prove a convergence result for discretization of these projection problems.
Section 7 explains how to use Dykstra’s algorithm in this context. Finally, numerical
results are presented in section 8.

2 Motivations

2.1 The principal-agent problem

To motivate variational problems with a b-convexity constraint, let us start by an infor-
mal description of the so-called principal-agent problem in economics. Let us consider
a population of heterogeneous agents, each of whom has some vector of characteristics
x in the sense that an agent with type x derives a utility b(x, y)− p from consuming a
good of type y for the price p. The set of possible agents types is denoted X, the set of
possible goods types is denoted Y and b is a given function from X × Y → R. We now
consider a monopolist (the principal), proposing to the population of agents a contract
menu that is a pair of functions x ∈ X 7→ (y(x), p(x)) ∈ Y ×R specifying for each type of
agent x the good and the price intended for her. The monopolist cannot observe directly
the characteristics of agents, so the contract menu should be consistent with the fact
that (y(x), p(x)) is really prefered by type x; this is the so-called incentive-compatibility
condition:

b(x, y(x))− p(x) ≥ b(x, y(x′))− p(x′), ∀x, x′. (2.1)
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Moreover the agents have access to an outside option given by a fixed pair (y0, p0) and
thus accept a contract from the monopolist only if

b(x, y(x))− p(x) ≥ u0(x) := b(x, y0)− p0, ∀x. (2.2)

The aim of the monopolist is then to minimize his total cost, which is given by an
expression of the form

∫

X

φ(x, p(x), y(x))dx,

over the (y(.), p(.)) satisfying conditions (2.1) and (2.2). For instance, φ can be given
by φ(x, p, y) = (c(y)−p)ρ(x) where c(y) is the production cost of y and ρ represents the
density of agents types, but other models are possible. Defining u(x) := b(x, y(x))−p(x)
for every x, we see that the incentive-compatibility condition can be rewritten as:

u(x′)− u(x) ≥ b(x′, y(x))− b(x, y(x)), ∀x, x′. (2.3)

Condition (2.3) of course imposes sharp restictions on the function u. Firstly, it imposes
a global shape restriction, namely that u(.) is a supremum of functions of the form
b(., y)−p: this is the b-convexity constraint on u. Condition (2.3) can also be rephrased
by saying that u(.) − b(., y(x)) is minimized at x so that if b is differentiable and u is
differentiable at x (and in fact, there are well-known conditions on b which guarantee a
priori that b-convex functions are differentiable at least almost everywhere, see section 3)
then one obtains that ∇u(x) = ∂xb(x, y(x)) which is a local necessary condition for (2.3)
to hold. If we go one step further, as was done in the seminal work of Figalli, Kim and
McCann [19], by assuming that the relation q = ∂xb(x, y) can be inverted in the sense
that q = ∂xb(x, y) ⇐⇒ y = yb(x, q) for some map yb, then one can actually deduce
y(x) from the knowledge of q(x) := ∇u(x) by the relation y(x) = yb(x, q(x)). Replacing
y(x) by yb(x, q(x)) in (2.3) and defining Γb(x

′, x, q) := b(x′, yb(x, q)) − b(x, yb(x, q)), we
obtain the following reformulation of the incentive-compatibility constraint:

u(x′)− u(x) ≥ Γb(x
′, x, q(x)), ∀x, x′. (2.4)

Note that (2.4) implies that, if u is differentiable at x, then ∇u(x) = ∂xb(x, yb(x, q(x)),
i.e. q(x) = ∇u(x) so that constraint (2.4) encodes the relation q = ∇u. Using the
variables (q, u) instead of (y, p) (so that p(x) = b(x, y(x))−u(x) and q(x) = ∂xb(x, y(x)),
y(x) = yb(x, q(x))), the monopolist’s program rewrites

inf
(u,q)

∫

X

L(x, u(x), q(x))dx

subject to u ≥ u0 and (2.4), with L(x, u, q) := φ(x, b(x, yb(x, q))−u, yb(x, q)). Of course,
a crucial role is played here by the map yb but also by the function Γb(x

′, x, q) :=
b(x′, yb(x, q)) − b(x, yb(x, q)) which appears in the right-hand side of the incentive-
compatibility condition written in the form (2.4).

2.2 The case of the convexity constraint

Variational problems subject to a convexity constraint arise in different applied settings:
economics with Rochet-Choné model [30] (which corresponds to the principal-agent
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problem with a bilinear b), but also Newton’s least resistance problem (see [7], [8],
[20]). We shall also see in section 5 how to relate such variational problems with the
computations of convex envelopes, a problem with its own interest. Such problems
consist in minimizing, given a convex domain X of Rd, an integral functional of the form
∫

X
L(x, u(x),∇u(x))dx among convex functions. This is in fact equivalent to minimize

∫

X
L(x, u(x), q(x))dx subject to the constraint

u(x′)− u(x) ≥ (x′ − x) · q(x), ∀x′, x

which automatically implies convexity of u as well as q ∈ ∂u hence q = ∇u a.e.. In other
words, the constraints that u is convex and q = ∇u are a particular case of the non-local
condition (2.4) with b(x, y) = x · y so that yb(x, q) = q and Γb(x

′, x, q) = (x′−x) · q. The
idea of writing the convexity constraints in this way for numerical purposes was first
used by Ekeland and Moreno-Bromberg [18].

3 Existence and uniqueness

Let us now consider the following assumptions:

(A1) b ∈ C1(X × Y ) where X and Y are open subsets of R
d with X convex and

bounded, and b is uniformly semiconvex with respect to x, i.e. there exists λ ≥ 0
such that for every y ∈ Y , x 7→ b(x, y) + λ

2
|x|2 is convex on X,

(A2) b is twisted (or satisfies the generalized Spence-Mirrlees condition), i.e. for every
x ∈ X, y 7→ ∂xb(x, y) is a diffeomorphism from Y to Qx := ∂xb(x, Y ), the set Qx is
closed and convex, and its graph Graph(Q) := {(x, q) ∈ R

d×R
d, x ∈ X, q ∈ Qx}

is closed; this enables one to define the map yb on Graph(Q) by

y = yb(x, q) ⇐⇒ ∂xb(x, y) = q.

(A3) For all (x′, x) ∈ X
2

the map

q ∈ Qx 7→ Γb(x
′, x, q) := b(x′, yb(x, q))− b(x, yb(x, q)), (3.1)

is convex and continuous on Qx.

Assumption (A1) ensures that every (finite) b-convex function u is semi-convex and
therefore:

• u is subdifferentiable at every point, i.e. for every x ∈ X,

∂u(x) := {q ∈ R
d : u(x+ h) ≥ u(x) + q · h+ o(h)} 6= ∅.

• u is differentiable at every point except possibly a set of Hausdorff dimension at
most d− 1 (hence of zero measure).
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The general form of the variational problems we are interested in is:

inf
(u,q)

J(u, q) :=

∫

X

L(x, u(x), q(x))dx (3.2)

subject to
q(x) ∈ Qx, for a.e. x ∈ X, (3.3)

and
u(x′)− u(x) ≥ Γb(x

′, x, q(x)), for a.e. x ∈ X and all x′ ∈ X, (3.4)

where Γb is defined by (3.1). Note that inequality (3.4) is an equality when x′ = x so, un-
der assumption (A2), whenever u is differentiable at x, we have q(x) = ∇u(x). Thanks
to assumption (A3), first outlined by Figalli, Kim and McCann [19], the constraint (3.4)
is convex in (u, q) (equivalently in (u,∇u)); if, in addition L(x, ·, ·) is convex, then the
minimization problem (3.2)-(3.4) is a convex program. Therefore we have the following
well-posedness result (existence essentially follows from [10] and uniqueness from [19];
for the sake of completeness we give a short proof).

Theorem 3.1. Assume that

• b satisfies (A1), (A2) and (A3),

• L is a lsc integrand such that, for a.e. x, (u, q) ∈ R × Qx 7→ L(x, u, q) is strictly
convex, and it satisfies for some C > 0 the coercivity condition

L(x, u, q) ≥ C(|u|+ |q| − 1), for a.e. x ∈ X and all (u, q) ∈ R×Qx, (3.5)

• there exists (u0, q0) satisfying (3.4)-(3.3) such that J(u0, q0) < +∞.

Then the problem (3.2)-(3.4) admits a unique solution.

Proof. Let (un, qn) be a minimizing sequence for (3.2)-(3.4). By (3.5), (un)n is bounded
in W 1,1(X). Since the functions (un) are all λ-convex (with the same λ), taking a
subsequence if necessary, we may assume that un converges locally uniformly to some
λ-convex u and qn = ∇un converges to q := ∇u a.e. (see for instance [11]). Then by
Fatou’s Lemma, we deduce that J(u, q) is the infimum of the problem (3.2)-(3.4). Note
that for a.e. x, q(x) ∈ Qx since this set is closed. It remains to show that (u, q) satisfies
the constraint (3.4), but this is obvious by passing to the limit in the inequality

un(x
′)− un(x) ≥ Γb(x

′, x, qn(x))

which holds for all x′, all n and all x in a set of full measure on which we may further
assume that qn(x) converges to q(x). This shows existence; uniqueness directly follows
from the convexity of the constraints and the strict convexity of J .

To show consistency of discrete approximations in section 6, we shall need the fol-
lowing elementary result:
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Lemma 3.2. Assume that b satisfies (A1) and (A2). Then for all (x, x′, x) ∈ X
3

and
q ∈ Qx, one has

yb(x, q) = yb(x, ∂xb(x, yb(x, q))), (3.6)

and
Γb(x

′, x, q)− Γb(x, x, q) = Γb(x
′, x, ∂xb(x, yb(x, q))). (3.7)

Proof. Let q := ∂xb(x, yb(x, q)). By definition, ∂xb(x, yb(x, q)) = q, which implies
yb(x, q) = yb(x, q) (i.e. proves (3.6)) since b is twisted. Then (3.7) immediately fol-
lows since Γb(x

′, x, q) − Γb(x, x, q) = b(x′, yb(x, q)) − b(x, yb(x, q)) = b(x′, yb(x, q)) −
b(x, yb(x, q)) = Γb(x

′, x, q).

4 A tractable specification for b

Checking assumption (A3) directly on b is not easy in practice since it involves yb via Γb.
There are however (a few) known examples, which can be found in [19], in connection
with the seminal work of Ma, Trudinger and Wang [24] on the regularity of optimal
transport maps. For the sake of tractability, we shall restrict ourselves to a class of
particular b for which computations can be performed explicitly up to a certain point.
Namely, from now on, we will only consider perturbations of the scalar product. More
precisely, we consider the following specification:

(B1) b is of the form
b(x, y) := x · y + f(x)g(y) (4.1)

with (f, g) ∈ C1(X) × C1(Rd) where X is an open bounded convex subset of Rd

(here Y = R
d), f and g are convex, g ≥ 0, and

inf
(x,y)∈X×Rd

∇f(x) · ∇g(y) =: κ > −1. (4.2)

Note that (4.2) is trivially satisfied in the following two cases:

• if g is Lipschitz on R
d and ‖∇f‖L∞(X)‖∇g‖L∞(Rd) < 1;

• if ∇f(x) · ∇g(y) = 0 for all (x, y) ∈ X × R
d (which is in particular the case if for

instance f(x) = f(x1) and g(y) = g(y2, . . . , yd)).

It is known that suitable perturbations of the scalar product of the form (4.1) satisfy
the convexity assumption (A3) (see [19], [23], [24]). We shall give in the next paragraph
an elementary and self-contained proof as well as some properties of yb and Γb under
assumption (B1) (which is slightly weaker than the one considered in the previous
references).
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4.1 Properties of yb and Γb

Note first that (A1) is satisfied with λ = 0 since f is convex and g ≥ 0, therefore b-
convex functions are convex as suprema of convex functions. Next, given (x, q) ∈ X×R

d,
y = yb(x, q) is obtained by solving

y = q − g(y)∇f(x),

or equivalently by solving the scalar equation

λ− g(q − λ∇f(x)) = 0 (4.3)

and setting y = q−λ∇f(x); (4.3) has a unique nonnegative root since its left-hand side,
as a function of λ, has derivative not less than 1 + κ > 0 by (4.2) and value −g(q) ≤ 0
for λ = 0. This shows that (A2) holds with Qx = R

d. Moreover,

yb(x, q) = q − gb(x, q)∇f(x) (4.4)

where
gb(x, q) := g(yb(x, q)) (4.5)

is the unique root of (4.3). Thanks to (4.2), one readily checks that

0 ≤ gb(x, q) ≤
g(q)

1 + κ
. (4.6)

By (4.2), (4.6) and the fact that g is locally Lipschitz, one also deduces that for any
compact subset K of Rd there exists a positive constant CK such that, for all x, x′ ∈ X
and q, q′ ∈ K,

|gb(x, q)− gb(x
′, q′)| ≤ CK(|q − q′|+ |∇f(x)−∇f(x′)|). (4.7)

which implies the continuity of gb, as well as that of yb and Γb by (4.4). Let us now
check that the convexity assumption (A3) is satisfied. By direct computation,

Γb(x
′, x, q) = (x′ − x) · q +Df(x

′, x)gb(x, q)

where Df is the Bregman divergence associated to f :

Df(x
′, x) := f(x′)− f(x)−∇f(x) · (x′ − x),

which is nonnegative since f is convex. The convexity of Γb with respect to q thus
amounts to showing that gb(x, q) is convex with respect to q, which can be done as
follows. Let (x, q0, q1, t) ∈ X × R

d × R
d × [0, 1], and set qt := (1 − t)q0 + tq1, λ0 :=

gb(x, q0), λ1 := gb(x
′, q′), and λt = (1 − t)λ0 + tλ1. Then gb(x, qt) is the root of λ 7→

λ − g(qt − λ∇f(x)), which is increasing with respect to λ by (4.2) and nonnegative at
λ = λt by convexity of g. We deduce that gb(x, qt) ≤ λt, which shows that (A3) is
satisfied.

Recall that if u is b-convex, then it is convex hence differentiable a.e. onX. Moreover
if we denote by A ⊂ X the set of points at which u is differentiable, then ∇u is continuous
on A (see [31]). The constraints that u is b-convex and q = ∇u can be expressed as

u(x′)− u(x) ≥ Γb(x
′, x, q(x)), ∀(x′, x) ∈ X × A.
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Now if x ∈ X \ A, one can choose a sequence xn in A, remaining away from ∂X and
converging to x. Since u is locally Lipschitz, we may further assume that the bounded
sequence qn := ∇u(xn) converges to some q. Up to redefining q at x by setting q(x) = q,
and using the fact that Γb is continuous, we see that there is no loss of generality
in imposing that the inequality u(x′) − u(x) ≥ Γb(x

′, x, q(x)) actually holds for every
(x′, x) ∈ X2.

4.2 Further specification for the numerical examples

We will consider in our simulations (section 8) a special case where gb (and thus yb and
Γb) can be explictly computed. This special case is given by

g(y) :=
√

1 + |y|2

and f any C1 convex function with Lipschitz constant on X strictly less than 1 (for
instance f(x) =

√

1 + |x|2 in our simulations). In this case, the solution gb(x, q) to (4.3)
is the unique positive root of the quadratic equation

λ2 = 1 + |q − λ∇f(x)|2,

and thus has the following explicit expression

gb(x, q) =
[(q,∇f(x))2 + (1− |∇f(x)|2)(1 + |q|2)]

1/2
− q · ∇f(x)

1− |∇f(x)|2
.

Note that explicit expressions are also obtained for any f and g satisfying (4.2) with
∇f(x) · ∇g(y) = 0 for all (x, y) ∈ X × R

d. Indeed, in this case, λ 7→ g(q − λ∇f(x)) is
constant hence gb(x, q) = g(q). This is in particular the case when f(x) = f(x1) and
g(y) = g(y2, . . . , yd).

5 A tractable specification for L

We have addressed in section 4 the choice of a tractable class of b so that conditions
(A1), (A2) and (A3) are satisfied. To make the problem (3.2) tractable numerically,
we shall restrict ourselves to projection problems, i.e. to quadratic Lagrangians L. From
now on, we assume that b is a perturbation of the scalar product of the form (4.1) which
satisfies assumption (B1), and we consider the quadratic problem

inf
(u,q)

J(u, q) :=

∫

X

(α(x)

2
|q(x)− q0(x)|

2 +
β(x)

2
|u(x)− u0(x)|

2
)

dx (5.1)

subject to
u(x′)− u(x) ≥ Γb(x

′, x, q(x)), ∀(x′, x) ∈ X2, (5.2)

where (u, q) ∈ C(X) ∩ H1(X) × L2(X,Rd) and (u0, q0, α, β) ∈ C(X,R) × C(X,Rd) ×
C(X, (0,+∞))2. We denote

Kb := {(u, q) ∈ C(X) ∩H1(X)× L2(X,Rd) : (u, q) satisfies (5.2)}. (5.3)
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We have already seen that if (u, q) ∈ Kb, then necessarily u is b-convex and q = ∇u, and
explained at the end of section 4.1 why the b-convexity constraint can be imposed on the
whole of X ×X. We know from theorem 3.1 that (5.1)-(5.2) admits a unique solution
which we denote (u, q) = (u,∇u). Of course, there is no particular extra difficulty in
considering additional pointwise convex constraints on u or q such as u ≥ v, u ≤ v,
u = v on ∂X or q ∈ Q with Q a closed convex subset of Rd.

The reason why we consider only quadratic Lagrangians L, i.e. projection problems,
is that we wish to keep numerical computations as simple as possible. It is in fact
possible (but computationally costly) to use Dykstra’s algorithm with general Bregman
distances to address convex but non quadratic Lagrangians, but we leave this for future
research. We may also view the projection problem as a first step to address more
general Lagrangians for instance by a projected gradient method, each step of which
amounts to solving a problem of the form (5.1)-(5.2). We present in the next paragraphs
some examples which, we believe, motivate directly the choice of a quadratic L. Let
us also remark that we require α and β to be everywhere strictly positive, that is we
ask L to be strongly convex in both variables u and q; this is due to the fact that in
Dykstra’s iterative projection algorithm, the condition q = ∇u is not enforced during
the iterations, so to guarantee convergence, this nondegeneracy condition is necessary.

5.1 Rochet and Choné principal-agent model

In [30], Rochet and Choné considered the principal-agent problem in the case of a
bilinear utility, a quadratic production cost c(y) := 1

2
|y|2 and 0 reservation utility. The

Rochet and Choné problem then consists in the quadratic minimization problem with a
convexity and a nonnegativity constraints:

inf
{

∫

X

[
1

2
|∇u(x)|2 − x · ∇u(x) + u(x)]ρ(x)dx : u convex, u ≥ 0

}

which can equivalently be rewritten as

inf
{

∫

X

[
1

2
|q(x)|2 − x · q(x) + u(x)]ρ(x)dx : (u, q) ∈ Kb, u ≥ 0

}

(5.4)

with b(x, y) = x · y and Kb defined by (5.3). This is not exactly a projection problem of
the form (5.1)-(5.2) because there is no explicit term in u2 in (5.4), so in our simulations
we will regularize it adding an extra quadratic term with a (small) parameter ε > 0.
Namely, the regularized version of (5.4) then reads

inf
{

∫

X

[
1

2
|q(x)|2 − x · q(x) +

ε

2
u2(x) + u(x)]ρ(x)dx : (u, q) ∈ Kb, u ≥ 0

}

, (5.5)

which corresponds to a projection problem with q0 = x, u0 = −ε−1, α = ρ, β = ερ, and
an additional nonnegativity constraint on u.

5.2 Convex envelopes

Let X be a bounded open convex subset of Rd and u0 ∈ C(X) ∩ H1(X), the convex
envelope, u∗∗0 of u0 is by definition the largest convex function which is pointwise below
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u0 in X. Obviously, u∗∗0 minimizes
∫

X
(u− u0)

2 among all convex functions u such that
u ≤ u0 in X, but this is not a projection problem of the form (5.1)-(5.2) because here
we have no term in |∇u|2. One could of course regularize this minimization problem
by adding ε

2

∫

X
|∇u|2 (we will actually do it to approximate more general envelopes in

the next paragraph). It turns out however that the convex envelope also minimizes a
Dirichlet integral. Indeed, let u be a H1 convex function such that u ≤ u0 and u = u∗∗0
on ∂X; then by convexity of the square and an integration by parts,

1

2

∫

X

(|∇u|2 − |∇u∗∗0 |2) ≥

∫

X

∆u∗∗0 (u∗∗0 − u),

and the latter is nonnegative since u ≤ u∗∗0 , and u∗∗0 being convex, it has a nonnegative
Laplacian. Hence u∗∗0 is also the minimizer of the Dirichlet integral 1

2

∫

X
|∇u|2 among

all convex functions which agree with u∗∗0 on ∂X and are below u0 on X. Therefore
provided that u∗∗0 = u0 on ∂X, the convex envelope u∗∗0 can be obtained by solving

inf
{

∫

X

α

2
|∇u|2 +

β

2
|u− u0|

2 : u convex, u ≤ u0, (u− u0)|∂X = 0
}

for every positive constants α and β. Of course, to make this observation relevant in
practice to compute u∗∗0 , we should already know u∗∗0 on ∂X. It is however well-known
that u0 = u∗∗0 on ∂X (equivalently, u0 agrees with a convex function on ∂X) in the
following cases:

• if ∂X contains no segment, by the following formula for the convex envelope:

u∗∗0 (x) = inf
{

d+1
∑

i=1

λiu0(xi) : λi ≥ 0, xi ∈ X,
d+1
∑

i=1

λi = 1,
d+1
∑

i=1

λixi = x
}

,

which implies that u∗∗0 = u0 on ∂X if every boundary point of X is extreme;

• if the dimension d = 1, as a particular case of the previous one;

• if u0 is the sum of a convex function and a function with compact support in X.

It is worth mentioning here some purely PDE approaches to the computation of
convex envelopes. Vese [32] showed that the convex envelope can be obtained as the
limit for large time of a solution of a nonlinear parabolic equation (also see [12] for
exponential convergence results) and Oberman [27], [28] developed a direct approach
based on the observation that convex envelopes solve a nonlinear elliptic equation.

5.3 More general envelopes

Since by definition, b-convex functions are stable by suprema, one can also define the
b-convex envelope of a function u0 as the largest b-convex function below u0. If b is as
in section 4 (or more generally if b(., y) is convex for every y), then b-convex functions
are convex hence subharmonic; the same argument as for convex envelopes thus enables

11



to conclude that if u0 coincides with its b-convex envelope on ∂X, then the b-convex
envelope of u0 can also be obtained by the quadratic minimization problem

inf
{1

2

∫

X

α

2
|q|2 +

β

2
|u− u0|

2 : (u, q) ∈ Kb, u ≤ u0, (u− u0)|∂X = 0
}

. (5.6)

Let us mention two cases where the convex envelope of u0 coincides with u0 on ∂X:

• if u0 is the sum of a b-convex function and a nonnegative function which vanishes
on ∂X;

• if the dimension d = 1 and u0 has compact support in X (see below).

Lemma 5.1. Assume that b satisfies (B1) with X = (0, 1) and let u0 ∈ Cc((0, 1)).
Then u0 coincides with its b-convex envelope at 0 and 1.

Proof. Let ε > 0 be such that u0 = 0 on [0, ε] ∪ [1 − ε, 1]. Let us denote by v the
b-convex envelope of u0; by definition v ≤ u0 up to the boundary of X. To prove
equality at 0 and 1, it is enough to construct a b-convex function w such that w ≤ u0
and w(0) = w(1) = 0. Define w by w(x) := max{w1(x), w2(x)} where

w1(x) := b(x, y1)− b(0, y1), w2(x) := b(x, y2)− b(1, y2),

with y1 < 0 < y2 and |yi| ≥ M , i = 1, 2, with M to be chosen properly. By (4.2), we
have w′

1(x) ≤ y1(1 + κ) + ‖f ′‖∞|g(0)| ≤ −M(1 + κ) + ‖f ′‖∞|g(0)| where κ > −1. Then
choosing M large enough, w1(x) ≤ −M

2
(1+κ)x for every x ∈ [0, 1]. If we further restrict

M so that −M
2
(1 + κ) < ε−1min u0, we get w1 ≤ u0. In a similar way for such an M ,

we also have w2 ≤ u0. Hence v ≥ w, so that v(0) ≥ w(0) = 0 and v(1) ≥ w(1) = 0.

In the general case where one cannot take for granted that u0 coincides with its
b-convex envelope on ∂X, one can still approximate the b-convex envelope by solving
for a small ε > 0 the problem

inf
{1

2

∫

X

ε

2
|q|2 +

1

2
|u− u0|

2 : (u, q) ∈ Kb, u ≤ u0

}

. (5.7)

6 Discretization and convergence

We now address the discretization of (5.1)-(5.2) and our aim in this section is to prove
a Γ-convergence result. To prove Γ-convergence, it will be useful to have that Lipschitz
functions are dense in energy for the problem (5.1)-(5.2), which requires the extra as-
sumption that g is Lipschitz on R

d (this would not be needed for variants of (5.1)-(5.2)
with additional constraints that bound uniformly q). Note first that since here b-convex
functions are convex, they are locally Lipschitz hence Kb ⊂ W 1,∞

loc (X) × L∞
loc(X). Let

(u, q) ∈ Kb, M > 0 and (uM , qM) be defined by

uM(x′) := sup
x∈X, |q(x)|≤M

{u(x) + Γb(x
′, x, q(x))}, qM := ∇uM . (6.1)
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By construction uM is b-convex, uM ≤ u, uM = u on AM := {x ∈ X : |q(x)| ≤ M};
since q is locally bounded, uM converges locally uniformly to u and qM converges to q
almost everywhere. If x /∈ AM , let xn ∈ AM be such that

uM(x) = lim
n
u(xn) + Γb(x, xn, q(xn));

since |q(xn)| ≤ M , passing to a subsequence, we may assume that (xn, qn, yn) =
(xn, q(xn), yb(xn, q(xn))) converges to some (x, q, y) with x ∈ X, |q| ≤M and y = yb(x, q)
since yb is continuous by (4.7). Let now x′ ∈ X; since uM(x′) ≥ u(xn) + Γb(x

′, xn, qn),
using the continuity of Γb, we get uM(x′) − uM(x) ≥ Γb(x

′, x, q) − Γb(x, x, q), so that
if uM is differentiable at x (which is the case almost everywhere), we necessarily have
∇uM(x) = qM(x) = ∂xb(x, yb(x, q)). Lemma 3.2 thus gives

uM(x′)− uM(x) ≥ Γb(x
′, x, q)− Γb(x, x, q) = Γb(x

′, x, qM(x)),

so that (uM , qM) ∈ Kb. Moreover, recalling (4.4) and (4.5), we have

qM(x) = ∂xb(x, yb(x, q)) = yb(x, q) + gb(x, q))∇f(x)

= q + gb(x, q)(∇f(x)−∇f(x)),

so that by (4.6),

|qM(x)| ≤ |q|+
2‖∇f‖L∞(X)

1 + κ
g(q). (6.2)

Lemma 6.1. Assume that b satisfies (B1) with the extra assumption that g is Lipschitz
on R

d. Let (u, q) ∈ Kb and (uM , qM) be defined by (6.1). Then there exists a constant
C (independent of M and (u, q)) such that |qM | ≤ C(1 + |q|), which implies that uM
converges to u in H1 as M → +∞ and that the minimum of J over Kb coincides with
its infimum over Kb ∩ (W 1,∞(X)× L∞(X)).

Proof. Only the inequality |qM | ≤ C(1 + |q|) has to be shown: the H1 convergence will
directly follow by Lebesgue’s dominated convergence Theorem. If |q(x)| ≤ M , there is
nothing to prove since qM = ∇uM = ∇u = q a.e. in AM . If |q(x)| > M and uM is
differentiable at x, then by (6.2), the fact that |q| ≤ M and the assumption that g is
Lipschitz, we have |qM(x)| ≤ C(1 +M) ≤ C(1 + |q(x)|) for some constant C.

6.1 Discretization

We now discretize (5.1)-(5.2) as follows. Denoting by λ the Lebesgue measure on X,
we consider for each discretization parameter h > 0, a finite subset Xh = {xhi , i =
1, . . . , Nh} of X in such a way that the sequence of discrete measures

λh :=
λ(X)

Nh

Nh
∑

i=1

δxh
i

approaches λ, i.e.
λh

∗
⇀ λ as h→ 0. (6.3)
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We now consider the following discretized version of (5.1)-(5.2):

inf
(uh,qh)∈Kh

b

Jh(uh, qh) :=
λ(X)

Nh

Nh
∑

i=1

[

α(xhi )

2
|qhi − q0(x

h
i )|

2 +
β(xhi )

2
|uhi − u0(x

h
i )|

2

]

(6.4)

where

Kh
b := {(uhi , q

h
i ) ∈ (R×R

d)Nh : uhi −u
h
j ≥ Γb(x

h
i , x

h
j , q

h
j ), ∀(i, j) ∈ {1, . . . , Nh}

2}. (6.5)

Note that (6.4)-(6.5) is a finite-dimensional projection problem, and under our assump-
tions Kh

b is a closed and convex set so that existence and uniqueness of a minimizer
which we denote by (uh, qh) is straightforward.

Elements of Kh
b can easily be extended to elements of Kb admissible for the contin-

uous problem as follows:

Lemma 6.2. Given (uh, qh) ∈ Kh
b , let us extend uh to X by setting

uh(x) := max
i=1,··· ,Nh

{uhi + Γb(x, x
h
i , q

h
i )}, ∀x ∈ X.

For each x ∈ X, select an index i among those for which the maximum above is achieved
which minimizes the distance between x and xhi and set

qh(x) := ∂xb(x, yb(x
h
i , q

h
i )),

so that qh(xhi ) = ∂xb(x
h
i , yb(x

h
i , q

h
i )) = qhi . Then the obtained extension (which by abusing

notations we continue to denote by (uh, qh)) belongs to Kb.

Proof. First observe that (uh, qh) ∈ W 1,∞(X) × L∞(X). Let x ∈ X and let i be an
index for which uh(x) = uhi + Γb(x, x

h
i , q

h
i ) and qh(x) = ∂xb(x, yb(x

h
i , q

h
i )). For x′ ∈ X,

we have uh(x′) ≥ uhi + Γb(x
′, xhi , q

h
i ) hence

uh(x′)− uh(x) ≥ Γb(x
′, xhi , q

h
i )− Γb(x, x

h
i , q

h
i ) = Γb(x

′, x, qh(x))

where the last equality follows from Lemma 3.2.

Extending (uh, qh) ∈ Kh
b as in Lemma 6.2, one can write

Jh(uh, qh) =

∫

X

L(x, uh(x), qh(x))dλh(x)

whereas the functional J for the continuous problem is, for all (u, q) ∈ Kb,

J(u, q) =

∫

X

L(x, u(x), q(x))dx

where

L(x, u, q) :=
α(x)

2
|q − q0(x)|

2 +
β(x)

2
|u− u0(x)|

2, ∀(x, u, q) ∈ X × R× R
d.
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6.2 Convergence

This section is devoted to a detailed Γ-convergence proof. For the Γ-liminf inequality,
the following result will be useful:

Lemma 6.3. Let (uh, qh) ∈ Kh
b extended as in Lemma 6.2 be such that

sup
h

‖qh‖L2(λh) < +∞. (6.6)

Assume that uh converges uniformly on compact subsets of X to some function u and
that qh converges a.e. to q := ∇u. Then

1. (u, q) ∈ Kb,

2. for every F ∈ Cb(X × R
d), one has

lim
h→0

λ(X)

Nh

Nh
∑

i=1

F (xhi , q
h
i ) = lim

h→0

∫

X

F (x, qh(x))dλh(x) =

∫

X

F (x,∇u(x))dx, (6.7)

3. the following Γ-liminf inequality holds:

lim inf
h

Jh(uh, qh) ≥ J(u, q). (6.8)

Proof. Let us define the discrete measure γh on X×X×R
d by γh := λh⊗ ((id, qh)#λ

h),
i.e. for every F ∈ Cb(X ×X × R

d),
∫

X×X×Rd

F (x′, x, q)dγh(x′, x, q) :=

∫

X×X

F (x′, x, qh(x))dλh(x′)dλh(x).

The family of measures γh is tight because its first and second marginals are λh which
satisfies (6.3) and its third marginals have bounded second moments by (6.6). Up to a
subsequence, we may therefore assume that γh narrowly converges to some measure γ.
Note that γ is necessarily of the form λ ⊗ θ where θ has first marginal λ hence can be
disintegrated as θ(dx, dq) = λ(dx)θx(dq), so that

lim
h→0

∫

X×X

F (x′, x, qh(x))dλh(x′)dλh(x) =

∫

X×X×

(

∫

Rd

F (x′, x, q)dθx(q)
)

dx′dx

for every F ∈ Cb(X×X×R
d). Since (uh, qh) ∈ Kh

b , we have uh(x′)−uh(x) ≥ Γb(x
′, x, q)

γh-a.e.. Let then ψ ∈ Cc(X ×X ×R
d) with ψ ≥ 0; since (x′, x, q) 7→ ψ(x′, x, q)(uh(x′)−

uh(x)−Γb(x
′, x, q)) converges uniformly to ψ(x′, x, q)(u(x′)− u(x)−Γb(x

′, x, q)) and γh

converges narrowly to γ, we have
∫

X×X×Rd

ψ(x′, x, q)(u(x′)− u(x)− Γb(x
′, x, q))dγ(x′, x, q) ≥ 0

so that the continuous function u(x′)−u(x)−Γb(x
′, x, q) is nonnegative for every x′ ∈ X,

a.e. x ∈ X and θx-a.e. q. If x is a point of differentiability of u, this implies in particular
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that q = ∇u(x), so θx necessarily coincides with the Dirac mass at ∇u(x). We then
have γ = λ⊗ ((id,∇u)#λ) and the whole family γh converges narrowly to γ as h → 0,
hence

lim
h→0

λ(X)2

N2
h

Nh
∑

j=1

Nh
∑

i=1

F (xhj , x
h
i , q

h
i ) =

∫

X×X

F (x′, x,∇u(x))dx′dx

for every F ∈ Cb(X × X × R
d), which in particular proves that (6.7) holds. Fixing

M > 0, we have by (6.7) and (6.6)
∫

X

α(x)

2
min(M, |∇u(x)− q0(x)|

2)dx ≤ lim inf
h

∫

X

α(x)

2
|qh(x)− q0(x)|

2dλh(x) ≤ C

(6.9)
for some C independent of h. Letting M go to ∞, this shows that q = ∇u ∈ L2 and
thus (u, q) ∈ Kb (the b-convexity inequality has already been established). In a similar
way, taking a family of cutoff functions ψk ∈ Cc(X), 0 ≤ ψk ≤ 1 with ψk = 1 on
{x ∈ X : dist(x, ∂X) ≥ 1/k} and ψk ≤ ψk+1, using the uniform convergence of uh to
u on compact subsets of X, we get

∫

X

ψk(x)
β(x)

2
(u(x)− u0(x))

2dx ≤ lim inf
h

∫

X

β(x)

2
(uh(x)− u0(x))

2dλh(x). (6.10)

Passing to the supremum in M in (6.9) and in k in (6.10) finally establishes the Γ-liminf
inequality (6.8):

lim inf
h

Jh(uh, qh) ≥ lim inf
h

∫

X

α(x)

2
|qh(x)− q0(x)|

2dλh(x)

+ lim inf
h

∫

X

β(x)

2
(uh(x)− u0(x))

2dλh(x) ≥ J(u, q).

Remark 6.4. If in Lemma 6.3 one further assume that uh is uniformly Lipschitz, i.e.

sup
h

‖qh‖L∞ < +∞,

then the measures γh in the proof are supported by a fixed compact set and thus one
can use a quadratic-test function in (6.7) which actually gives

∫

X

α(x)

2
|∇u(x)− q0(x)|

2dx = lim
h

∫

X

α(x)

2
|qh(x)− q0(x)|

2dλh(x).

In a similar way, in this case uh converges uniformly to u in X and we also have
∫

X

β(x)

2
(u(x)− u0(x))

2dx = lim
h

∫

X

β(x)

2
(uh(x)− u0(x))

2dλh(x).

Hence with a uniform bound on qh, the last statement in Lemma 6.3 can be streghtened
to:

lim
h
Jh(uh, qh) = J(u, q).
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Theorem 6.5. Assume that b satisfies (B1) with the extra assumption that g is Lips-
chitz on R

d. Let (uh, qh) be the solution of (6.4)-(6.5), extended as in Lemma 6.2, and
let (u, q) be the solution of (5.1)-(5.2). Then uh converges locally uniformly to u and qh

converges in L2
loc and a.e. to q as h→ 0.

Proof. Since (uh, qh) solves (6.4)-(6.5) it is easy to see that there is a constant C such
that, for all h,

‖qh‖L2(λh) + ‖uh‖L2(λh) ≤ C. (6.11)

We first claim that for every ω convex such that ω ⊂⊂ X,

sup
h

‖∇uh‖L∞(ω) = Cω < +∞.

Indeed, if it was not the case, using the fact that the all functions uh are convex and
arguing as in the proof of Theorem 1 in [14], this would imply that, up to a subsequence,
the norm of all elements of ∂uh converge to +∞ uniformly on some open subset of X,
which would also imply a uniform explosion for qh since qh(x) ∈ ∂uh(x), and thus this
would contradict (6.11) and (6.3).

Passing to a subsequence if necessary we may therefore assume that for some convex
function u, one has uh → u uniformly on compact subsets ofX, qh → q = ∇u a.e. and in
L2
loc. By Lemma 6.3, (u, q) ∈ Kb and J(u, q) ≤ lim infh J

h(uh, qh). To prove that (u, q) =
(u, q) (and then that the whole family converges, not only a subsequence), it is enough
by Lemma 6.1 to show that J(u, q) ≤ J(v, p) for every (v, p) ∈ Kb∩(W

1,∞(X)×L∞(X)).
Let (v, p) ∈ Kb ∩W 1,∞(X) × L∞(X), then extend as in Lemma 6.2 the discrete data
(v(xhi ), p(x

h
i ))i=1,...,Nh

and denote by (vh, ph) this extension. It is easy to check that ph

is uniformly bounded and vh converges uniformly to v, then using Remark 6.4 and the
optimality of (uh, qh) we get

J(u, q) ≤ lim inf
h

Jh(uh, qh) ≤ lim inf
h

Jh(vh, ph) = J(v, p),

which gives the desired result.

7 Numerical method

7.1 Dykstra’s iterative projection algorithm

We focus on the discretized problem (6.4)-(6.5), where for notational simplicity we drop
the discretization index h and set Γij(q) := Γb(xi, xj, q):

inf
(u,q)

N
∑

k=1

[

αk

2

∣

∣qk − q0k
∣

∣

2
+
βk
2

∣

∣uk − u0k
∣

∣

2
]

subject to ui − uj ≥ Γij(qj), ∀(i, j){1, . . . , N}2.

Defining the convex subsets of RN × R
dN

Ci,j :=
{

(u, q) : ui − uj ≥ Γij(qj)
}

, ∀(i, j){1, . . . , N}2,

17



and the weighted squared Euclidean distance in R
N × R

dN

Dα,β ((u, q), (u
′, q′)) :=

N
∑

k=1

[

αk

2
|qk − q′k|

2
+
βk
2

|uk − u′k|
2

]

,

the discrete problem is to find the projection P α,β
C (u0, q0), solution in R

N × R
dN to

inf
(u,q)

Dα,β

(

(u, q), (u0, q0)
)

subject to (u, q) ∈ C :=
⋂

(i,j)

Ci,j.

This projection problem can be solved iteratively by Dykstra’s algorithm [3, 5]. Let us
now recall it for a projection problem onto a closed convex subset K of Rm which can
be written as an intersection of elementary closed convex subsets K1, . . . , KL of Rm:

K :=

L
⋂

l=1

Kl.

Given z0, we wish to compute P α,β
K (z0) = argminz∈K Dα,β(z, z

0). First extend by L-
periodicity the familly of convex sets (Kl)l=1,··· ,L by setting

Kl+kL := Kl, ∀(k, l) ∈ N× {1, . . . , L}.

Then initialize the algorithm by setting

θ−L+1 = · · · = θ−1 = θ0 = 0

and starting from the point z0 we want to project, update zn and θn for n ≥ 1 by:

zn = P α,β
Kn

(

zn−1 + θn−L
)

, θn = zn−1 − zn + θn−L.

The fact that the sequence zn converges to P α,β
K (z0) has been established by Boyle and

Dyskstra [5]; Bauschke and Lewis [3] have extended this result to projection problems
with general Bregman distances.

Remark 7.1. For the sake of simplicity, we have omitted above the case of pointwise
convex constraints on u or q such as ui ≥ 0, ui ≤ vi, |qi| ≤ ri, or qi ∈ R

d
+. Such

constraints can be handled easily with Dykstra’s algorithm by adding elementary convex
sets on which the projections are totally explicit.

Remark 7.2. The main drawback of Dystra’s algorithm in our context is the a priori
very large number N2 of elementary convex sets on which we have to project. One
can however significantly reduce the computational cost if C = ∩(i,j)∈ICi,j where the
cardinality of I ⊂ {1, . . . , N}2 is smaller than N2. This reduction of the number of
constraints can be done when the b-convexity constraint propagates. This is in partic-
ular the case in dimension 1 under the so-called Spence-Mirrlees condition ∂2xyb > 0
and for ordered grid points (xi < xj for i < j), where it is enough to impose the b-
convexity on neighbour points (j = i± 1), resulting in a number of elementary convex
sets O(N) instead ofO(N2). It is indeed easy to see that the constraint propagates in this
case: set yi := yb(xi, qi) and first remark that the two "local" constraints ui+1 − ui ≥
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b(xi+1, yi) − b(xi, yi) and ui − ui+1 ≥ b(xi, yi+1) − b(xi+1, yi+1) together with Spence-
Mirrlees condition imply that yi+1 ≥ yi; then summing the two consecutive constraints
ui+1−ui ≥ b(xi+1, yi)−b(xi, yi) and ui+2−ui+1 ≥ b(xi+2, yi+1)−b(xi+1, yi+1) and using the
fact that b(xi+2, yi+1)− b(xi+1, yi+1) ≥ b(xi+2, yi)− b(xi+1, yi) again by Spence-Mirrlees
condition and the fact that yi+1 ≥ yi, we obtain that ui+2 − ui ≥ b(xi+2, yi)− b(xi, yi),
which is exactly what we mean by propagation of the constraint.

Remark 7.3. In a similar way, for the convexity constraint b(x, y) = x · y, Γb(x
′, x, q) =

(x′ − x) · q and for regular grid points, the number of convexity constraints ui − uj ≥
(xi −xj) · qj can be significantly reduced (for instance for aligned points, it is enough to
consider consecutive points xi and xj). We refer to [14] and the recent efficient approach
of Mirebeau [26] for details.

7.2 Elementary projections

7.2.1 Lagrangian relaxation

In Dyskstra’s algorihm, we have to compute at each step an elementary projection onto
a single convex Ci,j, P

α,β
Ci,j

(q̂, û) := Pi,j(q̂, û) for various (q̂, û). The elementary projection
(q, u) = Pi,j(q̂, û) is obviously given by qk = q̂k for k 6= j and uk = ûk for k 6= i, j with
(qj, ui, uj) obtained by solving the low-dimensional projection problem

inf
(ui,uj ,qj)

[

αj

2
|qj − q̂j |

2 +
βi
2
|ui − ûi|

2 +
βj
2
|uj − ûj|

2

]

subject to ui − uj ≥ Γij(qj).

If ûi − ûj ≥ Γij(q̂j), then this projection problem is trivial and (ui, uj , qj) = (ûi, ûj, q̂j),
so only the case ûi − ûj < Γij(q̂j) where the constraint is binding requires some specific
attention and can conveniently be addressed by Lagrangian relaxation as follows. Since
the problem above is convex and qualified (the constraint is linear in ui and uj), there
is no duality gap with its dual problem, which is

sup
λ≥0

lij(λ)

where lij(λ) is defined, for λ ≥ 0, by

inf
(ui,uj ,qj)

[

αj

2
|qj − q̂j |

2 +
βi
2
|ui − ûi|

2 +
βj
2
|uj − ûj|

2 + λ (−ui + uj + Γij(qj))

]

. (7.1)

The dual function lij is concave – as an infimum of affine functions – and differentiable –
since the Lagrange problem (7.1) has a unique solution for any λ ≥ 0, that we denote by
(qj(λ), ui(λ), uj(λ)) – with l′ij(λ) = −ui(λ) + uj(λ) + Γij(qj(λ)). Note that ui(λ), uj(λ)
are given explicitly by

ui(λ) = ûi +
λ

βi
, uj(λ) = ûj −

λ

βj
, (7.2)

whereas qj(λ) is the unique solution (not explicit in general) to

αj(qj − q̂j) + λ∇Γij(qj) = 0, i.e. qj(λ) =
(

id+
λ

αj
∇Γij

)−1

(q̂j). (7.3)
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The solution of the projection problem (ui, uj , qj) in the case where ûi − ûj < Γij(q̂j) is
then (ui(λ), uj(λ), qj(λ)) where λ > 0 solves

l′ij(λ) = −ui(λ) + uj(λ) + Γij(qj(λ) = 0. (7.4)

Note that (7.4) is monotone with respect to λ since lij is concave.
In practice, we have experimented two numerical methods to solve the elementary

projection problem in the case λ > 0. The first one is a duality method: it consists in
solving the dual problem via (7.4):

1. Given λ > 0, compute qj(λ) from (7.3) (by Newton’s method if necessary) and
ui(λ), uj(λ) from (7.2) (explicitly).

2. Evaluate l′ij(λ) = −ui(λ) + uj(λ) + Γij(qj(λ)) and stop if λ is satisfying (7.4) up
to a fixed tolerance.

3. Update λ > 0 by one step of a dichotomy method to solve l′ij(λ) = 0.

The second method that we have experimented (and actually used for the numerical
results in section 8) is a primal-dual method: it consists in finding simultaneously the
primal-dual solution (qj(λ), ui(λ), uj(λ), λ) to the elementary projection problem via the
optimality conditions for λ > 0. This amounts to computing simultaneously (qj(λ), λ)
as the unique solution to







αj (qj − q̂j) + λ∇Γij(qj) = 0

− (ûi +
λ

βi
) + (ûj −

λ

βj
) + Γij(qj) = 0,

(7.5)

by Newton’s method. See e.g. [4] for variants.

7.2.2 Special cases

In the convexity constraint case, Γij(q) = (xi − xj) · q, the solution qj(λ) to equation
(7.3) is explicitly given by

qj(λ) = q̂j −
λ

αj
(xi − xj).

Plugging it, together with ui(λ), uj(λ) given by (7.2), into the optimality equation (7.4),
we get that the solution to the dual problem when λ > 0 (i.e. when (q̂j, ûi, ûj) is not
feasible for the primal problem) is

λ =
−ûi + ûj + Γij(q̂j)
1
βi
+ 1

βj
+

|xi−xj |2

αj

.

Therefore the elementary projections are explicit in this case.
In the b-convexity constraint case with b(x, y) := x · y + f(x)g(y), recall that

Γij(q) = (xi − xj) · q +Df(xi, xj)gb(xj , q).

When gb is known explicitly (as it is in the special cases described in 4.2) and twice
differentiable, the elementary projection problems can be solved as explained above.
In practice, we solve (7.5) by Newton’s method initialized with the explicit solution
(qj , λ) to the convexity constraint case. In the more general case where gb is not known
explicitly, one could imagine to solve simultaneously (4.3) to evaluate it numerically,
but we have not explored this way.
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8 Numerical results

We present here various examples of projection problems of the form (5.1)-(5.2) (some-
times on convex subsets of C corresponding to additional pointwise convex constraints)
and their numerical resolution by the method described in sections 6 and 7. Since the
main limitation to this method (up to the numerical resolution of (4.3) to get gb) is the
fact that Γb has to be explicit (very likely yb too), we have restricted ourselves to two
cases for b:

• the bilinear case b(x, y) := x · y, which corresponds to the convexity constraint;

• a perturbation of it given by b(x, y) := x · y + f(x)g(y) with f(x) :=
√

1 + |x|2,
g(y) :=

√

1 + |y|2.

In 3d figures, the z-axis is directed downward.

8.1 H1 projection on b-convex functions
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Figure 1 – H1((0, 1)2) projections of −x(1− x)(2x− 1)2y(1− y)(2y − 1)2

The first example is precisely the projection problem (5.1)-(5.2) with α = β = 1 and
q0 = ∇u0. We have solved numerically such problems in dimension d = 2, see Figure 1
and 2 for the H1((0, 1)2) projection of two different u0.
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Figure 2 – H1((0, 1)2) projections of −x(1 − x)(y − 1
2
)

8.2 b-convex envelopes in dimension one

We next have computed convex and b-convex envelopes in dimension d = 1 using the
formulation (5.6) (both for convex and b-convex envelopes) with α = β = 1, q0 = 0 and
a nonconvex u0 depicted in Figure 3.
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Figure 3 – Envelopes of a function in dimension 1

8.3 Approximated b-convex envelopes in dimension two

We now present two-dimensional approximated convex/b-convex envelopes, using the
regularized formulation (5.7) with different values of the regularization parameter ε > 0,
respresented in Figure 4.
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Approximated convex envelope (ε = 0.1) Approximated b-convex envelope (ε = 0.1)

Approximated convex envelope (ε = 0.01) Approximated b-convex envelope (ε = 0.01)

Figure 4 – Approximated envelopes of a function in dimension 2

8.4 Regularized Rochet and Choné problem

We finally consider the Rochet and Choné prinicipal-agent problem on the square [1, 2]2,
regularized as in (5.5) with ε = 0.01, see Figure 5.
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Figure 5 – Rochet and Choné problem regularized with ε = 0.01
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