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Antibody–antigen complexes challenge our understanding, as analyses to date failed to
unveil the key determinants of binding affinity and interaction specificity. We partially
fill this gap based on novel quantitative analyses using two standardized databases,
the IMGT/3Dstructure-DB and the structure affinity benchmark. First, we introduce a
statistical analysis of interfaces which enables the classification of ligand types (protein,
peptide, and chemical; cross-validated classification error of 9.6%) and yield binding
affinity predictions of unprecedented accuracy (median absolute error of 0.878 kcal/mol).
Second, we exploit the contributions made by CDRs in terms of position at the interface
and atomic packing properties to show that in general, VH CDR3 and VL CDR3 make
dominant contributions to the binding affinity, a fact also shown to be consistent with
the enthalpy–entropy compensation associated with preconfiguration of CDR3. Our work
suggests that the affinity prediction problem could be partially solved from databases of
high resolution crystal structures of complexes with known affinity.

Keywords: antibody–antigen complex, molecular recognition, binding affinity prediction, complementarity deter-
mining region 3, interaction specificity

1. INTRODUCTION

1.1. Immunoglobulins and the Immune Response
Adaptive immunity is based on antigen (Ag)-specific lymphocyte responses. Upon specific recog-
nition of an antigenic epitope by a given receptor unique to a lymphocyte, this cell gets activated
and proliferates, leading to a clonal expansion. B lymphocytes thus recognize antigens through
membrane-bound immunoglobulins (Ig) expressed at their surface. Seric Igs can opsonize bacteria
and facilitate their uptake by phagocytes or neutralize viruses thus preventing recognition by their
receptor or fusion with the target cell. Immunoglobulins fundamentally consist of two identical
heavy (H) chains and two identical light (L) chains, each H chain being bound to an L chain. The
antigen-binding site is located at the top of the paired VH and VL, and generally overlaps the two
V domains. It mainly consists of three flexible loops on each V domain, called complementarity
determining regions (CDR1–3). The diversity of antibodies is concentrated in the CDRs.

From the structural standpoint, the functional relevance of an Ig depends on its binding affinity
for the targeted antigen and the specificity of the interactions, which provides the basis of immune

Abbreviations: SAB, structure affinity benchmark; SAM, solvent-accessible model; IG, immunoglobulin; Ag, antigen; CDR,
complementarity determining region; FR, framework region.
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memory and vaccination. The affinity sets the strength of the
interaction. For the membrane-bound Ig, it determines if enough
aggregation of surface Igs and Ig co-receptors occurs, so that a suf-
ficient signal can be sent to the cell to induce activation and pro-
liferation (1). For secreted Ig, once bound to the target, pathogens
or host infected/tumoral cells, the affinity sets the efficiency
of Ig-mediated pathogen opsonization and/or neutralization, or
Ig effector properties (antibody-dependent cell-cytotoxicity or
ADCC, complement-dependent cytotoxicity or CDC) (2).

1.2. Ig–Ag Complexes and Underlying
Genetic Mechanisms
The prominent role played in Ag binding by CDRs has prompted
the analysis of CDR-specific statistics. Using a handful of crys-
tallographic structures, canonical conformations, i.e., commonly
occurring backbone CDR conformations were first reported (3)
and subsequently updated (4, 5), using 300 non-redundant Ig
structures in the latest work (6). Moving from individual CDR
to all CDRs, correlations between canonical conformations were
further studied (7), highlighting the fact that some combinations
are multi-specific, while others are specific of an antigen type.
The VH CDR3 is the most variable and was therefore the focus of
several studies (8–10) which defined and updated sequence-based
rules to predict its conformations. More recently, these studies
have been refined, based on a larger number of structures (of the
order of hundreds instead of tens). For VL CDR3, new canonical
conformations were proposed (11), and for VH CDR3, previous
rules were updated and complemented (12, 13). Distinguishing
lambda versus kappa chains, it has been shown that canonical con-
formations from the former are more diverse than those from the
latter in the human and the mouse (14). However, the relevance of
canonical conformations for the prediction of the 3D structures of
CDRs was questioned (15), since general loop predictionmethods
matched (or even outperformed) the prediction performances
of methods exploiting specific rules associated with canonical
conformations of CDRs. In parallel, two related works (16, 17)
studied the differential CDR lengths and Specificity-Determining
Residues Usage (SDRU, proportion of Ig amino acids at a given
CDR position which contact the antigen) between ligand types.
However, these analyses do not allow antigen type predictions.
To assess the role of individual CDRs, it has also been established
that except in the case of bacterial carbohydrates, diversity in VH
CDR3 alone can result in primary responses specific to the antigen
(18). Structural and genetic aspects of individual CDRs in natural
and artificial antibody repertoires are reviewed in Ref. (19).

1.3. Ig–Ag Complexes and
Thermodynamics
The analysis of Ig–Ag complexes can also be posed from the
thermodynamics standpoint. Specifically, the binding affinity is
a thermodynamic quantity describing the chemical equilibrium
associated with the two partners (Ig and Ag in our case) and
the complex [Ig–Ag, denoted IG/Ag in the IMGT nomencla-
ture (20)]. It is generally measured by the dissociation constant
Kd (=[Ig]·[Ag]/[Ig–Ag]) of this equilibrium. Equivalently, it is
expressed by the corresponding dissociation free energy

∆G = −RT lnKd/c◦ = ∆H − T∆S, (1)

in the c◦ = 1M standard state, with T the temperature and R
the gas constant. Thus, by nature, the affinity has an enthalpic
component (∆H) qualifying the interaction energy, but also an
entropic component (T ∆S) qualifying the loss of dynamical
properties upon complex formation (intuitively, the formation
of the Ig–Ag complex indeed restricts the degrees of freedom
of both partners). These two competing interests illustrate the
enthalpy–entropy compensation phenomenon (21, 22), which
stipulates that a favorable enthalpic change upon association is
accompanied by an entropic penalty. Predicting binding affinities
from structural data requires to quantify this compensation
and is therefore a notoriously challenging problem, for pro-
tein complexes in general (23, 24), and for Ig–Ag complexes in
particular (25).

To model the enthalpic component, various parameters have
been proposed. Most of these parameters, which describe the
morphology of the interface (size, shape, and packing properties)
and its biochemistry (salt bridges, solvation, andhydrogen bonds),
were estimated from crystal structures of complexes (26–29).
More recently, it has also been shown that non-interacting atoms
play an important role, intuitively related to solvent interactions
(30). Such approaches have been applied to Ig–Ag complexes
(31), stressing in particular the role of interfacial solvent (32),
biochemical properties of Igs as a function of epitopes (33), or the
correlation between interface curvature and ligand size (34).

To model the entropic component, the conformational and
vibrational properties of the partners must be captured. It has
indeed been shown that the preconfiguration of the binding site
may yield a decreased entropic loss, hence an enhanced binding
affinity (35–38). It has also been shown that a preconfiguration
of the variable domains can be induced by the constant domain
1 (CH1) of the heavy chain (39, 40), suggesting that the isotype
switching commonly occurring during B cell differentiation may
affect the affinity through changes in the dynamic properties
of the Ig. Parallel to binding affinity, the notion of functional
affinity or avidity which takes into account the (possibly negative)
cooperativity betweenmonomers of an antibody is highly relevant
in vivo. In that context, constant regions have been shown to
influence the avidity (41–44). Likewise, an intact ball-and-socket
joint between VH and CH1 domains has been shown to affect
antibody neutralizing activity (45).

1.4. Contributions
The difficulty of understanding molecular recognition between
proteins in general and antibody–antigens in particular is well
known (31). In this work, we present novel quantitative anal-
yses for interfaces of Ig–Ag complexes. Using the annotated
IMGT/3Dstructure-DB (20), the interface between the Ig chains
and the Ag is determined using a Voronoi-based model for each
complex and decomposed into contributions from CDR, frame-
work (FR), and atoms outside the V region. This interface allows
dissecting the interface into contributions made by CDRs, in
terms of position of their atoms at the interface and packing
properties of these atoms.Using these parameters, we showhow to
unambiguously distinguish ligand types and predict binding affin-
ity with unprecedented accuracy. We also develop quantitative
models for the contribution of VH CDR3 to binding affinity and
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interaction specificity, bridging the gap between various observa-
tions (canonical backbone conformations, mutagenesis data, and
affinitymeasurements), and explaining the emergence of function
from a combination of structural and dynamical properties.

2. MATERIALS AND METHODS

2.1. Voronoi Interface Models
Given a macromolecular complex, an interface model is a struc-
tural model of the atoms accounting for the interactions, ideally
encompassing its enthalpic (i.e., interaction energy) and entropic
(i.e., dynamic) dimensions. In the sequel, we model complexes
and their interfaces using solvent-accessible models (46) and the
associated Voronoi-based interface model [Figure S3 in Supple-
mentary Material; (47, 48)].

2.1.1. Solvent-Accessible Models and Voronoi
Interfaces
The solvent-accessible model (SAM) of a set of atoms is a model
where each atom is represented by a ball whose radius is the van
der Waals radius expanded by the radius rw = 1.4 Å of a water
probe accounting for a continuous solvation layer (46, 49). A
convenient construction to study SAM is the Voronoi (power)
diagram defined by the atoms (49). In particular, the Voronoi
diagram induces a partition of the molecular volume, obtained
by computing for each atom its Voronoi restriction, namely, the
intersection between its atomic ball and its Voronoi region. The
volume of this restriction, also called atomic volume, is a direct
measure of the atomic packing (49).

The exposed surface of a SAM consists of the boundary of the
union of balls defining the SAM. This surface consists of spherical
polygons, delimited by circle arcs (every such arc is located on the
intersection circle of two atoms), themselves delimited by points
(each such point is found at the intersection of three atoms).
When two molecules assemble to form a complex, the buried
surface area (BSA) is the portion of the exposed surface of both
partners which gets buried (27). BSA has been shown to exhibit
remarkable correlations with various biophysical quantities (50),
and notably dissociation free energies for complexes involving
moderate flexibility (29).

Consider the SAM of a complex whose partners are denoted
A and B, and also involving interfacial water molecules W. Two
atoms are in contact provided that their Voronoi restrictions
are neighbors. Pairs of type (A, B) define the AB interface,
namely, direct contacts between the partners. Focusing on water
molecules W sandwiched between the partners, pairs (A, W)
and (B, W) correspond to water mediated interactions. It can
be shown that all atoms from the partners identified this way
form a superset of atoms loosing solvent accessibility (51). The
binding patch of a partner consists of its interface atoms. The
atoms of the binding patch can be assigned an integer called
its shelling order, which is a measure of the distance of this
atom to the boundary of the patch it belongs to (28). This
information generalizes the core–rim model (27) and has been
shown to provide state-of-the-art correlations with solvent
dynamics, conservation of amino acids (28), and dissociation
free energies (29). All tools to compute the parameters just

discussed are available within the Structural Bioinformatics
Library at http://sbl.inria.fr>Applications> Space Filling
Models.

2.1.2. Application to Ig–Ag Complexes
For an Ig–Ag complex, we partition the set I of interface atoms
just defined into the atomsIIg contributed by the Ig, and the atoms
IAg contributed by the Ag, so that I = IIg ∪ IAg. It follows that
the number of interface atoms |I| is the sum of those contributed
by the Ig and the Ag, respectively, namely, |I|= |IIg|+ |IAg|.
Similarly, we charge the Buried Surface Area (BSA) to the Ig and
Ag, respectively, so that BSA=BSAIg +BSAAg. These quantities
yield the average BSA per interface atom on Ig and Ag side:

bsaIg =
BSAIg

|IIg|
, (2)

bsaAg =
BSAAg

|IAg|
. (3)

The previous analysis can be generalized to accommodate the
structure of Fabs, by decomposing the variable domains of each
chain (VH and VL) into to three complementarity determin-
ing regions (CDRs) and four framework regions (FRs), result-
ing in 14 Voronoi interfaces. Practically, we focus on contacts
made by the six CDRs, those made by framework regions being
negligible (Table S5 in Supplementary Material). (Details of
the method used at http://sbl.inria.fr/doc/Space_filling_model_
interface-user-manual.html.) In doing so, a buried surface area
is defined for each CDR.

2.2. The Dataset and Data Curation:
The IMGT/3Dstructure-DB
We use the Ig–Ag complexes from the IMGT/3Dstructure-DB
[http://www.imgt.org/3Dstructure-DB/ (20)], corresponding to
the category IG/Ag for IMGT complex type. Each such complex is
processed in order to identify canonical complexes involving one
heavy chain, one light chain, and one ligand. Upon inspecting
such cases, two decisions are made. First, on the antigen side,
we retain three types only (peptide, protein, and chemical), due
to the scarcity of cases involving other types. Moreover, we also
remove complexes involving multiple ligands types. For the same
reason, regarding species, complexes are assigned to three classes:
human, mouse, and other. In total, 489 complexes are retained
after filtering for missing data, inconsistencies, redundancy, lig-
and type, and species. The detailed processing methodology is
described in the SectionA.1 in SupplementaryMaterial. Themain
features of the complexes used are also summarized in Table S3 in
Supplementary Material.

CDR and FR limits of the VH and VL domains are according
to the IMGT unique numbering (52) (Table S2 in Supplementary
Material). Practically, we use the following notations: CDR1-
IMGTof VH is writtenVHCDR1 and FR3-IMGTof VL is written
VL FR3. Other CDRs and FRs follow the same scheme.

2.3. The Binding Affinity Benchmark
Our affinity predictions exploit the structure affinity benchmark
(SAB) (23), a manually curated dataset containing 144 cases, each
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described by three crystal structures (of the unbound partners
and of the complex) and the experimentally measured bind-
ing affinity in controlled conditions. In this work, we split the
SAB into two sets: 14 Ig–Ag cases defining the test set (Table
S3 in Supplementary Material) and 125 non-Ig–Ag cases defin-
ing the training set. Five complexes (among which 3 Ig–Ag)
were removed from the SAB because only an upper bound on
their Kd was provided, or had too many missing atoms. Having
learned a statistical model from the latter, we predict affinities for
Ig–Ag complexes of the former. See details in the Supplementary
Material section.

2.4. Predicting Ligand Types
Antigens in the dataset are categorized as chemical, peptide, and
protein. Predicting the ligand type therefore requires to build a
3-class predictor.

2.4.1. Relevant Variables
In order to predict ligand types, we represent each complex by
two variables: bsaIg and bsaAg which are the average BSA per
atom for atoms on the Ig and the Ag side, respectively. These
variables define the two-dimensional space displayed in Figure 1
where each point represents a complex. A classifier, i.e., a method
predicting the antigen type from the parameters bsaAg and bsaIg is
then trained on this data. Practically, we use a decision tree parti-
tioning the space into rectangular regions, each corresponding to
a ligand type.

2.4.2. Statistical Methodology
Since the performance of classifiers tested on the training data
is overestimated and leads to classifiers with poor generalization
abilities (overfitting), various schemes have been devised to obtain
an estimate of the generalization error.

FIGURE 1 | Interaction specificity for Ig–Ag complexes: analysis and
predictions. Both analyses are based upon the average buried surface areas
per atom [equations (2) and (3)] bsaIg versus bsaAg. Scatter plot as a function
of the ligand type. The three lines (L1, L2, and L3) show the partition defined
by the decision tree, separating the ligand types (see main text). The points
labeled 2O5X, 2HKF, and 4OGY correspond to complexes displayed in Figure
S3 in Supplementary Material.

We use the k-fold cross-validation where the dataset is ran-
domly divided in k subsets of equal size, and k− 1 subsets are
alternatively used to classify the remaining one. At the end of this
procedure, each sample has been predicted and the proportion of
misclassified samples can be computed. Here, k is set to 5. Since
the partition into training and test data used during this proce-
dure is inherently random and may lead to non-representative
results for a single run, we report median errors over 1,000 cross-
validation runs.

In order to size the expected performance of a random clas-
sifier, we use a simple permutation test. Basically, complexes are
randomly predicted by permuting the ligand types in the origi-
nal dataset and assigning the result of the permutation to each
complex. This procedure maintains the number of complexes per
ligand type. Median errors over 10,000 random permutations are
reported.

Finally, we also train a naive classifier which only uses the
number of interface atoms. We report median errors over 1,000
cross-validation runs.

2.4.3. Ligand Redundancy
In total, there are 465 distinct ligands out of 489 complexes, with
the most represented ones appearing at most 3 times. Overfitting
due to Ag redundancy in the dataset is therefore not an issue.

2.5. Predicting Binding Affinities
2.5.1. Relevant Variables
The dissociation free energy is the thermodynamic quantity
defined by equation (1). The estimation of −∆G was recently
revisited and posed as a sparse linear model estimation prob-
lem (24), stressing the importance of two variables. These two
variables turn out to be the most informative ones when estimat-
ing binding affinities, in the sense where they get selected most
often amidst a pool of variables modeling relevant biophysical
properties (24).

The first one, the inverse volume-weighted internal path length
(IVW-IPL), encodes the size and morphology of the interface and
takes atomic packing into account. Let I be the set of interface
atoms in a complex. Let SO(a) and Vol(a) be the shelling order
and Vol_bound the volume of atom a in the complex (see section
2.1). The IVW-IPL is defined as follows:

IVW−IPL =
∑
a∈I

SO(a)
Vol_bound(a) . (4)

On the one hand, the shelling order refines so-called core–rim
models (27). Borrowing to the notion of cooperative effects
involving non-bonded weak interactions, an isotropic or disk-like
interface is indeed expected to be more stable than an elongated
one—even if their surface areas match. On the other hand, the
atomic packing encodes the local density of neighbors of a given
atom and thus provides a measure for local interactions (hydro-
gen bonds and van der Waals interactions). Note that packing
is a subtle quantity related to the enthalpy–entropy compensa-
tion discussed in Introduction, as its properties strike a balance
between enthalpy (a large number of neighbors favor interactions)
and entropy (too small of a packing is detrimental for dynamics
yielding an entropic penalty).
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The second variable (NIScharged) is the fraction of charged
residues on the non-interacting surface (NIS, i.e., the exposed
surface of the Ig and of the Ag not involved in the interface).
The NIS is meant to encode electrostatic properties and solvent
interactions (30).

2.5.2. Statistical Methodology
We compare experimental versus predicted binding affinities
(Figure 2), the latter estimated using k nearest neighbors regres-
sion (knn) (53, 54), a non-parametric regression strategy which
does not require any a priori on the mathematical model for the
response variable estimated—as opposed to linear regression for
instance. This strategy is a two step strategy. As a preprocessing
step, we compute the parameters IVW-IPL and NIScharged for the
training set (125 cases), yielding a point cloud P in the two-
dimensional space defined by IVW-IPL and NIScharged (Figure 3).
To estimate the affinity of a complex q (an Ig–Ag case), we proceed
in two steps. First, the knearest neighbors of q inP are sought, with
k a predefined number. Second, the affinity of q is estimated by
averaging those of its k nearest neighbors. [Practically, the scikit-
learn library (55) was used, namely, the neighbors package for
knn regression.]

We assess the quality of our predictions by varying the value
k. From a theoretical standpoint (53), it is known that k must be
super-logarithmic and sublinear in the number of cases processed.
Since log(144) ~ 5, we explore the range k∈ 5, . . ., 25 (Figure 4).
The results discussed in the main text correspond to k= 10.

In order to assess the impact of the distance to nearest neigh-
bors and of the consistency of their affinity values on the accu-
racy of the predictions, we compute the average distance di
between each Ig–Ag complex i and its k= 10 nearest neigh-
bors in the training set (i.e., those used to estimate its bind-
ing affinity using k-nearest neighbor regression). We also com-
pute the standard deviation of the affinity values σi of these 10
nearest neighbors. These are compared to the absolute error |ei|

FIGURE 2 | Predicted versus experimental affinities for Ig–Ag
complexes. Dashed, dash-dotted, and dotted lines, respectively, show
errors of ±1.4, ±2.8, ±4.2 kcal/mol, corresponding to Kd approximated
within one, two, and three orders of magnitude.

(=|experimental_affinityi − predicted_affinityi|) of the prediction
on complex i.

2.6. Comparing the Energetic Contribution
of Interface Atoms between CDRs
To assess the respective energetic contributions of CDRs to bind-
ing affinity, we dissect the IVW-IPL [equation (4)] into the con-
tributions of CDR1+CDR2 and CDR3. We also compute the
average normalized shelling order (or ANSO for short) for each
CDR

ANSO =
1

|A|
∑
a∈A

SO(a)
Vol_bound(a) , (5)

with A is the set of interface atoms of the CDR and the size of
this set is |A|. The distribution of IVW-IPL and ANSO between
CDR1+ 2 and CDR3 within the same chain are then compared
using a Wilcoxon signed-rank test.

3. RESULTS

3.1. Characteristics of the Binding Patch
Predict the Ligand Type
3.1.1. Atomic Solvent Accessibility Asymmetry Is a
Signature for the Ligand Type
A classical and informative variable describing a protein–protein
interface is the buried surface area (BSA), which is known to cor-
relate to the number of interface atoms (50). In our case, a Pearson
coefficient equal to 0.99 is obtained. However, this value drops
down to 0.82 and 0.89, respectively, for the Ig and the Ag sides,
a fact owing to the shape complementarity between the binding
patches on the Ig and Ag sides (Figure S4 in Supplementary
Material). To further investigate this observation, we compute the
average BSA per interface atom for both the Ig and Ag [equations
(2) and (3)]. Strikingly, the ligand type has a strong impact on
these quantities: complexes involving a chemical ligand have a
higher average BSA per atom at the Ag side of the interface (bsaAg)
than those involving a peptide ligand which in turn have a higher

FIGURE 3 | Complexes in the two-parameter space of the model. The
model uses two variables (see main text): IVW-IPL, inverse volume-weighted
internal path length; NIS_CHARGED, proportion of charged residues on the
non-interacting solvent-accessible surface.
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FIGURE 4 | Stability of affinity prediction. Performance of the k nearest
neighbors estimates when varying the number of neighbors k. Solid line:
median absolute error (kcal/mol); dashed: dot-dashed; dotted lines:
proportion of predictions with error below 1, 2, and 3 orders of magnitude,
respectively.

bsaAg than those involving a protein ligand (Figure 1). Note that
bsaAg and bsaIg can be seen as proxies for curvature of the Ag and
Ig binding patches, hence their strong inverse correlation due to
the complementarity between binding patches on the Ig and Ag
sides (Figures S3D–F in Supplementary Material). This inverse
correlation is rather intuitive for small ligands but may not be
trivial for bigger antigens. Our contribution corroborates this fact
for a whole set of structures.

To further exploit the ability of the parameters bsaAg and bsaIg
to characterize interfaces as a function of the ligand type, we build
a decision tree classifier (Figure 1; Figure S5 in Supplementary
Material).

The median cross-validated error over all classes is 9.6% over
1,000 repetitions whereas the permutation test resulted in a
median error of 56%. In using the naive classifier (based upon
the number of interface atoms, see section 2.4), the median error
over 1,000 repetitions is 32%. More precisely, the median cross-
validated error rates per class are 5%, 19%, and 7% for chemical,
peptides, and proteins, respectively. The higher error rate for
peptides is mostly due to the classifier predicting proteins instead
of peptides (Table S4 in Supplementary Material), which is not
unexpected as the criterion to classify polypeptides as peptides or
proteins is not standardized. For comparison, the permutation test
resulted in error rates of 84% for chemicals, 75% for peptides, and
41% for proteins; clearly showing the influence of the number of
complexes per class on the accuracy of the prediction. As for the
naive classifier (based upon the number of interface atoms), error
rates of 29%, 100%, and 4% are obtained. Overall, our classifier
is able to accurately predict ligand types, despite the fact that the
data are unbalanced.

3.2. Binding Affinity Predictions
Our k-nearest neighbors-based model predicts 8 (57.14%), 13
(92.86%), and 13 of the dissociation constants Kd within one,
two, and three orders of magnitude, respectively, with a median
absolute error of 0.878 kcal/mol, which corresponds in a ratio for
Kd equal to 4.4 (Figure 2). [We also note in passing that these

estimates are consistent with those obtainedwith a cross-validated
linear model (Table S6 in Supplementary Material).] In terms
of correlation coefficients, one gets 0.488 (Pearson) and 0.291
(Spearman). These results are very good, as predicting Kd within
one order of magnitude is essentially the best one can hope for
without modeling subtle effects such as the pH in particular
(56). They are also informative from a biological standpoint, as
an affinity enhancement of two orders of magnitude is typically
observed during affinity maturation.

In order to compare these results to what could be expected
from a null model, we take the average −∆G of the training
dataset (10.78 kcal/mol ±2.84) as prediction for all complexes.
This results in amedian absolute error of 1.03 kcal/mol, or equiva-
lently, in a ratio forKd equal to 5.7. The previous conclusionsmust
therefore be mitigated, since a simple null model can show good,
albeit less so, performances as well.

In order to rationalize the varying accuracy of predictions
depending on the complex, we compute the average distance di
between each Ig–Ag complex i and its 10 nearest neighbors in
the training set. We also compute the standard deviation of the
affinity values of these 10 nearest neighbors σi (Figure S10 in
Supplementary Material). Both di and σi are weakly correlated
to the absolute prediction error |ei| with Pearson’s correlation
coefficients of 0.57 and −0.57, respectively. Both coefficients
are (weakly) significantly different from zero with p-values of
0.0312 and 0.03316, respectively. The correlation between |ei| and
di/σi is higher, however, with a Pearson correlation coefficient
equal to 0.72 and a p-value of 0.00363. This suggests that good
binding affinity prediction can be obtained provided that suffi-
ciently similar complexes are in the training set and that their
affinity values are consistent with each other. Interestingly, this
property also accounts for the good performances of the null
model.

We now discuss a few cases, focusing on complexes with similar
ligands (Table S3 in Supplementary Material).

PDB entry 2VIR consists of an influenza hemagglutinin in
complex with a neutralizing Ig. PDB entry 2VIS is the same Ig
in complex with an escape mutant of the previous hemagglutinin
differing by only one mutation (T131I). This causes their −∆G to
differ by almost 5 kcal/mol which corresponds to a factor ~4,800
on Kd. These two complexes lie very close to each other in the
parameter space (Figure 3), and ourmodel unsurprisingly predict
similar affinity values. However, they are only accurate for 2VIS
(Figure 2). This lack of accuracy may be due to the inability
of our model to capture large energetic contribution from few
residues—a difficulty calling for the identification of hot spots
(57, 58)—or may be due to a deficient modeling of dynamical
properties (38).

PDB entries 1BVK, 1DQJ, 1MLC, 1P2C, and 1VFB all share
the same ligand (hen egg lysozyme C EC 3.2.1.17) with −∆G
ranging from 19.61 to 13.63 kcal/mol. Focusing on the V region
of heavy chains, 1P2C and 1MLC are fairly similar with 90.5%
identity; and 1BVK and 1VFB as well with 79.3% identity. All
other pairs share limited sequence identity with values between
44.3 and 57.5%. For the V region of light chains, sequence identity
between 1P2C, 1MLC, and 1DQJ ranges between 93.5 and 96.3%.
Sequence identity between 1BVK and 1VFB is 82.2%. Sequence
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identity between other pairs ranges between 56.1 and 61.7%. PDB
entries 1DQJ and 1VFBwhich have similar experimental affinities
are located close to each other in the parameter space (Figure 3)
and are both well predicted by our model (Figure 2). PDB entry
1MLC is also well predicted even though its experimental affinity
is much lower than that of the previous entries. On the other
hand, 1BVK and 1P2C are not so well predicted with errors
between one and two orders of magnitude on Kd, although the
latter is located in the same region as 1DQJ and 1VFB. Inter-
estingly, both are underestimated as is the case for 2VIR and
2VIS, which could come from the aforementioned limitations of
our model. Finally, Igs whose V regions have similar sequences
do not necessarily have similar binding affinity for the same
antigen.

The success of the affinity prediction owes to two important
properties of the learning set (non-Ig–Ag complexes) and the
training set (Ig–Ag complexes). First, Ig–Ag complexes fall in a
reduced region of the space defined by the two parameters IVW-
IPL andNIScharged of themodel, i.e., they are similar from the point
of view of the model. Second, the Ig–Ag complexes fall in a region
which is well represented in the training set (i.e., the rest of the
SAB). This means that in the space of the two parameters of the
model, Ig–Ag complexes are similar to the other protein–protein
complexes of the SAB. In order to predict the binding affinity of
Ig–Ag complexes with protein ligands, our model therefore takes
advantage of the fact that they are similar both to each other and
similar to other protein–protein complexes.

3.2.1. Comparison with the PRODIGY Server
In order to see how our approach fares against the state of the
art, we compare our results against the PRODIGY server. The
PRODIGY server is one of the most recent tools for affinity
prediction (59) and is based on the work from Vangone and
Bonvin (60).

The accuracy of PRODIGY is lower than that of the current
study with median absolute errors of 1.4 versus 0.878 kcal/mol,
respectively. For reference, we also provide the root mean squared
errors (2.226 versus 1.676 kcal/mol), Pearson’s correlation coef-
ficients (0.149 versus 0.488), and Spearman’s correlation coeffi-
cients (0.238 versus 0.291). Interestingly, our method is successful
at predicting similar affinities (Figure S10 in SupplementaryMate-
rial) for five complexes (1AHW, 1DQJ, 1VFB, 2JEL, and 1BJ1) for
which PRODIGY predicts widely varying values.

3.2.2. CDRs: Lengths and BSA
It has been observed that CDR lengths differ between different
antigen types (17, 61), a finding suggesting that CDR lengths
influence the binding site to accommodate the ligand. We there-
fore undertook the characterization of this relationship in the
IMGT/3Dstructure-DB. Since all the atoms of a CDR may not
contribute to the interface, we investigate the correlation between
the length of a CDR and its contribution to the BSA. As CDR1 and
CDR2 are both encoded by V genes, we study them together and
subsequently investigate the relationship between [CDR1·CDR2]
pairs and BSA on the one hand, and CDR3 and BSA on the
other hand. We observe that CDRs of a given length can display
widely varying levels of BSA (Figures S6 and S7 in Supplemen-
tary Material). These results indicate that CDR lengths must be
complemented to fully describe the involvement of a CDR in the
interaction with the Ag. This is backed up by the very limited
ability of neural networks trained on sequence data only to predict
the ligand type bound by an Ig in Ref. (61). An error rate of 54% is
indeed observed, to be compared to a baseline of 75% for a random
predictor on four classes (protein, hapten, nucleotide, and viral
protein) (61).

3.2.3. Respective Contributions of the CDRs to the
Interface, for VH and VL Domains
In an Ig–Ag complex, it is generally believed that VH contributes
more to the recognition than VL. With a BSA of VH strictly larger
than that of VL for 430/489 complexes (~86%) (Figure 5A), our
analyses support this idea. To refine this view, we split the BSA
into contributions by the CDRs within a V domain, observing a
great deal of variation across the dataset, independent from the
ligand type (Figures 5B,C). A general observation is that the sum
of contributions of CDR1 and CDR2 essentially matches that of
CDR3 for both VH and VL. Consider the sum of the BSA of
CDR1 and CDR2 on one hand, and the BSA of CDR3 on the other
hand. The first quantity is larger than the second one for ~46%
of the complexes for VH and for ~40% of the complexes for VL.
Moreover, a Wilcoxon signed-rank test does not find a significant
difference between them for VH (two-sided p-value= 0.1460)
but does for VL (two-sided p-value= 0.0001), indicating that the
contribution of CDR3 in terms of BSA and relative to other CDRs
from the same chain is higher for the light chain than for the heavy
chain.

A B C

FIGURE 5 | Buried surface area (A2) of the VH and VL domains, and their respective CDRs. (A) VH versus VL. (B) VH domain. (C) VL domain.
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A B

C D

FIGURE 6 | Comparison of CDRs in terms of (A) inverse volume-weighted internal path length (IVW-IPL), (B) average normalized shelling order
(ANSO), (C) average shelling order, and (D) average atomic volumes.

To assess the contributions of CDRs to binding energy, we
compute both their IVW-IPL and ANSO [equations (4) and
(5)] for all complexes (Figures 6A,B). We then compare the
distributions of these two quantities for CDR1+ 2 and CDR3
in the same chain, using a Wilcoxon signed-rank test at sig-
nificance level α= 0.01. Consider the sum of the IVW-IPL of
CDR1 and CDR2 on one hand, and the IVW-IPL of CDR3
on the other hand. The first quantity is larger than the sec-
ond one for ~41% of the complexes for VH and for ~27%
of the complexes VL (Figure S8 in Supplementary Material).
Wilcoxon signed-rank tests find significant differences between
them for both VH (two-sided p-value= 6.404× 10−7) and VL
(two-sided p-value= 7.217× 10−30). Removing the dependence
on the number of atoms, i.e., comparing the ANSO distribu-
tion computed on both CDR1 and CDR2 on the one hand and
CDR3 on the other hand, leads to significant differences as well
for VH (two-sided p-value= 6.221× 10−30) and VL (two-sided
p-value= 2.480× 10−37).

Thus, as opposed to the results obtained when considering the
BSA, the sum of contributions to the binding affinity of CDR1
and CDR2 is significantly lower than that of CDR3 for both VH
and VL.

For both chains, the difference in ANSO can be imputed to
two facts. First the average shelling order (Section 2.1) for atoms
of the CDR3 is higher than those of CDR1 and 2 (Figure 6C).

Second, their average atomic volume is lower (Figure 6D). Both
are related since the shelling order and the atomic volume are
negatively correlated (Figure S8C in Supplementary Material).

4. DISCUSSION

In this work, we provide a precise quantitative description of
Ig–Ag interfaces, leading to an accurate classification of ligand
types and to accurate binding affinity predictions. We also quan-
tify the contributions made by CDRs at interface both in terms of
surface area and binding energy, andwe show thatVHCDR3 is the
main factor determining binding affinity and interaction speci-
ficity. While these facts were previously known from a qualitative
standpoint, the task of designing quantitative models supporting
them had remained elusive, with insights focused on specific con-
formations. Instead, our models provide quantitative estimates
illustrating the relationship between structure, dynamics, and
affinity of Ig–Ag complexes.

4.1. Enhanced Specificity and Affinity
Descriptions from Global Interface
Statistics
The buried surface area (BSA) of a protein complex has long
been known to be a simple and informative descriptor of inter-
faces (46). We refine this statistic by computing the average BSA
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contributed by interfacial atoms from the Ig (statistic bsaIg) and
the Ag (statistic bsaAg). These quantities turn out to be clear a
signature of the ligand type, a property which can further be
exploited for classification purposes. While the classification of
Ig–Ag interfaces into classes depending on structural features
has already been addressed (62, 63), our parameters are the first
ones yielding such a clear separation between specific antigen
types.

To complement this analysis, we perform binding affinity pre-
dictions for 14 Ig–Ag complexes, based on structural parameters
encoding enthalpic and entropic quantities (24). Our predictions
of Kd are accurate within two orders of magnitude for all but one
complex and within one order of magnitude for 8 of them. Inter-
estingly, these results stress the relevance of the overall approach,
which exploits structural and functional similarities between the
test set (the Ig–Ag complexes) and the training set (the SAB
deprived from the Ig–Ag complexes). In fact, the high accuracy of
our predictions shows that the binding affinity prediction problem
could be partially solved using large databases of Ig–Ag complexes
with binding affinity measurements.

Our results on specificity analysis and affinity predictions are
of immediate practical relevance in the context of Ig design and
Ig–Ag docking. Docking is the problem of predicting the pose
(i.e., the static structure) and the affinity of a complex from
the unbound partners (64). The latter problem is harder than
the former, another embodiment of the role of dynamics in the
emergence of function. Our parameters are of high interest for
both problems. At the pose prediction stage, they provide filters
to check that putative Ig–Ag complexes proposed by docking
algorithms comply with our classification rules, as a function of
the ligand type. In a similar spirit, these parameters are of direct
relevance to predict the ligand type from the structure of the Ig
VH+VL domains. At the affinity prediction stage, assuming a
good quality (i.e., resolution) putative structure for the complex,
reliable affinity predictions can be made.

These results also call for extensions, in particular to handle
different ligand types (peptides and haptens). Since the quality of
predictions owes in particular to a good coverage of the region of
the model space targeted by predictions, this extension is likely
to be successful assuming a database—identical in spirit to the
SAB, providing sufficiently many cases to learn from. From a
formal standpoint, we also envision progress on the analysis of
the correctness of affinity predictions, based on two ingredi-
ents. The first one is the accuracy of estimators for thermody-
namic quantities, using parameters such as those used in this
work. The second one is the mathematical convergence of regres-
sors, in particular those based on nearest neighbors, as used in
this work.

4.2. Bridging the Gap between Structure,
Dynamics, and Function
Our findings show that global structural parameters perform
remarkably well to predict affinity and specificity, which are
notions formally defined in the realm of thermodynamics. It is
therefore instrumental to understand which features of CDRs

explain the relevance of our parameters. In other words, it appears
important to consider at once the role of the six CDRs for most
antibody specificities.

If the molecules studied were perfectly rigid, local interac-
tions (hydrogen bonds and van der Waals interactions) would
play a prominent role in the formation of the Ig–Ag complex,
and the comparable BSA contributed by CDR1+ 2 vs CDR3
would hint at commensurable contributions from all CDRs. This
purely enthalpic view is, however, insufficient, as preconfigura-
tion/prerigidification of the binding site may yield a decreased
entropic loss upon complex formation, hence an enhanced bind-
ing affinity (35–38). A useful proxy for dynamics is the length
of VH CDR3, and difficulties were observed to define canonical
conformations for VH CDR3 (3, 5, 6, 8, 10, 13) as opposed to
the other CDRs. Indeed, accurate sequence-based conformation
predictions are limited to the base or torso of theVHCDR3. In this
work, we code the enthalpy–entropy compensation (see discus-
sion in section 2.5) using packing properties via our parameters
IVW-IPL and ANSO. This leads to two important observations:
first, independently of the number of interface atoms, VH CDR3
contributes significantly more to the binding energy than VH
CDR1 and VH CDR2 combined; second, interface atoms in VH
CDR3 are more closely packed than in other CDRs in the heavy
chain. The latter point implies that it is important to minimize the
entropic penalty entailed upon binding, which can be achieved by
preformation, i.e., the CDR is in bound conformation prior to the
binding event. Interestingly, the authors of Ref. (18) come to the
conclusion that VH CDR3 is responsible for the specificity of
the interaction whereas the other CDRs account for its stability.
We provide a quantitative view on this property, based on our
parameters IVW-IPL and ANSO.

Summarizing, the genetic variability of VH CDR3 is comple-
mented structurally by its dynamic nature to make it the main
factor involved in the determination of the specificity and increase
of affinity of an Ig for an Ag. It should be stressed that, although
this observation can be used as a guide during the design of Ig, it
is by no means necessary, as tight binders can be designed de novo
without any CDR—see Ref. (65) for an example involving the stem
of influenza virus hemagglutinin.

Naturally, one should also expand our analysis at the whole Ig
level, as various structural features of Igs influence their efficacy
in the immune response. These include the ball-and-socket joint
relating VL and VH, the CL and CH1 constant domains (66, 67),
and more generally the constant regions which have been shown
to influence the avidity (41–44), and are involved in Ig effector
properties, such as ADCCor CDC (68). A quantitative assessment
of the role of these features requires going beyond the Ig–Ag
interface level, with a clear focus on the dynamics of the whole Ig
protein. Again, the identification of the most relevant degrees of
freedom in such regions may pave the way to efficient simulation
and design strategies.
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