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Abstract

In tropical regions, populations continue to suffer morbidity and mortality
from malaria and arboviral diseases. In Kedougou (Senegal), these illnesses
are all endemic due to the climate and its geographical position. The co-
circulation of malaria parasites and arboviruses can explain the observation
of coinfected cases. Indeed there is strong resemblance in symptoms between
these diseases making problematic targeted medical care of coinfected cases.
This is due to the fact that the origin of illness is not obviously known.
Some cases could be immunized against one or the other of the pathogens,
immunity typically acquired with factors like age and exposure as usual for
endemic area. Then, coinfection needs to be better diagnosed. Using data
collected from patients in Kedougou region, from 2009 to 2013, we adjusted
a multinomial logistic model and selected relevant variables in explaining
coinfection status. We observed specific sets of variables explaining each
of the diseases exclusively and the coinfection. We tested the independence
between arboviral and malaria infections and derived coinfection probabilities
from the model fitting. In case of a coinfection probability greater than a
threshold value to be calibrated on the data, duration of illness above 3
days and age above 10 years-old are mostly indicative of arboviral disease
while body temperature higher than 40°C and presence of nausea or vomiting
symptoms during the rainy season are mostly indicative of malaria disease.
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1. Introduction

Concurrent infections are often observed among vector borne diseases such
as malaria and arthropod-borne viral diseases (arbovirus) in tropical regions
([1, 2]). It is the case for malaria and dengue in American, African and Asian
tropical regions where their endemic areas overlap largely ([3, 4, 5, 6, 7, 8, 9]).
Malaria can be easily ascribed to other febrile illnesses because its clinical
symptoms are often indistinguishable from those initially seen in dengue or
chikungunya for instance ([10]). Since the introduction of the Rapid Diag-
nostic Test (RDT) in 2007 in Senegal, malaria has been better diagnosed
and an important decrease had been noticed in the prevalence of malaria.
Thus we may think that malaria has been overestimated for some time at
the expense of other febrile diseases such as arbovirus or bacteria ([11, 12]).
Presumptive treatment of fever with antimalarial is widely practiced to re-
duce malaria attributable mortality. This practice means that ill patients
may be inappropriately treated, particularly where rapid diagnosis test kits
are not readily available, or if the opportunity to test for arboviral infections
is missed. Thus, misdiagnosis of arbovirus coinfections as malaria infections
may be a cause for underestimating emerging arbovirus infections. In 2009,
surveillance of acute febrile illness (AFI) was implemented in Kedougou for
early detection of arbovirus outbreaks and malaria and in order to accurately
measure disease morbidity and mortality in this geographical region. Due to
co-circulation of malaria parasites and arbovirus, that were mainly dengue
(DEN), chikungunya (CHIK), Zika (ZIK), yellow fever (YF) and Rift Valley
fever viruses (RVFV) in this region (neglecting the prevalence of other ar-
boviral infections), concurrent infections were observed and posed a challenge
for medical diagnosis ([13]). Here we compare clinical profiles of coinfected
patients to clinical profiles of mono-infected patients through the statistical
analysis of a data set collected from febrile patients in the Kedougou region,
Senegal from 2009 to 2013. Our study aims to characterize the risk factors
of coinfection and to provide statistical indicators that improve differential
diagnosis of febrile cases for arbovirus.

The data of our study were provided by the Institut Pasteur de Dakar (IPD)
at Kedougou (southern-east Senegal). In this region, malaria and arbovirus



are endemic due to the climate and the population movements. Data were
collected through seven healthcare centers in the region: Ninefesha rural
hospital, Kedougou and Saraya Health Centers, Bandafassi and Khossanto
health posts, the Kedougou military health post, and the Catholic Mission
mobile team. Inclusion criteria were (i) being at least one year old at the
date of the visit, (ii) having fever (i.e., body temperature> 38°C') and (iii)
manifesting at least one clinical sign within a list of symptoms. Patients
satisfying inclusion criteria were enrolled once a written informed consent
was signed.

In the present paper, we propose a multinomial logistic model to analyse
coinfections between arbovirus and malaria. There were four outcomes de-
termining four groups of patients: arbovirus monoinfections (with respect
to the 5 tested arbovirus), malaria monoinfections, arbovirus-malaria coin-
fections and controls defined as patients negative for malaria and for the
5 tested arbovirus. Febrile episodes from this control group were probably
due to other circulating pathogens for which all groups were supposed to be
equally exposed. We performed a covariable selection using random forests
based on the variable importance measure ([14]). Then we fitted a para-
metric multinomial logistic model including the selected covariables and we
proposed a Wald-type test to test the correlation between malaria infection
and arboviral infection. As the independence hypothesis was rejected, we
were able to predict the probability that a patient be coinfected given that
malaria is observed. From the analysis of the influent factors on the different
outcomes, we investigated the following questions: Which factors can explain
coinfection? Which risk factors enable to distinguish between malaria and
arbovirus?

The paper is organized as follows. In Section 2, we present the working data
set. Section 3 describes the statistical model and the variable selection. In
Section 4, we present the independence test between arbovirus and malaria
infections and we propose a predictive analysis. A concluding discussion is
given in Section 5.

2. Data description

We based our analysis on the data from the Institut Pasteur de Dakar (IPD)
at Kedougou. The initial data set included 15 523 patients and collected
various features: patients’ data (like sex, age, occupation, location,...), clin-
ical symptoms, climate indicators and three binary infections status vari-



ables indicating (7) the presence or absence of malaria parasites in blood,
(17) detection of virus or IgM antibodies against virus and (7iz) detection of
IgG antibodies against virus. Malaria diagnosis relied on the identification of
haematozoa using the thick blood smear (TBS) method. Arboviral infections
were investigated by the detection of specific anti-arbovirus IgM and/or IgG
antibodies using ELISA (enzyme-linked immunosorbent assay). We consid-
ered an arboviral case as any individual tested positive to the infection with
at least one of the five arbovirus (DEN, CHIK, ZIK, YF and RVF).

Based on these data we created a new categorical response variable built from
four possible combinations of the three infection status variables as follows:

“Other febrile illnesses (O)”
“Arboviral monoinfection (A)”
“Malaria monoinfection (M)”

“Coinfection (C)”

W N = O

Category 0 corresponds to individuals that are negative for both malaria
and the tested arboviral infections; their symptoms could be due to other
unknown febrile illnesses. Category 1 corresponds to individuals positive for
at least one of the five tested arbovirus and negative for malaria. Cate-
gory 2 corresponds to individuals negative for tested arbovirus and positive
for malaria. Category 3 represents individuals simultaneously positive for
malaria and for at least one of the tested arbovirus. The subjects of category
3 are said “coinfected” with malaria and arbovirus.

Our aim is to differentiate febrile syndroms that could be due to arbovirus
from febrile syndroms that could be due to malaria. As coinfection in a
single patient may change the spectrum of clinical symptoms, we want to
identify those features that predict arboviral infection to improve medical
and treatment diagnosis in the primary care setting.

2.1. Data set

In this study, arboviral cases are diagnosed by the detection of IgM or IgG
antibodies. We can have two different ways of defining an arboviral case: (1)
by considering only the detection of IgM antibodies or (2) by considering the
detection of both IgM and IgG antibodies. Biologically, IgM detection among
patients means that they have a recent arboviral infection. So we considered
that positive [gM cases are positive arboviral cases. Ignoring individuals with
missing data (974 missing data on Malaria response and 803 missing data on



the covariates values), we obtained a data set of size n = 12 288, called the
IgM data set. We noticed that the distributions of the different variables
with and whithout missing data remain similar. A summary of the IgM data
is given in Table 1. We can see that this data set is very imbalanced (3
arboviral or coinfected cases per 1 000 patients) and it will require a specific
statistical analysis.

Malaria
Arbovirus * N Total
+ 18 (0.15%) 21 (0.16%) 39 (A+)
— 7069 (57.53%) | 5180 (42.16%) | 12 305 (A—)
Total 7087 (M+) 5201 (M—) 12 288

Table 1: IgM data. A+ for the individuals positive to arboviral infection, A— for the
individuals negative to arboviral infection, M+ for the individuals positive to Malaria and
M — for the individuals negative to Malaria.

The diagnosis of arboviral infection at the time of an acute episode is ideally
based on the presence in the serum of a patient of detectable I[gM. However,
to obtain a more balanced data set, we decided to build a separate data
set by considering arboviral infected patients as individuals who were tested
positive to IgM or IgG. As 13 412 missing values were recorded on the IgG
variable, the size of the data set was drastically reduced and we obtained a
data set of size n = 1 976 which is called IgM/IgG data and summarized in
Table 2. For this data set, we compared the distributions of each covariate
with and without missing data on the response IgG. Except for the variable
Nasal Congestion which is over-represented (60% of positive cases in the
sample compared to 40% in the initial data set), the distributions of the
other variables are similar. So we considered that ignoring individuals with
missing data did not affect the predictive analysis.

Thereafter, we will consider two data sets that are derived from the same
original data set using two different encoding: 1. the IgM/IgG data set
which is suitable to apply our entire methodology; 2. the IgM data set
containing the true arboviral status (from a biological point of view) which
is strongly imbalanced. We will use in the next section a re-sampling strategy
to handle this problem.



Malaria
Arbovirus + B Total
+ 397 (20.10%) | 263 (13.31%) | 633 (A+)
— 751 (38.00%) | 565 (28.59%) | 1318 (A—)
Total 1148 (M+) 828 (M—) 1976

Table 2: IgM/IgG data. A+ for the individuals positive to arboviral infection, A— for
the individuals negative to arboviral infection, M+ for the individuals positive to Malaria
and M — for the individuals negative to Malaria.

2.2. Covariates

In this data set, there are four quantitative covariables: the measured body
temperature (in Celsius degrees), the number of sick days defined as the num-
ber of days between the date of symptoms onset and the date of consultation,
the patient’s age (in year) and the rainfall measure (in millimiters) which is
a proxy for the season (rainy or dry). The individual rainfall measure corre-
sponds to the rainfall measure of the patient’s month of consultation. The
eleven qualitative covariables are the patient’s gender and ten other binary
variable, which record presence or absence of ten symptoms: headache, eye
pain, muscle pain, join pain, cough, nausea or vomiting, chills, diarrhea,
nasal congestion and icterus and/or jaundice. All the variables of the data
sets are summarized in Figure 1.

In our data set, females represented 42% of the population and males repre-
sented 58% of the population. In the IgM data set, the two categories “Coin-
fection” and “Arboviral monoinfection” are underrepresented, which results
in irrelevant descriptive graphs. A descriptive analysis of the IgM/IgG data
set shows that the age is positively correlated to arboviral infections whereas
the temperature, nausea or vomiting, and rainfall variables are associated
with malaria. For example, among the patients having nausea or vomiting
symptoms, 45% had malaria monoinfection, 10% had arboviral monoinfec-
tion and 23% were coinfected. Among the patients having a nasal congestion
symptom, 31% were positive to malaria monoinfection, 21% were coinfected
and 14% were positive to arboviral monoinfection. Figure 2 displays the
distributions of age, rainfall and number of sick days over the four classes
of the IgM/I1gG data set. Overall, Figure 2 shows that arboviral-infected
patients are older than malaria-infected patients and the duration of illness
is longer for many arboviral cases. Higher fevers were observed for malaria
and coinfection illnesses. Figure 2(b) shows that high values of rainfall are



For categorical variables quantitative variables

Designation #levels 0(%) 1(%) mean median min max
Age 19.5 16.5 1 90
Temperature 38.97 39 38 42
Number of sick days 3.039 3 0 19
Rainfall 147.5 76.1 0 500.2
Sex (F=0 and H=1) 2 42 58

Cephalalgia 2 6 94

Nausea/vomiting 2 50 50

Diarrhea 2 83 17

Chills 2 45 55

Cough 2 64 36

Eye pain 2 95 5

Joint pain 2 77 23

Muscl pain 2 71 29

Nasal congestion 2 54 46

Ictere/jaudice 2 95 5

Malaria 2 42 58

IgM 2 99 1

IgG 2 95

Figure 1: List of variables

observed in the coinfection and malaria groups.

3. Statistical analysis of the coinfection influential factors

The objective of this section is to propose a methodology that can identify
the important symptoms for the arbovirus diagnosis and can help making
decision for arbovirus treatment in absence of laboratory confirmation.

Variable selection is appreciable in medical data analysis as the diagnosis
of the disease could be done on a minimum number of clinical measures.
Reducing the number of relevant covariates may also produce more accurate
classification results. In a first step, we select relevant covariates that explain
the disease status typically via a multinomial logistic model. The statistical
analysis is challenging because of the small number of instances of the ar-
boviral class (39) with respect to the total number of observations (12 288).
The cases that are more important for the study are rare and few exist on
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Figure 2: IgM/IgG data set; boxplots of the empirical distributions of the covariates (a)
age, (b) rainfall and (c) number of sick days for the four modalities of the response variable
Y : 0 (other febrile illnesses), 1 (arboviral monoinfection), 2 (malaria monoinfection ) and
3 (coinfection).

the available training set. We face what is usually known as a problem of
imbalanced data sets. This results in models that poorly represent the rare
class examples or simply ignore the observations of the minority class. To
handle this problem, we proposed two data pre-processing approaches. The
first one is based on biological considerations and extends the arboviral cases
from 39 to 633 by merging patients with either blood positive IgM or blood
positive IgG. We obtained the balanced IgM/IgG data set described in the
previous section, which contains 1976 observations. The second approach in-
volves randomly removing observations from the majority class to prevent its
signal from dominating the fitting procedure. We applied to the imbalanced
IgM data set a common undersampling technique to obtain a more balanced
data distribution. As the data distribution is changed, it is expected that the
fitted models are biased to the goals of the user and are more interpretable
in terms of these goals.

In a second step we investigate the robustness of the variable selection us-
ing random forests. Introduced by [15], random forests (RF hereafter) are
a robust nonparametric method to deal with classification problems. They
require only mild conditions on the data generating model. They are also less
sensitive to weaknesses in the data, because the randomized tree generation
procedure ensures that all covariates are more equally evaluated. Moreover,
RF decision trees often perform well on imbalanced data sets because ensem-
ble methods offer ways to rebalance the distributions in varied ways. In this



study, RF models have the advantage of providing a ranking of covariates
using the RF score of variable importance that is a useful and effective tool
to find important covariates for interpretation.

In a third step, we quantify the effects of the selected covariates using odds
ratios. We compute odds ratios for one disease category relative to an other
one and we contrast the effects of the covariates on the disease category,
arboviral monoinfection, malaria monoinfection and coinfection.

3.1. Multinomaal logit model

We recall that Y is the response variable indicating the class of the dis-
ease: “Other febrile illnesses” (Y = 0), “arboviral monoinfection” (Y = 1),
“malaria monoinfection” (Y = 2) and “coinfection” (Y = 3). Let X =
(1, X4,...,X,) be the vector of the p covariates. For an individual with co-
variates X = x, we want to predict the probability of belonging to the class
k given z,

m(x) =P =kl X =2), k=0,1,2,3.
The multinomial logit model assumes the existence of 31, 32, 33 € RP*! such
that, for each k = 1,2, 3 and each vector of covariates x,
P(Y = k| X =x)
P(Y =0|X =2)

log = (x, k) (1)

where

<$v Bk> = Z xj@kj
=0

and x¢ = 1 to include the intercept parameters Sxg, k = 1,2, 3. The reference
modality is class 0.
Consequently, for each k = 1,2, 3 and each vector of covariates =,

exp((, Br))
1+ Z?:l exp({z, B1))

P(Y =k|X =2) =

and ]
PY=0X=2)= 3 :
1+ 2121 eXp(<HL‘, Bl>)




From the computation of the maximum likelihood estimates Ek, we derive
for k=1,2,3,

i (7) (2)

1+ Z?:1 el
3.1.1. Application to the IgM/IgG data
We first give the results for the IgM/1gG data set since they are based on a
standard logit analysis. The multinomial model was fitted to the IgM/IgG
data by using either the multinom function or the vglm function of the nnet
and the VGAM R packages. A stepwise procedure based on the AIC crite-
rion selected eight significant covariates: age, temperature, number of sick
days, rainfall, nausea or vomiting, cough, nasal congestion and joint pain.
Likelihood-ratio tests of the sub-models obtained by removing one covariate
at a time from the final model confirmed that each selected covariate was

significant, with p-values less than 1079 except for the variable joint pain
that displayed a p-value of 7.44 1073,

3.1.2. Fitting strategy for handling imbalanced [gM data

The IgM data set contains 18 arboviral monoinfection cases, 21 coinfection
cases, 5 180 other febrile illness cases and 7 069 malaria monoinfection cases.
Trained on the original IgM data set, the fitted logit model only predicted
classes 0 and 2, which means it ignores the two minority classes 1 and 3 in
favour of the majority classes.

Applying resampling strategies to obtain a more balanced data sample is an
effective solution to the imbalance problem (see [16] for a survey of existing
methods). Two of the most simple resampling approaches are undersampling
and oversampling. Since the IgM is highly imbalanced with a large number
of observations in the two majority classes, we used a random undersampling
strategy that removes observations and reduces the sample size. We sampled
without replacement 50 cases from each of the two majority classes to create a
balanced sub-sample of size 18+21+50+50 = 139. Trained on a sub-sample,
the model predicted four classes.

Undersampling results in loss of information and the risk of removing relevant
observations is present. To overcome this problem, we repeated the sampling
step a thousand times and worked with 1 000 balanced sub-samples of the
IgM data set. The multinomial model was fitted to each sub-sample and
a stepwise covariate selection was performed. The observed variability of
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the 1 000 covariate selections raised robustness questions. To answer this
point, we conducted a nonparametric analysis based on the RF algorithm.
In recent years, several methods involving the combination of resampling and
ensemble learning have appeared in the imbalanced distributions literature
([16]). We found that the importance score based on random forests yielded
a convenient way to summarize the information obtained from the 1 000
sub-samples.

3.2. Variable selection using random forests

A random forest is an ensemble of unpruned trees, induced from bootstrap
samples of the training data, that uses random covariate selection in the tree
construction process. Prediction is made by aggregating the predictions of
the ensemble, using the majority vote rule.

One of the most widely used RF score of importance of a given variable is
the Mean Decrease of Accuracy (M DA) in predictions. It is based on the
out-of-bag (OOB) error. For each tree ¢ of the forest, consider the associated
OO B; sample (data not included in the bootstrap sample used to construct
t). Denote by errOO B, the misclassification rate of tree ¢ computed on this
OOB, sample. Then, randomly permute the observed values of covariate X
in OOB, to get a perturbed sample and compute errOOBg , the error of ¢ on
the perturbed sample. Variable importance of X is then given by

niree

! Z (errOOBg - (27’7‘OOBt)7

nitree —

MDA(X;) =

where ntree denotes the number of trees of the RF. The higher the MDA,
the more important the variable is. Several variable selection procedures
using RF are based on this quantification of variable importance.

Using R packages, we made the following implementation choices: randomForest
for RF fitting and M DA calculation, VSURF for selecting the important vari-
ables. The main parameters of randomForest were calibrated and set to
their default values, ntree=500 and mtry=,/p=3 (number of variables tried
at each split of a tree of the RF). The variable selection strategy of VSURF is
based on a two-stage procedure ([17]): 1. the covariates are ranked by sorting
their variable importance measures in descending order and the covariates
whose importance is less than a threshold (the minimum value of the stan-
dard deviations of the importance measures) are eliminated; 2. a sequence of
nested models starting from the one with only the most important variable

11



and ending with the one involving all important variables kept previously
is considered; the variables of the model leading to the smallest OOB error
are selected. An advantage of using VSURF is that this procedure does not
require the choice of tuning parameters.

3.2.1. Application to the IgM/IgG data

A graphical representation of the variable importance of the 15 covariates
is shown in Figure 3. The variable with the largest M DA is rainfall, which
is indicative of the rainy season. This is expected since the development
of malaria parasites is observed mostly during the rainy season. A second
group of less important individual covariates are the disease symptoms: nasal
congestion, age and number of sick days. The other covariates are ranked
from the most to the least important. The VSURF procedure led to select the
model with seven covariates: rainfall, nasal congestion, age, number of sick
days, nausea or vomiting, cough and temperature. This result is in agreement
with the logit selection variable that selected the same seven covariates and
added joint pain.

3.2.2. Application to the IgM data

Figure 4 ranks the variable importances (MDA) of the 15 covariates across
the 1 000 sub-samples. First, rainfall is the most important covariate; a
second group of less important covariates is formed by cough, age and joint
pain; then comes a group of five covariates: number of sick days, temperature,
nausea or vomiting, eye pain and nasal congestion; finally, six unimportant
covariates are displayed: muscle pain, chills, cephalalgia, jaudice, diarrhea
and sex . The boundary between the two last groups is not clear and we used
the VSURF procedure to separate the important covariates from the other
ones. We can notice on the plot that both MDA level and variability are
larger for relevant variables; as explained by [14], this is expected and the
VSURF threshold value is based on M DA standard deviation estimation.
Figure 5 summarizes the results of the VSURF selection procedure based
on the 1 000 sub-samples. The covariate rainfall (95.2%) is almost always
selected. Next, the more often selected variables are cough (29.1%), age
(28.3%), joint pain (19.8%), nausea or vomiting (16.4%), number of sick
days (16.1%), temperature (16.1%) and nasal congestion (11%), in decreasing
order. The other covariates are selected in less than 10% of the samples.
We set different random seeds and we found that, for our purpose of selecting
significant covariates, aggregation of 1 000 RF classifiers learned from 1 000

12



Variable selection by randomForest
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Figure 3: A variable importance plot for the IgM/IgG data set : mean decrease of accuracy
(MDA) of the covariates, by increasing order. The variables whose M DA is to the right
of the dotted line are selected by the VSURF procedure.

randomly balanced sub-samples yielded stable selected variable sets.

3.3. Influence of selected covariates on disease status

In the previous sections, we carried out a comparison between RF and multi-
nomial logit covariate selections on the IgM /IgG data set and the conclusion
is that the results are in agreement. The RF variable importance results on
the IgM sub-samples produced a robust ranking of the covariates. The same
group of seven important variables was selected by RF algorithm (see Fig-
ures 4 and 5); an eighth supplementary variable, joint pain, was added in the
stepwise selection of the IgM/IgG data set. In conclusion, we decided to
fit the same multinomial model with eight covariates to the data sets of our
analysis and to further quantify the effects of the covariates in this model.

Within the multinomial logit model, we can quantify the effect of a variable
in terms of an odds ratio or its logarithm. The odds that Y = k occurs for

13
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Figure 4: A variable importance plot for the IgM data set. Each boxplot summarizes the
distribution of the variable importance among 1000 IgM sub-samples.

an individual with covariates X = z is the ratio of P(Y = k| X = z) divided
by P(Y =0|X = z), k = 1,2,3. Then, the log odds of category k is given by
Equation (1) :

logodds(Y = k| X = x) = (x, Bk).

Thus the multinomial logit model is a linear regression model in the log odds.
The parameter component [;; can be interpreted as the change in the log
odds per unit change in the continuous covariate X, if all other covariates
are held constant. The odds ratio (OR) of category k for a d units increase
of X, all other covariates remaining constant, is defined as

P(Y = k|X; +d)/P(Y = 0|X, + d)

ORy(d) = P(Y = k|X;)/P(Y =0|X;)

= exp(f;d).

Once [ is estimated, one can estimate any odds or odds ratios. An OR equal
to one means that a change in covariate X; has no effect on the odds of

14
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Figure 5: Ranking by VSURF: for each variable, the length of the bar corresponds to the
empirical probability to be selected by VSURF among 1000 IgM sub-samples

category k; if ORy(d) > 1 (ORy(d) < 1), the effect of an increase of X is
to increase (decrease) the odds of category k. An odds ratio is a popular
description of an effect in a probability model since it can be constant. On
the contrary, the risk ratio P(Y = k|X; + d)/P(Y = k|X;), which could
be more interpretable in terms of predicted probabilities instead of odds,
depends on the values of all other covariates. ORs are similar to risk ratios
if the risk is small, otherwise ORs overestimate risk ratios.

For each covariate, we computed the odds ratios ORy, k = 1,2,3 and their
confidence intervals for each disease. Table 3 for the IgM/IgG data set and
Figure 7 for the IgM data set display the OR by which the odds increases
for a certain change in a covariate, holding all other covariates constant.
The ORs associated with binary variables ( Nausea/vomiting, Cough, Nasal
congestion and Joint pain) were computed by comparing the two modalities:
0 for absence and 1 for presence of the symptom. We computed the ORs
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resulting from increasing Temperature from 38 to 40 degrees Celsius (d = 2)
and from increasing Number of sick days from 2 to 6 days (d = 4). The outer
quartiles of Age are 8 and 28 years (d = 20), so we computed the half-sample
OR for age. Similarly, we computed the half-sample OR for a rainfall of 14
mm compared to a rainfall of 370 mm (d = 356).

The ORs defined previously are relative to the reference category ¥ = 0. We
also computed the ORs between two diseases Y = k and Y = [ in order to
differentiate the effect of each covariable between the three clinical groups,
arbovirus vs malaria, coinfection vs arbovirus and coinfection vs malaria:

P(Y = k|X; + d)/P(Y = 1| X, + d)
P(Y = k[X;)/P(Y = 1|X;)

ORy(d) = = exp((Br; — Bi)d).
These results are displayed in Figure 6 (IgM/IgG data set) and Figure 8
(IgM data set). The confidence intervals are derived from the fitted multi-
nomial logit model and their accuracy is based on the parametric assumption
that the true data generating distribution does fall in the model.

3.3.1. Results for the IgM/IgG data

. Diseases Arbovirus Coinfection Malaria
Variables
Age 1.71 [1.42;2.07] 1.12 [0.92; 1.36]| 0.61 [0.50; 0.73
Temperature 1.02 [0.69; 1.49] 2.16 [1.52;3.07 2.47 [1.82;3.35
Number-of-sick-days | 2.54 [1.91;3.37] 1.43 [1.04;1.96] 1.04 [0.77;1.39]

Rainfall

2.19 [1.53;3.14] 17.0 [12.0;24.0] 9.81 [7.18; 13.4]

Nausea /vomiting

0.83 [0.60; 1.13]

[
[ [

2.07 [1.55;2.78] 2.15 [1.67;2.77]
[ [0.44; 0.74]
[ [
[ [

Cough 0.79 [0.58;1.10]| 0.46 [0.33;0.63| 0.57
Nasal congestion 0.52 [0.35;0.75] 0.13 [0.09;0.20| 0.10 [0.07;0.13
Joint pain 1.52 [0.99;2.32] 1.90 [1.26;2.83] 1.74 [1.21;2.50

Table 3: IgM/IgG data: odds ratios with respect to the reference modality and 95%
confidence intervals.

From Table 3, we can say that the effect of increasing temperature from 38 to
40 is to double the odds of coinfection or to increase the odds of malaria by a
factor of 2.5. The odds of arboviral monoinfection is multiplied by 1.71 for an
adult compared to a child, whereas the odds of malaria decreases by a factor
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of 0.61. An increase of the number of sick days from 2 to 6 increases the odds
of arboviral monoinfection by a factor of 2.54. The presence of nausea or
vomiting symptoms increases the odds of malaria or the odds of coinfection
by a factor of 2.07 and 2.15 respectively.

To summarize these results, we can say that a high temperature and presence
of nausea or vomiting symptoms are risk factors for malaria and coinfection;
a number of sick days greater than 2 and age above eight-years old are risk
factors for arbovirus and coinfection.

Arbovirus vs Malaria Coinfection vs Arbovirus Coinfection vs Malaria

OR and:95% Cl e OR and:95% Cl e OR and§95% Cl e

Jaint pain < I—:e—l F 5101 Jointpain - )—e+| F 33601 Jaint pain < )—ei—1 83601

Nasélcongestion <~ |—+— : F33a46  Nasal.congesion - i F—s— | 13808 Nasclcongasion - I—O—ii I 2302
| |

Cough = N Cough 1 l —— r3e3 Cough - ;44 r14edt
)—9—! ! : L i

Nauseavomiting | | F 35209 Nauseavomiing - | e B - 16e07  Nauseavomiing - )—Ip—| 78601

rainall - i ——{ 78215 rainfell -F—e— i koo rainal 4 (aal i I 22808
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Nosick day ! : F 7540 Nbsickday - : e - 12604 Nossick cay H—(i - 2802

Temperafure - : —— F 52205 Temperature F—— i 35004 Temperalure )—ié—l 3801
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(8) arbovirug(---seeeeeeeemee ymalaria (b)  coinfectiong-------------- sarbovirus (c) coinfectionq------------- smalaria

Figure 6: TgM/IgG data: odds ratios between two diseases and 95% confidence intervals;
(a) Arbovirus vs Malaria (b) Coinfection vs Arbovirus (c¢) Coinfection vs Malaria.

Figure 6(a) displays the odds ratios between malaria monoinfection and ar-
boviral monoinfection. We can say that Nasal congestion, Number of sick
days and Age are correlated to arbovirus; Temperature, Rainfall and Nau-
sea or vomiting are correlated to malaria monoinfections. The variables
joint pain and cough are not significant in distinguishing malaria and ar-
boviral monoinfections. Figure 6(b) suggests that vomiting symptoms and a
high fever are indicative of coinfection among patients exhibiting arboviral
monoinfection. But these covariates are not significant to differentiate coin-
fection from malaria monoinfection (Figure 6(c)). Figure 6(c) suggests that
Age, Number of sick days and Nasal congestion are significantly correlated
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with coinfected patients compared to patients with single malaria disease.

3.3.2. Results for the IgM data

Figure 7 and Figure 8 display the sampling distribution of ORs based on the

fitting of the 1000 sub-samples of the IgM data set.

(a): Arbovirus

(b): Coinfection
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Figure 7: IgM data: boxplots of 1000 odds ratios with respect to the reference category;
(a) Arbovirus (b) Coinfection (¢) Malaria.

From Figure 7 and Figure 8, we can say that temperature, rainfall and
vomiting symptoms are significantly correlated with malaria monoinfections
whereas joint pain, age and number of sick days are correlated with arboviral
monoinfections. The odds of coinfection increases with high fever and high
rainfall values, and the presence of vomiting and joint pain symptoms.

3.3.3. Conclusion

The results based on both data sets show that a high temperature and the
presence of nausea or vomiting symptoms are mostly indicative to malaria
parasite infections whereas an increase of the number of sick days and the
age are indicative to arboviral infections. The effects of the nasal congestion
and joint pain symptoms on the disease status are not clear enough to be
interpreted. The main question of the study was to identify risk factors that
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(a): Arbobirus vs Malaria (b): Colnfection vs Arbovirus (¢): Coinfaction vs Malatia
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Figure 8: IgM data: boxplots of 1000 odds ratios between two categories; (a) Arbovirus
vs Malaria (b) Coinfection vs Arbovirus (c) Coinfection vs Malaria.

can help doctors to diagnose a concurrent malaria and arbovirus infection.
From these results, Temperature is the only risk factor that differentiates
between coinfection and single infections.

4. Predictive analysis

In this section we aim to propose a methodology that can help make timely
decisions for targeted treatment in pathogens coinfection cases. We show
that we can derive a predictive analysis to discriminate arbovirus positive
and arbovirus negative cases among coinfected patients.

4.1. Testing independence between arbovirus and malaria
In the multinomial model given by (1) in Section 3.1, we can test the inde-
pendence between arboviral and malaria infections.

The joint statistical distribution of arboviral infection (A™) and malaria in-
fection (M™) is given in Table 4. As in Table 1 and Table 2, AT corresponds
to an individual belonging to categories 1 or 3 of the response Y, and M+
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A=0 A=1 law of M
M =0 o m P(M*=0)=m+m
M=1 Up) T3 P(M+:1):7T2+7T3
law of A* | P(A=0)=m+m | P(A=1)=m +m3 1

Table 4: Joint distribution of arboviral infection and malaria infection

corresponds to an individual belonging to categories 2 or 3 of the response
Y.

Independence between arboviral and malaria infections means that for all

(ll, lg) in {O, 1},
]?(]\4Jr = ll,AJr = 12) = 1:)(.]\4+ = ll) X P(.A+ = l2)
The independence hypothesis can be written in terms of parameters as:

Hy : “Bs = b1+ 5.

The Wald statistic to test Hy against its two-sided alternative is computed
as

W = h(3)"Sh(B),

with h(ﬁ) = 33—51—32 and ¥ = DV DT where D = (—Idy1, —Idyy1, Idyis);
Id, is the p x p identity matrix and V' is an estimator of the variance of
3 = (31, 32, B\g)T. Under Hy, W is asymptotically distributed as a chi-square
variable with (p + 1) degrees of freedom. Under Hy, W converges to infinity
as the sample size goes to infinity.

We fitted model (1) including the eight covariates selected in Section 3.3
and we computed the independence test. Based on IgM/IgG data, the in-
dependence hypothesis was rejected with a p-value equal to 1.46.107%. We
studied the robustness of the test decision with respect to the variable selec-
tion. Whatever the selected number of variables, we obtained p-values with
order less than or equal to 1073. Thus, we can consider that arbovirus and
malaria are correlated.

Applying the test on the IgM data, we computed the 1000 p-values corre-
sponding to the 1000 sub-samples and obtained that 42.5% of them were less
than 0.05. So we can not reject the independence hypothesis in a majority of
sub-samples. It can be explained by the fact that the size of the sub-samples
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is small (139) and the asymptotic approximation of the law of the test statis-
tic is not accurate. Moreover, the IgM data set may not contain enough
information to explain coinfection. Which means that the independence test
lacks of power.

In the following, we will only consider the IgM/IgG data set to propose a
predictive analysis.

4.2. Diagnosis of arboviral disease

In this section, we present a methodology to help doctors to diagnose the ar-
boviral infected patients whose symptoms are masked by malaria symptoms.
We propose to base the diagnosis on the conditional probability P(C|M) to
be coinfected given that malaria infection is observed. This probability is the
quantity of interest because arboviral infections are considered by healthcare
workers only if malaria tests are negative. In absence of rapid arbovirus de-
tection tests, the aim is to provide a decision support tool to determine if
an arbovirus could be responsible for the clinical symptoms of the patient
coinfection.

Based on the previous results of the IgM/IgG data set, the independence
test of Section 4.1 displays an association between malaria and arboviral
infections. Then the probability P(C|M) can be computed in function of
the m, probabilities estimated from the multinomial logit model. For an
individual with covariate x,

PCIM) = ) e
C m(r) + M) elwBs) 4 elwfa)

This probability can be used to differentiate whether the illness to be treated
should be arbovirus or malaria. We propose a binary classification rule and
we predict an arbovirus illness if the estimated coinfection probability is
greater than a threshold value ~:

If P(C|M) >~ : arbovirus positive case,
If P(CIM) <~ : arbovirus negative case.

The evaluation of the classification is based on the confusion matrix and
the overall classification accuracy. The confusion matrix is used to compute
true arbovirus positives (TP), false arbovirus positives (FP), true negatives
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(TN) and false negatives (FN). A global performance measure is the miss-
classification rate (MCR) defined as:

FP+ FN
MCR = T,

with N=TP+ FP+TN + FN.

The analysis performed in this section is based on 1148 instances of the
IgM/IgG data set corresponding to the patients infected with malaria par-
asites. The multinomial logit model was trained on 66.7% of the data,
namely 1317 instances and tested on the remaining 377 individuals posi-
tive to malaria. To choose the classification threshold value v, standard
practice is to minimize the miss-classification rate. We computed the five-
fold cross-validation estimator of the MCR. We can see on Figure 9 that
the optimal threshold is around v = 0.5. Five-fold cross-validation was run
different times, each with a different split of the data and the optimal value
of v was found to be quite stable. Then, a classification with v = 0.5 was
used to predict the type of illness that has affected the patient based on his
clinical symptoms. Predicted and actual arbovirus cases were compared us-
ing the test set, as presented in Table 5. The rows of the matrix are actual
classes and the columns are the predicted classes. We observe that the corre-
sponding MCR is 38%, and the number of FN is quite high. In applications
such as disease diagnosis, it is desirable to have a classifier that reduces the
number of FN| since a false negative could be more dangerous to the care of
a patient, who then may not be treated, whereas with a false positive, the
patient would most likely undergo more testing before treatment. Different

Predicted 0 1
True
0 211 | 29
1 114 | 23

Table 5: Confusion table with v = 0.5.

strategies can be adopted. One possibility is to reduce the number of FN by
minimizing a weighted version of the MCR,

FP 4+ cFN
WMCR=+, e 1.
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A weight coefficient ¢ higher than one increases the cost of classification
mistakes on the FN. We tried empirical values of ¢ = 2, 3,4 and found that
they resulted in a decrease of the FN rate at the cost of an increase of the
WMCR. With a choice of ¢ = 2, the threshold value that minimizes the
WMCR is 0.25. With this v choice, we observe on Table 6 that the number
of FN is reduced but the MCR remains too high (46.7%).

1.0

0.8

0.6
|

04

0.0
1

threshold

Figure 9: IgM/IgG data: estimated cross-validation miss-classification rate. The WMCR
is shown in black as a full line. The MCR is shown as a black dotted line. Increasing -y
increases the number of FN (green full line) and decreases the FP (red full line).

Predicted 0 1
True
0 88 | 152
1 24 | 113

Table 6: Confusion table with v = 0.25.

In a next step, we proposed to select, among the positive predicted patients,
those individuals with age greater than 10 and number of sick days greater
than 3. Indeed we concluded in Section 3.3.1 that these two variables are
mostly indicative of arboviral disease. The threshold values were again cho-
sen to minimize the WMCR using cross-validation. Table 7 gives the corre-
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sponding results: the MCR is decreased to 36% while the number of FN is
smaller than the number of FN of Table 5 and the number of TP is doubled.

Predicted 0 1
True
0 190 | 50
1 85 | B2

Table 7: Confusion table with v = 0.25, Age = 10 and Number of sick days = 3.

The objective of these predictions was to assign patients to either a “Malaria”
group or a “Arbovirus” group and to handle mystifying cases due to the
similarity of the initial symptoms in both diseases. The classification proce-
dure is based on the computation of the conditional probability P(C|M).
The threshold parameter ~ is calibrated to minimize the weighted miss-
classification rate. To improve the accuracy of the classification, we propose
to take advantage of the covariates that were selected in Section 3.3.1 as
arbovirus specific covariates. Based on these specific covariates, we filtered
the positive predicted patients and obtained better results.

The performance of a classification procedure is greatly affected by the qual-
ity of data source. We based our analysis on the IgM/IgG data collected
from patients who were tested positive to IgM or IgG. As IgG antibodies
appear later in time in blood than IgM antibodies, they may not reflect a
current infection, thus minimizing the possibility of finding a true correla-
tion with the current recorded symptoms. This drawback may reduce the
prediction capacity of the classification procedure. Also, false positives and
false negatives from biological tests could impact these results. However, the
diagnostic tests used in the study displayed high sensitivity and specificity
parameters; then their impact on the results should be negligible.

5. Discussion

Misdiagnosis of arbovirus coinfections as malaria infections may increase the
spread of arbovirus diseases in areas where fast diagnostic assays are not
available. This study proposes an appropriate statistical methodology that
can assist doctors in the elaboration of the differential diagnosis of febrile
cases for arboviruses.
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Our analysis is based on a real-life medical data set. In the original IgM
data set, arbovirus positive individuals are identified as individuals likely to
be in the early stages of arbovirus illness. It is the relevant data set for the
classification problem. However, the positive cases constitute only a very
small minority class of the data (39 positive cases over 12288 individuals).
Several sampling strategies have been developed to learn from imbalanced
data sets [18] and to correct classification of the rare class. [16] proposed
a categorisation of these approaches into two main categories: data pre-
processing and modifications on the learning algorithms. Algorithm level
strategies including random forest solutions have been discussed to deal with
the imbalanced data classification problem ([19], [20]). They require a good
insight into the modified learning algorithm and a precise identification of
reasons for its failure in mining imbalanced data sets. As we were interested
in the statistical methodology that could be applied to a more relevant data
set, we took solutions that pre-process the given imbalanced data set. Since
the data distribution is changed to make standard methods focus on the cases
that are more relevant for our problem, the results should be interpreted
carefully.

To analyze coinfection data we propose a methodology with three steps: 1. a
variable selection with random forests; 2. an analysis of the influent factors
through multinomial model fitting and odd ratios computation; 3. a predic-
tive analysis based on coinfection probabilities. From our experiments, we
can say that the random forests algorithm is a robust method to select the
important variables for the different diseases. The analysis of the odd ratios
allows to identify the risk factors that characterize each disease. We observed
that higher values of number of sick days and of age are mostly indicative
of arboviral disease while higher values of temperature and presence of nau-
sea or vomiting symptoms during the rainy season are mostly indicative of
malaria disease. The results also pointed out that a high-grade fever could be
considered as a differential diagnostic for malaria and arbovirus coinfection,
which is in agreement with the study of [13]. The classification rule based
on coinfection probability, age and number of sick days identifies coinfected
patients to be treated for arbovirus with global accuracy of 65%. The results
could be improved on a more suitable data set. A future study will apply
this methodology to coinfection data between malaria and other pathogens
more easily detectable in the early stages of infection than arboviruses.
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