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EQUIVARIANT MAPS INTO ANTI-DE SITTER SPACE AND THE

SYMPLECTIC GEOMETRY OF H2 ×H2

FRANCESCO BONSANTE AND ANDREA SEPPI

Abstract. Given two Fuchsian representations ρl and ρr of the fundamental group of
a closed oriented surface S of genus ≥ 2, we study the relation between Lagrangian
submanifolds of Mρ = (H2/ρl(π1(S))) × (H2/ρr(π1(S))) and ρ-equivariant embeddings

σ of S̃ into Anti-de Sitter space, where ρ = (ρl, ρr) is the corresponding representation
into PSL2R × PSL2R. It is known that, if σ is a maximal embedding, then its Gauss
map takes values in the unique minimal Lagrangian submanifold ΛML of Mρ.

We show that, given any ρ-equivariant embedding σ, its Gauss map gives a Lagrangian
submanifold Hamiltonian isotopic to ΛML. Conversely, any Lagrangian submanifold
Hamiltonian isotopic to ΛML is associated to some equivariant embedding into the future
unit tangent bundle of the universal cover of Anti-de Sitter space.

1. Introduction

Anti-de Sitter space of dimension three, denoted AdS3, is the Lie group PSL2R endowed
with (a multiple of) the Killing form. It is a Lorentzian manifold of constant negative
sectional curvature, and the identity component of its isometry group is naturally isomorphic
to PSL2R × PSL2R. Its study, from the purely mathematical viewpoint, was initiated by
the work of Mess [Mes07], and has remarkably spread since then. One of the reasons for this
interest, which is the main motivation behind this paper, is the relation between equivariant
embedded surfaces in Anti-de Sitter space and hyperbolic geometry in dimension 2.

Let S be a closed oriented surface of negative Euler characteristic. We will consider ρ-
equivariant spacelike (i.e. having Riemannian induced metric) embeddings of the universal

cover S̃ of S into AdS3, where ρ = (ρl, ρr) : π1(S) → PSL2R × PSL2R is a representation
of the fundamental group of S. Mess proved that in this case, ρl and ρr are Fuchsian
representations. Hence (identifying PSL2R with the isometry group of the hyperbolic plane)
H2/ρl(π1(S)) andH2/ρr(π1(S)) are closed hyperbolic surfaces, which we identify with (S, hl)
and (S, hr), for hl and hr hyperbolic metrics on S.

Mess considered the case of pleated immersions σ : S̃ → AdS3. In this case, there is a
well-defined hyperbolic metric h0 on S induced by σ, and by a rather explicit geometric
construction, Mess defined two maps elλ : (S, h0) → (S, hl) and erλ : (S, h0) → (S, hr) which
turn out to be left and right earthquake maps, where the the bending lamination λ of σ
coincides with the earthquake lamination. This construction gave a new interpretation to
Thurston’s proof of the existence of earthquake maps between two fixed closed hyperbolic
surfaces homeomorphic to S.

Later, Krasnov and Schlenker in [KS07] studied ρ-equivariant embeddings σ : S̃ → AdS3

under the condition that the induced metric has negative curvature. In this case, one can
define two diffeomorphisms ϕl : S → (S, hl) and ϕr : S → (S, hr), which are somehow the
smooth analogues of the earthquake maps above. The composition ϕ := ϕr ◦ (ϕl)−1 turns
out to be an area-preserving diffeomorphism between (S, hl) and (S, hr). In other words, the
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graph of ϕ is a Lagrangian submanifold of (S × S,Ωρ), where Ωρ is the natural symplectic
form:

Ωρ = p∗lΩl − p∗rΩr ,

if Ωl and Ωr are the area forms of the hyperbolic metric hl and hr.
A remarkable application of this construction comes from the particular case of maximal

equivariant embeddings (i.e. of vanishing mean curvature). This case is characterized by the
fact that the associated area-preserving diffeomorphism ϕ is minimal Lagrangian ([KS07],
see also [BS10] and [Tor07]). This means that the Lagrangian submanifold graph(ϕ) is
minimal in (S × S, hl ⊕ hr), see also [Lab92] and [Sch93].

Other applications were given in [BBZ07, BST17, KS07] for the case of closed surfaces,
[BS10, BS16, Sep16a, Sep16b, SK13] for generalizations to maps from the hyperbolic plane
H2 to itself in the context of universal Teichmüller space, and [BMS13, BMS15, BS16] for a
more general class of maps called landslides.

The above characterization of minimal Lagrangian maps highlights the fact, which is
behind the main ideas of this paper, that the most relevant object to associate to σ is a
Lagrangian submanifold of (S×S,Ωρ), rather than the diffeomorphism ϕ. The construction
of the diffeomorphism ϕ can be generalized to any ρ-equivariant spacelike embedding σ :

S̃ → AdS3 (without any assumption on the curvature), thus providing a smooth Lagrangian
submanifold of the symplectic manifold (S×S,Ωρ), which we will denote Λσ. This has been
observed in [Bar16]. In this paper, we provide an independent proof in a framework which
is better adapted for our aims.

The problem we address in this paper is to what extent this construction can be reversed,
that is: is it possible to associate to a Lagrangian submanifold a ρ-equivariant spacelike
embedding? In [Bar16, §3] it was showed that the unique local obstruction to inverting the
construction is given by the condition of being a Lagrangian submanifold. Hence it remains
to understand the global problem, and we will give an obstruction purely in terms of the
symplectic geometry of (S × S,Ωρ). This will be the content of Corollary 1.1. Corollary
1.1 is actually a consequence of our main result (Theorem 1.2), which also shows that this
obstruction is complete in a slightly more general context.

Statement of the main result. The aforementioned obstruction will be given in terms of
Hamiltonian submanifolds and Hamiltonian symplectomorphisms. Let us briefly recall these
notions. If we fix a representation ρ = (ρl, ρr) : π1(S) → PSL2R × PSL2R with ρl and ρr
Fuchsian, let Φt : (S × S,Ωρ) → (S × S,Ωρ) be a smooth path of symplectomorphisms with
Φ0 = id. The path Φt is called Hamiltonian if there exists a smooth family of functions
Ht : S × S → R such that the generating vector field of Φt is the symplectic gradient of Ht.
Then a symplectomorphism Φ : (S × S,Ωρ) → (S × S,Ωρ) is Hamiltonian if there exists a
Hamiltonian path Φt such that Φ0 = id and Φ1 = Φ. It turns out that Hamiltonian sym-
plectomorphisms form a normal subgroup Ham(S×S,Ωρ) of Symp0(S×S,Ωρ) (the identity
component of Symp(S × S,Ωρ)). See also the discussion below on the flux homomorphism.

The group Symp0(S×S,Ωρ) clearly acts on the space of smooth Lagrangian submanifolds
of (S × S,Ωρ) isotopic to the diagonal. A consequence of the main result in this paper
— namely Theorem 1.2 — is that the submanifolds Λσ associated to smooth ρ-equivariant

spacelike embeddings σ : S̃ → AdS3 lie in a single orbit of the action of Ham(S×S,Ωρ). Since
we already know that the unique minimal Lagrangian submanifold ΛML of (S×S,Ωρ) isotopic
to the diagonal is the submanifold associated to the maximal ρ-equivariant embedding, we
obtain:

Corollary 1.1. Let ρ = (ρl, ρr) : π1(S) → PSL2R× PSL2R, where ρl and ρr are Fuchsian

representations. Then for every ρ-equivariant spacelike embedding σ : S̃ → AdS3, Λσ is
Hamiltonian isotopic to the unique minimal Lagrangian submanifold ΛML isotopic to the
diagonal.
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Two Lagrangian submanifolds Λ0,Λ1 are called Hamiltonian isotopic if there exists a
Hamiltonian symplectomorphism Φ ∈ Ham(S × S,Ωρ) such that Φ(Λ0) = Λ1.

Before actually stating the main theorem of the paper (Theorem 1.2), of which Corollary
1.1 will be a consequence, let us explain a geometric interpretation of the submanifold Λσ

associated to σ : S̃ → AdS3.
The basic observation is that there is a natural projection π : T 1

⋆ ÃdS
3 → H2 × H2,

where T 1
⋆ ÃdS

3 is the bundle of future-directed unit timelike vectors in the tangent bundle

of the universal cover ÃdS3 of AdS3. This projection π has the important property that its

fibers are the orbits of the geodesic flow on T 1
⋆ ÃdS

3. Now, given a ρ-equivariant spacelike

embedding σ : S̃ → AdS3, we can consider the normal section σ̃N : S̃ → T 1
⋆ ÃdS

3 of any lift

σ̃ : S̃ → ÃdS3. It turns out that the composition π ◦ σ̃N does not depend on the chosen

lift σ̃ and provides a ρ-equivariant Lagrangian embedding of S̃ into H2 × H2. Thus π ◦ σ̃N

induces an embedding of S into (S×S,Ωρ), whose image is the Lagrangian submanifold Λσ

we have already mentioned. If the curvature of the metric induced by the embedding σ is
negative, then Λσ is transverse to the product structure of S × S and thus it is globally a
graph, hence recovering the construction of Krasnov and Schlenker.

It turns out that the normal section σ̃N is orthogonal to the orbits of the geodesic flow for

the Sasaki metric of T 1
⋆ ÃdS

3 and is equivariant for a uniquely determined lift ρ̃ : π1(S) →

Isom0(ÃdS3), which we will call standard lift. Such a lift ρ̃ only depends on ρ, and not on

σ or on the choice of its lift. Conversely, a ρ̃-equivariant embedding σ̃ : S̃ → T 1
⋆ ÃdS

3 is the

normal section of some embedding σ : S̃ → AdS3 if and only if:

(1) σ̃ is orthogonal to the orbits of the geodesic flow for the Sasaki metric on T 1
⋆ ÃdS

3;

(2) σ̃ is transverse to the fibers of the projection T 1
⋆ ÃdS

3 → AdS3.

Our main theorem is a complete characterization of the Lagrangian submanifolds

Λσ̃ = image(π ◦ σ̃)/ρ(π1(S)) ⊂ (S × S,Ωρ)

induced by the ρ̃-equivariant embedding σ̃ satisfying condition (1) above.

Theorem 1.2. Let ρ = (ρl, ρr) : π1(S) → PSL2R × PSL2R, where ρl and ρr are Fuchsian

representations, and let ρ̃ : π1(S) → Isom0(ÃdS3) be its standard lift. Then
{
Λσ̃ :

σ̃ is a ρ̃-equivariant embedding orthogonal

to the orbits of the geodesic flow

}
= Ham(S × S,Ωρ) · ΛML ,

where ΛML is the unique minimal Lagrangian submanifold of (S × S,Ωρ) isotopic to the
diagonal.

Corollary 1.1 follows from one of the two inclusions of Theorem 1.2, by taking the normal
section σ̃N of a ρ-equivariant embedding σ, and observing that by construction Λσ̃ = Λσ.

Organization and techniques involved. Let us now highlight the main tools which are
used in the proof of Theorem 1.2, and how they are organized in the paper.

In Section 2, we introduce Anti-de Sitter space, its universal cover, its future unit tangent
bundle, and their geometric properties. The proof of Theorem 1.2 will then be based on a
translation of the problem into the language of principal R-bundles over (S ×S,Ωρ), and in
studying the symplectic geometry of the base (S × S,Ωρ).

Hence the main purpose of Section 3 is the construction of a principal R-bundle Pρ over
(S × S,Ωρ), and the study of its geometry. This is simply obtained as the quotient of the
principal R-bundle

π : T 1
⋆ ÃdS

3 → H2 ×H2 ,
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where the R-action on T 1
⋆ ÃdS

3 is given by geodesic flow. The actions of ρ̃(π1(S)) on T 1
⋆ ÃdS

3

and of ρ(π1(S)) on H2 × H2 are free and properly discontinous, and π is equivariant with
respect to these actions. Hence, taking the quotient, we have a principal R-bundle

πρ : Pρ → (S, hl)× (S, hr) .

The key observation here is that there is a natural principal R-connection ωρ on Pρ, for
which parallel (local) sections are precisely sections orthogonal to the orbits of the geodesic

flow. Hence ρ̃-equivariant embeddings σ̃ : S̃ → T 1
⋆ ÃdS

3 correspond precisely to parallel
sections of πρ over Λσ̃ ⊂ (S × S,Ωρ).

The main result of Section 3 is then Proposition 3.9, which shows that the curvature of
(Pρ, ωρ) — which is a R-valued 2-form Rρ ∈ Ω2(Pρ,R) — is:

Rρ =
1

2
π∗
ρΩρ .

Hereafter, let us denote by Λ : S → (S × S,Ωρ) an embedding, rather than the embedded
surface as above. Hence we deduce that Λ is a Lagrangian embedding if and only if the
bundle Λ∗Pρ is a flat R-bundle, for the connection induced by ωρ. In particular we recover

the fact that, when the embedding Λσ associated to σ : S̃ → AdS3 is the graph of some dif-
feomorphism ϕ : (S, hl) → (S, hr) (that happens when the metric induced by σ has negative
curvature), then ϕ is a symplectomorphism (i.e. it is area-preserving).

As a consequence, we are interested in a characterization of those Lagrangian embeddings
Λ such that the flat R-bundle Λ∗Pρ admits a global parallel section. Equivalently, we need
to characterize the condition that the holonomy of Λ∗Pρ is trivial. In Section 4 we solve this
step by studying the symplectic geometry of (S × S,Ωρ).

The main tool we use here is an adaptation (given in [Sol13]) to the context of Lagrangian
submanifolds of the flux homomorphism introduced by Calabi in [Cal70], see also [Ban78]
and [MS98, Chapter 6]. The latter is a surjective group homomorphism

F̂lux : S̃ymp0(S × S,Ωρ) → H1
dR(S × S,R) ,

whose kernel is H̃am(S ×S,Ωρ). Then in [Sol13], a generalization was given, as a map Flux
which associates to a smooth path of Lagrangian embeddings Λt an element in Hom(π1(S),R).
In our case, this only depends on the endpoints Λ0 and Λ1, and if Λ1 = Φ1(Λ0) for some

path Φt ∈ Symp0(S × S,Ωρ) with Φ0 = id, then Flux([Λ•]) coincides with Λ∗
0F̂lux([Φt])

under the usual identification H1
dR(S,R)

∼= Hom(π1(S),R).
The most important step of Section 4 is Proposition 4.5. It shows that, if holF denotes

the holonomy representation of a flat R-bundle F over S, then

holΛ∗

1
Pρ

= holΛ∗

0
Pρ

+ Flux([Λ•]) .

Hence the flat subbundles Λ∗Pρ which have the same holonomy form precisely an orbit of
the action of Ham(S × S,Ωρ) on the space of Lagrangian embeddings of S into (S × S,Ωρ).

Section 5 then puts together the above ingredients to prove Theorem 1.2. In particular,
since we already know that the minimal Lagrangian embedding ΛML is associated to the
ρ-equivariant maximal embedding, Λ∗

MLPρ is a trivial flat R-bundle (i.e. it admits a parallel
global section). Hence by the above results, for an embedding Λ : S → (S × S,Ωρ), Λ

∗Pρ is
a trivial flat bundle is and only if Λ is Lagrangian and the map Flux vanishes on the class
of a path Λt such that Λ0 = ΛML and Λ1 = Λ. This is equivalent to the fact that Λ is in the
Ham(S × S,Ωρ)-orbit of ΛML.
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2. Anti-de Sitter geometry

In this section we introduce the geometry of Anti-de Sitter space of dimension three, of

its universal cover ÃdS3, and of its future unit timelike tangent bundle T 1
⋆ ÃdS

3. We prove a
simple — though essential in the following — lifting statement (Lemma 2.1) which defines
the standard lift of a representation ρ = (ρl, ρr) : π1(S) → PSL2R× PSL2R, with ρl and ρr
Fuchsian.

2.1. Anti-de Sitter space. Let us consider the Killing form κ on the Lie group PSL2R,
which is a bi-invariant bilinear form on the Lie algebra sl2R of signature (2, 1). The bilinear
form κ induces a Lorentzian metric on PSL2R, which we denote by gκ. Then we define
Anti-de Sitter space of dimension 3 as:

AdS3 :=

(
PSL2R,

1

8
gκ

)
.

Hence AdS3 is a Lorentzian manifold, orientable and time-orientable, topologically a solid
torus, of constant sectional curvature. Due to the normalization factor 1/8, the sectional
curvature is −1 ([BS16, Lemma 2.1]). By construction, the identity component of the
isometry group of AdS3 is:

Isom0(AdS
3) ∼= PSL2R× PSL2R ,

where a pair (α, β) ∈ PSL2R× PSL2R acts on AdS3 by

(α, β) · γ = α ◦ γ ◦ β−1 . (1)

Recall that PSL2R is identified to the group of orientation-preserving isometries of the
hyperbolic plane, in the upper-half plane model:

H2 :=

(
{z ∈ C | ℑ(z) > 0},

|dz|2

ℑ(z)2

)
.

The identification of Isom0(H
2) with PSL2R is defined by associating to an isometry of H2

its extension to the visual boundary ∂∞H2 = RP1, which is a projective transformation.
A differentiable curve γ : I → AdS3 is timelike if gκ(γ̇, γ̇) < 0 at every point γ(t), spacelike

if gκ(γ̇, γ̇) > 0, and lightlike if gκ(γ̇, γ̇) = 0. We claim that every timelike geodesic in AdS3

has the form:

Lx,y := {γ ∈ PSL2R | γ(y) = x} , (2)

for x, y ∈ H2. Indeed, Lx0,x0
is a closed timelike geodesic for every x0 ∈ H2, since it is

a maximal compact subgroup, hence the induced bilinear form is negative definite. It is
a geodesic since it is a 1-parameter group, and the Riemannian exponential map coincides
with the Lie group exponential map as gκ is a bi-invariant metric. It also turns out that it
has length π, the arclength parameter being 1/2 the angle of rotation of elliptic elements
fixing x0.

It can be easily checked that

(α, β) · Lx,y = Lα(x),β(y) , (3)

and this also shows that every timelike geodesic of AdS3 is of the form Lx,y for some x, y,
since it is the image of Lx0,x0

under some isometry (α, β) of AdS3. Hence there is a 1-1
correspondence

H2 ×H2 ↔ {timelike geodesics in AdS3} , (4)
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defined by (x, y) 7→ Lx,y. As a consequence of Equation (3), the bijection of Equation (4) is
equivariant with respect to the action of PSL2R × PSL2R on H2 × H2 by isometries of H2

on each factor, and on the set of timelike geodesics induced by isometries of AdS3.
Anti-de Sitter space is naturally endowed with a boundary, which is defined in the fol-

lowing way:

∂∞AdS3 := RP1 × RP1 ,

where a sequence γn ∈ PSL2R converges to a pair (p, q) ∈ RP1 × RP1 if and only if there
exists a point x ∈ H2 such that: {

γn(x) → p

γ−1
n (x) → q

. (5)

It is a classical fact that, if Equation (5) holds for some x ∈ H2, then it holds for every
x ∈ H2. Naturality of the boundary means that every isometry of AdS3, of the form
(α, β) ∈ PSL2R×PSL2R, extends to the boundary by means of the obvious action of (α, β)
on RP1 × RP1.

2.2. Equivariant embeddings for closed surfaces. In this paper, S will be a closed,
oriented surface of negative Euler characteristic. We will be particularly interested in ρ-

equivariant spacelike immersions σ : S̃ → AdS3, where S̃ is the universal cover of S, and
ρ : π1(S) → PSL2R×PSL2R is a representation of the fundamental group of S. This means
that σ satisfies

σ ◦ τ = ρ(τ) ◦ σ ,

for every τ ∈ π1(S), where the action of τ on S̃ is by deck transformation. In [Mes07], Mess
proved that:

• If σ is a ρ-equivariant immersion, then it is a proper embedding (Lemma 6).
• In this case, ρ = (ρl, ρr) where ρl, ρr : π1(S) → PSL2R are Fuchsian representations
(Proposition 19).

• Moreover, σ extends to the visual boundary ∂∞S̃, and σ(∂∞S̃) is the graph in
∂∞AdS3 = RP1 × RP1 of the unique orientation-preserving homeomorphism which
conjugates ρl to ρr (Proposition 20).

Hence in this paper we will always consider representations

ρ = (ρl, ρr) : π1(S) → Isom0(AdS
3) ∼= PSL2R× PSL2R

with ρl, ρr Fuchsian. As mentioned in the introduction, we will consider equivariant em-
beddings in the universal cover of AdS3, rather than in AdS3 itself. The motivation for
this is the fact that, if σ is a spacelike embedding in AdS3 equivariant for a representation

ρ = (ρl, ρr), then σ lifts to an embedding σ̃ in ÃdS3, invariant by a standard lift of ρ to a

representation of π1(S) in the isometry group of ÃdS3. This will be explained in the next
subsections.

2.3. The universal cover of AdS3. We will denote ÃdS3 the metric universal cover of
AdS3: if

p : S̃L2R → PSL2R

is the universal covering map of PSL2R, then

ÃdS3 :=

(
S̃L2R,

1

8
p∗gκ

)
.

Namely, we endow S̃L2R with the Lorentzian metric induced by the Killing form on the Lie

algebra, which is also the metric which makes p a local isometry. Let us observe that S̃L2R



EQUIVARIANT MAPS INTO AdS3 AND THE SYMPLECTIC GEOMETRY OF H
2
× H

2 7

is a central extension of PSL2R. More precisely, if we denote Z := Z(S̃L2R) the center of

the Lie group S̃L2R, the following is a short exact sequence of groups:

1 // Z // S̃L2R
p

// PSL2R // 1 .

The fundamental group π1(AdS
3) ∼= Z is thus identified to Z, and left multiplication by an

element ξ of Z (which is the same as right multiplication, since ξ is in the center) corresponds

to the action on S̃L2R by deck transformations.

Hence it turns out that the identity component of the isometry group of ÃdS3 is:

Isom0(ÃdS3) = (S̃L2R× S̃L2R)/∆Z , (6)

where ∆Z denotes the diagonal of Z:

∆Z := {(ξ, ξ) | ξ ∈ Z} < S̃L2R× S̃L2R .

Observe that a generator of the fundamental group π1(PSL2R) ∼= Z is represented by
loops whose image is a closed timelike geodesic of the form Lx,y (recall Equation (2)).

Hence timelike geodesics of ÃdS3 are the preimages of timelike geodesics of AdS3, and are
copies of R (with the negative metric).

Therefore we have a 1-1 correspondence

H2 ×H2 ↔ {timelike geodesics in ÃdS3} , (7)

which is defined by associating to (x, y) ∈ H2 × H2 the timelike geodesic p−1(Lx,y). This

correspondence is again equivariant, with respect to the action of (S̃L2R × S̃L2R)/∆Z on

the set of timelike geodesics induced by isometries of ÃdS3, and the action on H2 ×H2:

(α, β) · (x, y) = (p(α)(x), p(β)(y)) . (8)

In fact, (8) is well-defined since elements in the center Z = Ker(p) act trivially on H2.

Finally, ÃdS3 is naturally endowed with a boundary ∂∞ÃdS3, which is the covering of
∂∞AdS3 corresponding to the cyclic subgroup of π1(∂∞AdS3) generated by a meridian. We

will thus extend p : S̃L2R → PSL2R to the universal covering map:

p : (ÃdS3 ∪ ∂∞ÃdS3) → (AdS3 ∪ ∂∞AdS3) , (9)

which we still denote p by a small abuse of notation.

2.4. Lifting representations. We can now prove the following lemma, which will also
serve to define the aforementioned standard lift of a representation ρ.

Lemma 2.1. Let ρl, ρr : π1(S) → PSL2R be Fuchsian representations. Then there exists a
unique lift

ρ̃ : π1(S) → Isom0(ÃdS3)

of the representation

ρ = (ρl, ρr) : π1(S) → Isom0(AdS
3)

with the following property. Given any spacelike ρ-equivariant embedding σ : S̃ → AdS3,

every lift σ̃i : S̃ → ÃdS3 of σ (where i ∈ Z) is ρ̃-equivariant.

Remark 2.2. The existence of some lift of ρ to Isom0(ÃdS3) can be easily proved by some
topological argument, which we now sketch. Recall that we can associate every representa-
tion ρ : π1(S) → G, for any Lie group G, with an obstruction class

e(ρ) ∈ H2(S, π1(G)) ,
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such that e(ρ) = 0 if and only if ρ is liftable to a representation of π1(S) into the universal

cover G̃. More generally, given a covering map q : H → G, the representation ρ is liftable
to ρ̃ : π1(S) → H if and only if e(ρ) is in the image of

q∗ : H2(S, π1(H)) → H2(S, π1(G)) .

In our case, G = Isom0(AdS
3) ∼= PSL2R × PSL2R and H = Isom0(ÃdS3) ∼= (S̃L2R ×

S̃L2R)/∆Z . Hence e(ρ) = (e(ρl), e(ρr)), where e(ρl) and e(ρr) are the usual Euler classes
of the representations ρl, ρr : π1(S) → PSL2R. On the other hand the image of π1(H) in

π1(G) is the diagonal subgroup in Z × Z. So ρ is liftable to Isom0(ÃdS3) if and only if
e(ρl) = e(ρr).

In particular, in the case considered in this paper, the Euler class of both representations
ρl and ρr is maximal and thus ρ is always liftable as in Lemma 2.1. However, the statement
of Lemma 2.1 provides a favourite lifting ρ̃, which will be indeed called standard, satisfying
a geometric property necessary for our construction.

Proof of Lemma 2.1. Let Γ be the curve in ∂∞AdS3 = RP1×RP1 which is the graph of the
unique orientation-preserving homeomorphism of RP1 which conjugates ρl to ρr, and let Γi

be the preimages of Γ by the covering map p : (ÃdS3 ∪∂∞ÃdS3) → (AdS3∪∂∞AdS3). That
is,

p−1(Γ) =
⊔

i∈Z

Γi ,

where we recall from (9) that we use the letter p to denote the extended projection map,
by a small abuse of notation. As Γ is homotopic to p∗(c0), where the loop c0 represents the

generator of π1(∂∞ÃdS3), it turns out that p|Γi
: Γi → Γ is 1-to-1 and Z acts freely and

transitively on {Γi : i ∈ Z}.
Now, fix a lift Γi0 . Then, for every element τ of the fundamental group π1(AdS

3), there

exists a unique lift of ρ(τ) to Isom0(ÃdS3) which preserves Γi0 . Define ρ̃(τ) this element.
(In fact, it suffices to pick any lift, which will send Γi0 to some Γi, and then compose with
an element of the center.) It is easy to check that ρ̃ defined in this way is a representation.

Actually, ρ̃ does preserve every lift Γi. In fact, if σ̃i = ξ ◦ σ̃0 where ξ ∈ Z, the unique
representation which preserves Γi is ξ ◦ ρ̃ ◦ ξ−1. But since ξ is in the center, this coincides
with ρ̃.

Let us now show that the representation ρ̃ defined in this way satisfies the claimed prop-
erty. If σ is an equivariant embedding as in the hypothesis, as explained in Subsection 2.2

(see [Mes07, Proposition 20]), the embedding σ extends to the visual boundary ∂∞S̃, with

∂∞σ(S̃) = Γ.

For each i there exists a unique lift σ̃i of σ such that ∂∞σ̃i(S̃) = Γi. Since every curve Γi is

left invariant by ρ̃(τ), for every τ ∈ π1(S), the same holds for σi(S̃). Hence the embeddings
σ̃i are ρ̃-equivariant, for every i ∈ Z. This concludes the proof. �

We will call standard lift of ρ the representation ρ̃ constructed in Lemma 2.1:

Definition 2.3. Let ρl, ρr : π1(S) → PSL2R be Fuchsian representations. We call standard
lift of ρ = (ρl, ρr) : π1(S) → Isom0(AdS

3) the representation

ρ̃ : π1(S) → Isom0(ÃdS3)

which leaves every connected component of p−1(Γ) invariant, where Γ ⊂ ∂∞AdS3 ∼= RP1 ×
RP1 is the graph of the the unique orientation-preserving homeomorphism of RP1 which
conjugates ρl with ρr.
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Remark 2.4. Observe that, given a representation ρ = (ρl, ρr) into Isom0(AdS
3), any other

lift ρ̃′ into Isom0(ÃdS3) is of the form

ρ̃′(τ) = ξ(τ)ρ̃(τ) , (10)

where ξ : π1(S) → Z is a representation in the center Z. In fact, we know that the kernel

of p : S̃L2R → PSL2R is Z, hence the form (10). Moreover, the condition that ρ̃′ is a
representation coincides exactly with the condition that ξ is a representation with values in
Z, which is thus identified to an element of Hom(π1(S),Z) ∼= H1(S,Z).

2.5. Unit future timelike tangent bundle. We will consider embeddings of surfaces in

the unit future timelike tangent bundle of ÃdS3. Let us fix a time-orientation on AdS3, and

thus on ÃdS3. This is the subbundle

Π : T 1
⋆ ÃdS

3 → ÃdS3

of the tangent bundle T ÃdS3 whose fiber over the point γ ∈ ÃdS3 is

Π−1(γ) = {(γ, u) ∈ T ÃdS3 : 〈u, u〉 = −1 and u is positively time-oriented} ,

where 〈·, ·〉 denotes the metric we defined on ÃdS3. Given a point (γ, u), we will denote by

V the vertical bundle, namely the subbundle of TT 1
⋆ ÃdS

3 defined by:

V(γ,u) = Ker
(
Π∗ : T(γ,u)T

1
⋆ ÃdS

3 → TγÃdS3
)

.

That is, V(γ,u) is the vector subspace tangent to the fiber (which has dimension 2). This is

identified to the subspace of T(γ,u)ÃdS3 tangent to the set of unit positive timelike vectors,

namely, to the orthogonal complement u⊥ in TγÃdS3.

On the other hand, given a vector w ∈ TγÃdS3, we define its horizontal lift at the point

(γ, u) in the following way. Let γ(t) be a curve in ÃdS3 such that γ(0) = γ and γ′(0) = w. Let
u(t) be the parallel transport of u(0) along γ(t) with respect to the Levi-Civita connection ∇

of ÃdS3: that is, u(t) satisfies ∇γ′(t)u(t) = 0. Observe that, by compatibility of the metric,

(γ(t), u(t)) is in T 1
⋆ ÃdS

3. Then

wh := (γ, u)′(0)

is the horizontal lift of w at (γ, u). Observe that the map

w ∈ TγÃdS3 → wh

is linear and injective. Hence the horizontal subspace is the (3-dimensional) vector subspace

H(γ,u) := {wh : w ∈ TγÃdS3} .

We can now define a natural metric on T 1
⋆ ÃdS

3, known as the Sasaki metric:

Definition 2.5. The Sasaki metric is the pseudo-Riemannian metric gS on T 1
⋆ ÃdS

3 defined,

for X1, X2 ∈ T(γ,u)T
1
⋆ ÃdS

3, by:

gS(X1, X2) :=





〈w1, w2〉 if X1, X2 ∈ H(γ,u), X1 = wh
1 , X2 = wh

2 ;

〈v1, v2〉 if X1, X2 ∈ V(γ,u) and they correspond to v1, v2 ∈ u⊥ ;

0 if X1 ∈ H(γ,u), X2 ∈ V(γ,u) or viceversa .

The isometry group Isom0(ÃdS3) induces an obvious action on T 1
⋆ ÃdS

3, by means of:

̺∗(γ, u) := (̺(γ), ̺∗(u)) , (11)
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for any ̺ ∈ Isom0(ÃdS3). This action on T 1
⋆ ÃdS

3 preserves the horizontal and vertical
subspaces, in the sense that

̺∗H(γ,u) = H̺∗(γ,u) and ̺∗V(γ,u) = V̺∗(γ,u) ,

and acts by isometries for the Sasaki metric.

3. Principal R-bundles and their curvature

In this section we introduce the principal R-bundle πρ : Pρ → (S, hl)× (S, hr), its connec-
tion form ωρ, and study some of its properties, in relation with equivariant embeddings of

S̃ into T 1
⋆ ÃdS

3. Most remarkably, in Proposition 16 we give an expression for the curvature
form of Pρ only in terms of a natural symplectic form Ωρ on the base S × S.

3.1. R-action by geodesic flow. Let us consider again the unit future timelike tangent

bundle T 1
⋆ ÃdS

3. There is a natural R-action on T 1
⋆ ÃdS

3 given by the geodesic flow. Namely,

given t ∈ R and (γ, u) ∈ T 1
⋆ ÃdS

3, we define

ϕt(γ, u) := (γ(t), γ′(t)) , (12)

where γ(t) is the unique geodesic of ÃdS3 such that γ(0) = γ and γ′(0) = u. That is,

γ(t) satisfies ∇γ′(t)γ
′(t) = 0, where ∇ is the Levi-Civita connection of ÃdS3. In particular,

〈γ′(t), γ′(t)〉 = −1 for all t, and thus (12) is well-defined on T 1
⋆ ÃdS

3.

Recalling the bijection in (7) between the space of timelike geodesics of ÃdS3 and H2×H2,
which is given by

(x, y) ∈ H2 ×H2 7→ p−1(Lx,y) ,

we can define a projection

π : T 1
⋆ ÃdS

3 → H2 ×H2 ,

by mapping (γ, u) to the pair (x, y) ∈ H2 ×H2 such that, if γ(t) : R → ÃdS3 is the geodesic

of ÃdS3 with γ(0) = γ and γ′(0) = u, then

p({γ(t) : t ∈ R}) = Lx,y .

The key point for our construction is that π provides T 1
⋆ ÃdS

3 with a principal R-bundle
structure.

Lemma 3.1. The bundle π : T 1
⋆ ÃdS

3 → H2×H2 is a R-principal bundle, where the R-action

on T 1
⋆ ÃdS

3 is given by the geodesic flow.

Proof. By construction, the R-action preserves every fiber π−1(x, y). Moreover, as each

geodesic of ÃdS3 is a real line, the R-action on each geodesic is free and transitive. �

Recall that the group Isom0(ÃdS3) = (S̃L2R× S̃L2R)/∆Z acts on T 1
⋆ ÃdS

3 by isometries,
and on H2 ×H2 by

(α, β) · (x, y) = (p(α)(x), p(β)(y)) ,

where α, β ∈ S̃L2R and p is the covering map p : S̃L2R → PSL2R. With these definitions,
we have:

Lemma 3.2. The projection π : T 1
⋆ ÃdS

3 → H2 × H2 is equivariant for the natural action

of Isom0(ÃdS3) = (S̃L2R× S̃L2R)/∆Z . That is, if π(γ, u) = (x, y), then for every (α, β) ∈

S̃L2R× S̃L2R,

π ((α, β)∗(γ, u)) = (p(α)(x), p(β)(y)) .

Proof. The proof is direct consequence of the definitions and of Equation (3). �
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We will now derive an alternative expression for the projection π, which will be useful in
the following. Before that, observe that there is a natural embedding

f : H2 → sl2R .

To define f , for every point x ∈ H2 let us denote Rθ,x ∈ PSL2R the elliptic isometry of H2

which fixes x and is a counterclockwise rotation around x of angle θ. Then define

f(x) =
d

dθ

∣∣∣∣
θ=0

R2θ,x ∈ sl2R . (13)

By the arguments of [BS16, Section 2], f is an isometric embedding, for the hyperbolic metric
of H2 and the Lorentzian metric on sl2R (which is 1/8 times the Killing form). Moreover,

f is equivariant with respect to the action of PSL2R (or of S̃L2R) on H2, and the adjoint
action on sl2R:

f(γ(x)) =
d

dθ

∣∣∣∣
θ=0

R2θ,γ(x) =
d

dθ

∣∣∣∣
θ=0

(
γ ◦ R2θ,x ◦ γ−1

)
= Ad(γ)f(x) .

Lemma 3.3. Given any (γ, u) ∈ T 1
⋆ ÃdS

3,

(f, f) ◦ π(γ, u) = ((Rγ−1)∗u, (Lγ−1)∗u) , (14)

where f is defined in Equation (13).

Proof. We need to show that, if the timelike geodesic with initial data (γ, u) is the geodesic
Lx,y, then f(x) = (Rγ−1)∗u and f(y) = (Lγ−1)∗u.

Let us first prove Equation (14) when γ = id. In this case, π(id, u0) = (x0, x0) for
some x0 ∈ H2, since the timelike geodesics through the identity all have the form Lx,y

with x = y, as a consequence of Equation (2). Hence we need to check that for every

u0 ∈ TidÃdS3 = sl2R, if the 1-parameter group generated by u0 is the geodesic Lx0,x0
, then

f(x0) = u0. This is exactly the definition of f in Equation (13).

Now, let us prove the general case. Given any γ ∈ S̃L2R and any u ∈ TγÃdS3, if we pick
u0 such that u = (Lγ)∗(u0), then

(γ, id)∗(id, u0) = (γ, u) .

(Here we think of (γ, id) ∈ S̃L2R× S̃L2R as an isometry of ÃdS3, by means of Equation (6).)
According to Lemma 3.2,

π(γ, u) = (γ, id) · π(id, u0) = (γ, id) · (x0, x0) = (γ(x0), x0) ,

On the other hand, since by the previous case f(x0) = u0,

((Rγ−1)∗u, (Lγ−1)∗u) = (Ad(γ)u0, u0) = (Ad(γ)f(x0), f(x0)) = (f(γ(x0)), f(x0))

by using the equivariance of f . This concludes the proof. �

3.2. A principal R-connection. We will define a connection form on the principal bundle

π : T 1
⋆ ÃdS

3 → H2 ×H2. For this purpose, we need to use the following result:

Theorem 3.4 ([BCE82]). The R-action on T 1
⋆ ÃdS

3 by the geodesic flow is an action by
isometries of the Sasaki metric.

Theorem 3.4 is equivalent to saying that the generator of the geodesic flow action is a

Killing field. This generator is the vector field χ ∈ Γ∞(TT 1
⋆ ÃdS

3) of the form

χ(γ, u) = uh ∈ H(γ,u) ⊂ T(γ,u)T
1
⋆ ÃdS

3 , (15)

under the identification T(γ,u)T
1
⋆ ÃdS

3 ∼= H(γ,u) ⊕ V(γ,u) explained in Subsection 2.5.

Let us now define the connection form of the principal bundle π : T 1
⋆ ÃdS

3 → H2 ×H2:
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Definition 3.5. The connection form of π : T 1
⋆ ÃdS

3 → H2 × H2 is the 1-form ω ∈

Ω1(T 1
⋆ ÃdS

3,R) defined by:

ω = −gS(χ, ·) ,

where χ is the generator of the geodesic flow and gS is the Sasaki metric.

It is easy to check that ω indeed defines a principal connection. For this purpose, first
observe that in this case the tangent line to any fiber of π is naturally identified to R (which
is of course the Lie algebra of the group R). Given a vector X tangent to the fiber, X is of
the form aχ for some a ∈ R, and then our identification maps X to a. To check that ω is a
principal connection, we need to show:

(1) ω is R-invariant. Since the adjoint action of R is trivial, this reduces to check that,
for any t ∈ R, ϕ∗

tω = ω. This is indeed true since χ is ϕt-invariant and ϕt is an
isometry of gS by Theorem 3.4:

ϕ∗
tω = ω((ϕt)∗(·)) = −gS(χ, (ϕt)∗(·)) = −gS(χ, ·) = ω ,

(2) If X = aχ is tangent to the fiber, then ω(X) = a. In fact, in this case

ω(X) = −gS(χ, aχ) = −agS(χ, χ) = a ,

by using the expression χ(γ, u) = uh of Equation (15) and the fact that u is a unit
vector, so that gS(χ, χ) = 〈u, u〉 = −1.

In terms of Ehresmann connections, Definition 3.5 means that the horizontal distribution

of the principal bundle π : T 1
⋆ ÃdS

3 → H2 × H2 is given by the subspaces orthogonal to the
orbits of the geodesic flow.

3.3. Principal bundles over S × S. Let us now fix a representation

ρ = (ρl, ρr) : π1(S) → PSL2R× PSL2R

with ρl, ρr Fuchsian, and consider the standard lift ρ̃ : π1(S) → Isom0(ÃdS3) as in Definition

2.3. Then for every τ ∈ π1(S), ρ̃(τ) ∈ Isom0(AdS
3) induces an isometry of T 1

⋆ ÃdS
3 as in

Equation (11). It turns out easily that the action of ρ̃(π1(S)):

• commutes with the R-action of the geodesic flow;
• induces the action of ρl(π1(S))× ρr(π1(S)) on H2 ×H2;

• is free and properly discontinuous on T 1
⋆ ÃdS

3.

In fact, the first point is direct consequence of ρ̃ acting by isometries; the second follows
from Lemma 3.2; the third point follows from the second point and the fact that ρl(π1(S))
and ρr(π1(S)) act freely and properly discontinuously on H2.

Therefore, the quotient T 1
⋆ ÃdS

3/ρ̃(π1(S)) has a structure of principal R-bundle over the
base

(H2/ρl(π1(S)))× (H2/ρr(π1(S))) = (S, hl)× (S, hr) ,

where we are identifying the quotient of H2 by a Fuchsian group with a hyperbolic structure

on S. Moreover, since Isom0(ÃdS3) acts on T 1
⋆ ÃdS

3 by isometries of the Sasaki metric, the
quotient bundle is also endowed with a connection form, induced by the connection form ω
of Definition 3.5. Let us summarize this in a definition:

Definition 3.6. Given a representation ρ = (ρl, ρr) : π1(S) → PSL2R× PSL2R, we define

πρ : Pρ → (S, hl)× (S, hr)

as the principal R-bundle induced by π : T 1
⋆ ÃdS

3 → H2 ×H2, endowed with the connection
form ωρ induced by ω, where H2/ρl(π1(S)) = (S, hl) and H2/ρr(π1(S)) = (S, hr).
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Recall from Lemma 2.1 that a ρ-equivariant spacelike embedding S̃ into AdS3 can be lifted

to a ρ̃-equivariant embedding into ÃdS3, where ρ̃ : π1(S) → Isom0(ÃdS3) is the standard

lift. We will now observe that it also induces an equivariant embedding into T 1
⋆ ÃdS

3 which
is orthogonal to the generator χ of the geodesic flow, and thus parallel for the connection
form ωρ.

Lemma 3.7. Given a spacelike ρ̃-equivariant embedding σ̃ : S̃ → ÃdS3, let

σ̃N : S̃ → T 1
⋆ ÃdS

3 ,

be the map defined by

σ̃N (x) = (σ̃(x), N(x)) ,

where N(x) is the future-directed unit vector orthogonal to dσ̃(TxS̃). Then

• σ̃N is an embedding, equivariant for the action of π1(S) on T 1
⋆ ÃdS

3 induced by ρ̃,
tangent to the horizontal distribution defined by the connection form ω;

• π ◦ σ̃N is an embedding into H2×H2, equivariant for the action induced on H2×H2

by ρ.

Proof. The equivariance of σ̃N and π ◦ σ̃N is a direct consequence of the definitions. It

remains to check that for every point x ∈ S̃, the image of the differential of σ̃N at x is in
the kernel of ω, or in other words, is orthogonal to χ. Recall that, in the decomposition

T(σ̃(x),N(x))T
1
⋆ ÃdS

3 ∼= H(σ̃(x),N(x)) ⊕ V(σ̃(x),N(x)) ,

we have χ(σ̃(x),N(x)) = N(x)h, while

dσ̃N (ẋ) = dσ̃(ẋ)h ⊕∇dσ̃(ẋ)N .

Hence from the form of the Sasaki metric (Definition 2.5), we have

gS(χ, dσ̃N (ẋ)) = 〈N(x), dσ̃(ẋ)〉 = 0

since N(x) is the normal vector of the image of σ̃ at x. This concludes the proof of the first
point.

For the second point, π◦σ̃N is an immersion as a consequence of the first point. Moreover,

by [Mes07, Lemma 6] σ̃(S̃) intersects the orbits of the geodesic flow only in one point, and
thus π ◦ σ̃N is globally injective. �

Hence every ρ-equivariant spacelike embedding σ̃ : S̃ → AdS3 gives rise to an embedding
of Λ : S → S × S isotopic to the diagonal, and to a parallel section of Pρ|Λ(S). We now

provide an example of parallel equivariant embeddings into T 1
⋆ ÃdS

3, giving rise to a section
of Pρ over the diagonal in S × S, which is not obtained in this way.

Example 3.8. Let ρ0 : π1(S) → PSL2R be a Fuchsian representation, and let

ρ = (ρ0, ρ0) : π1(S) → PSL2R× PSL2R .

Then ρ(τ) fixes the identity of PSL2R for every τ , by (1). Now let us consider f : H2 →

sl2R = TidÃdS3, which was defined in Equation (13), and define:

σ̃(x) := (id, f(x)) .

By the equivariance of f , σ̃ gives a ρ-equivariant embedding of H2 into T 1
⋆ ÃdS

3, such that

its composition with the projection Π : T 1
⋆ ÃdS

3 → ÃdS3 gives a constant map Π◦ σ̃(x) = id.
It is straightforward from the definition of the Sasaki metric, that σ̃ is orthogonal to the

generator χ of the geodesic flow. Moreover for every x, σ̃(x) belongs to the orbit of the
geodesic flow which corresponds to the geodesic Lx,x. Hence

π ◦ σ̃(x) = (x, x) ∈ H2 ×H2 .
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Therefore σ̃ induces a parallel section of the restriction of the bundle Pρ over the diagonal
in S × S.

However, let us remark that, for every t ∈ (−π, π),

π ◦ ϕ2t ◦ σ̃(x) = exp(tf(x)) .

We observe that the section ϕ2t ◦ σ̃ is still orthogonal to χ and thus parallel. (In general,

applying ϕt to a surface of the form σ̃N (S̃) corresponds essentially to acting by the normal

flow.) Hence ϕt ◦ σ̃ is an embedding into T 1
⋆ ÃdS

3, such that Π ◦ϕt ◦ σ̃ is also an embedding

into ÃdS3. In particular, for t = ±π/2, ϕ±π/2 ◦ σ̃ is an isometric embedding of H2, with
image a totally geodesic plane.

3.4. Relation between curvature and symplectic form. Let us now consider the local
geometry of the principal bundle πρ : Pρ → (S, hl)× (S, hr). The main result of this section
is an expression of the curvature of this bundle, which is a R-valued 2-form, in terms of a
natural symplectic form on the base.

The curvature of the principal bundle πρ : Pρ → S × S is a real-valued 2-form Rρ ∈
Ω2(Pρ,R). Given a vector X ∈ TpPρ, let us denote its horizontal-vertical decomposition,
according to the connection form ωρ, as

X = h(X) + v(X) ,

where ωρ(h(X)) = 0 and ωρ(v(X)) = v(X). Then by the structure equation for principal
bundles, the curvature Rρ can be expressed as

Rρ = dωρ , (16)

since the term ωρ ∧ ωρ vanishes in this case. On the other hand, using Lemma 3.2, the base
S × S of Pρ is naturally endowed with:

• The Riemannian metric hl ⊕ hr, which is induced by the metric of H2 ×H2.
• The symplectic form Ωρ = p∗lΩl − p∗rΩr, where pl, pr : S × S → S are the left and
right projections, and Ωl and Ωr are the area forms of hl and hr, respectively.

Proposition 3.9. Given any representation ρ = (ρl, ρr) : π1(S) → PSL2R × PSL2R with
ρl, ρr Fuchsian, the curvature of πρ : Pρ → S × S is:

Rρ =
1

2
π∗
ρΩρ ,

where Ωρ = p∗lΩl−p∗rΩr and Ωl,Ωr are the area forms induced on S by the area form of H2.

For the proof of Proposition 3.9, we will use two foliations of T 1
⋆ ÃdS

3 whose leafs are three-
dimensional, namely the left-invariant foliation FL = {FL

u : u ∈ f(H2)} and right-invariant
foliation FR = {FR

u : u ∈ f(H2)}, with leaves parameterized by the image of the isometric
embedding f : H2 → sl2R. Let us define the left-invariant foliation. Consider, for any fixed

future unit vector u ∈ sl2R, the section ΣL
u : ÃdS3 → T 1

⋆ ÃdS
3 of the bundle Π : T 1

⋆ ÃdS
3 →

ÃdS3:

g ∈ ÃdS3 7→ ΣL
u (g) := (g, (Lg)∗(u)) ,

where Lg is the left multiplication for the Lie group structure of ÃdS3. Then define

FL
u = ΣL

u (ÃdS
3) .

Observe that (id, u) ∈ FL
u and that the submanifolds FL

u foliate T 1
⋆ ÃdS

3 as u varies in H2,
identified to the subset of future normal vectors in sl2R by the usual isometric embedding
f : H2 → sl2R (see Equation (13)).

Analogously, we define ΣR
u (g) := (g, (Rg)∗(u)) and

FR
u = ΣR

u (ÃdS
3) .
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Let us moreover denote DL
(γ,u) and DR

(γ,u) the tangent distributions of the foliations FL and

FR respectively, through the point (γ, u).

Lemma 3.10. The intersection of two leaves FL
u and FR

u′ is an orbit of the geodesic flow

on T 1
⋆ ÃdS

3. In particular, given any (γ, u) ∈ T 1
⋆ ÃdS

3,

DL
(γ,u) ∩ DR

(γ,u) = Span(χ(γ, u)) ,

and therefore

T(γ,u)T
1
⋆ ÃdS

3 = DL
(γ,u) +DR

(γ,u) .

Proof. First of all, we show that it suffices to prove the first claim when u = u′. In fact, it

can be easily checked that, for any isometry of the form (α, β) ∈ S̃L2R× S̃L2R,

(α, β)∗Σ
L
u (g) = ΣL

Adβ(u)(αgβ
−1) ,

and therefore (α, β)∗F
L
u = FL

Adβ(u). Similarly, (α, β)∗F
R
u = FR

Adα(u). Hence, by applying

the action of an element of Isom0(T
1
⋆ ÃdS

3), which clearly maps orbits of the geodesic flow
to orbits of the geodesic flow, we can reduce to the case u = u′.

Now, observe that (g, v) ∈ FL
u ∩ FD

u if and only if v = (Lg)∗(u) = (Rg)∗(u). Hence
Adg(u) = u, and therefore g commutes with the 1-parameter elliptic subgroup gt :=
{exp(tu) : t ∈ R}. Thus g = gt for some t. This shows that FL

u ∩ FD
u consists precisely of

the orbit of the geodesic flow through (id, u).
Since the orbits of the geodesic flow are generated by χ, it follows that in terms of tangent

distributions,

DL
(γ,u) ∩ DR

(γ,u) = Span(χ(γ, u)) ,

and in particular the planes DL
(γ,u) and DR

(γ,u) generate the tangent space of T 1
⋆ ÃdS

3 at the

point (γ, u). �

Proof of Proposition 3.9. As the statement has a local nature, we can work with the bundle

π : T 1
⋆ ÃdS

3 → H2 × H2 in a neighborhood of a point (γ, u). Moreover, using Lemma 3.2

and the fact that the action of Isom0(ÃdS3) preserves the connection ω, and the action of
PSL2R × PSL2R preserves the symplectic form Ω = p∗l (dAH2) − p∗r(dAH2), we can assume
that γ = id.

Let R ∈ Ω2(T 1
⋆ ÃdS

3,R). Since DL
(id,u) and DR

(id,u) generate T(id,u)T
1
⋆ ÃdS

3 by Lemma

3.10, it suffices to check that

2R(X,Y ) = Ω(dπ(X), dπ(Y )) ,

when X,Y are both in DL
(id,u), both in DR

(id,u), or X ∈ DL
(id,u) and Y ∈ DR

(id,u).

Case 1. Let us first suppose X,Y ∈ DL
(id,u). Hence X = (dΣL

u )id(v) and Y = (dΣL
u )id(w) for

some v, w ∈ sl2R. Observe that, if we extend v and w to left-invariants vector fields vl, wl,

then for every g ∈ ÃdS3,

ω((dΣL
u )g(v

l)) = gS(χΣL
u (g), (dΣ

L
u )g(v

l)) = 〈(Lg)∗(u), (Lg)∗(v)〉 ,

since, in the horizontal-vertical decomposition of T 1
⋆ ÃdS

3, χ(γ,u) = uh, the horizontal compo-

nent of (dΣL
u )id(v

l) equals the horizontal lift of vl = (Lg)∗(v), and we applied the definition
of the Sasaki metric (Definition 2.5). By left-invariance of the Killing form, it follows that:

ω((dΣL
u )g(v

l)) = 〈u, v〉 .

In particular, ω((dΣL
u )g(v

l)) is a constant function of g ∈ ÃdS3.
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Let us decompose v = v0 + λu and w = w0 + µu with v0, w0 ∈ u⊥. Then we have, using
Cartan’s formula:

R(X,Y ) = dω(dΣL
u (v), dΣ

L
u (w))

= dΣL
u (v).ω(dΣ

L
u (w

l))− dΣL
u (w).ω(dΣ

L
u (v

l))− ω[dΣL
u (v

l), dΣL
u (w

l)]

= −ω(dΣL
u [v

l, wl]) = −〈u, [v, w]L〉 = −2〈u, v ⊠ w〉

= −2〈u, v0 ⊠ w0〉 = 2(dAH2)(v0, w0) .

(17)

Here, from the second to the third line we used that ω(dΣL
u (v

l)) and ω(dΣL
u (w

l)) are constant
functions. In the third line we used that the Lie bracket of left-invariant vector fields coincides
with the bracket of Lie algebra, which is the same as the cross-product for the Lorentzian
metric on the Lie algebra, up to a factor. Namely

[v, w]L = 2v ⊠ w , (18)

where ⊠ is the Lorentzian cross-product which is uniquely determined by the condition
〈v ⊠ w, u〉 = dVol(v, w, u). Equation (18) is a consequence of the arguments explained in
[BS16, §2.1].

On the other hand, by Lemma 3.3, we have

(f, f) ◦ π ◦ ΣL
u (g) = ((Rg−1 )∗(Lg)∗u, u) = (Ad(g)u, u) ∈ f(H2)× f(H2) ⊂ sl2R× sl2R .

Hence, recalling that X = (dΣL
u )id(v) and Y = (dΣL

u )id(w), we have

(df, df) ◦ dπid,u(X) = ([u, v]L, 0) = (2u⊠ v, 0) = 2(u⊠ v0, 0) .

Since the embedding f of H2 in sl2R satisfies dfu(Jv0) = u ⊠ v0, where J is the almost-
complex structure of H2, we have

dπid,u(X) = 2(Jv0, 0) . (19)

Analogously

dπid,u(Y ) = 2(Jw0, 0) . (20)

In conclusion, putting together Equations (17), (19) and (20), one obtains:

π∗Ω(X,Y ) = Ω(dπid,u(X), dπid,u(Y )) = 4(dAH2)(Jv0, Jw0) = 4(dAH2)(v0, w0) = 2R(X,Y ) ,

as claimed.

Case 2. When X and Y are in DR
(id,u), that is X = (dΣR

u )id(v) and Y = (dΣR
u )id(w), the

proof goes in a similar way. Extending v and w to right-invariant vector fields vr, wr, one
has analogously

ω((dΣR
u )g(v

r)) = 〈u, v〉 .

Therefore, with the same decomposition v = v0 + λu and w = w0 + µu, one shows

R(X,Y ) = dω(dΣR
u (v), dΣ

R
u (w)) = −ω(dΣR

u [v
r, wr]) = 〈u, [v, w]L〉 = −2(dAH2)(v0, w0) ,

where the difference in sign with respect to the previous case is due to the fact that, for
right-invariant vector fields, [vr, wr ] = −[v, w]L, where [v, w] is the Lie algebra bracket,
defined using left-invariant extensions.

On the other hand, in this case (f, f) ◦ π ◦ ΣR
u (g) = (u,Ad(g−1)u), whence

dπid,u(X) = 2(0,−Jv0) and dπid,u(Y ) = 2(0,−Jw0) . (21)

Thus

π∗Ω(X,Y ) = −4(dAH2)(−Jv0,−Jw0) = −4(dAH2)(v0, w0) = 2R(X,Y ) ,

and this concludes the second case.
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Case 3. Finally, ifX ∈ DL
(id,u) and Y ∈ DR

(id,u), we know from Equation (19) that dπid,u(X) =

2(Jv0, 0) and from Equation (21) that dπid,u(Y ) = 2(0,−Jw0), hence π∗Ω(X,Y ) = 0.
When computing the curvature, in this case we can write X = (dΣL

u )id(v) and Y =
(dΣR

u )id(w), and extend v to a left-invariant vl and w to a right-invariant wr. Hence one
has again

R(X,Y ) = dω(dΣL
u (v), dΣ

R
u (w))

= dΣL
u (v).ω(dΣ

L
u (w

r))− dΣR
u (w).ω(dΣ

L
u (v

l))− ω[dΣL
u (v

l), dΣR
u (w

r)]

= −ω[dΣL
u (v

l), dΣR
u (w

r)] = 0 ,

since left-invariant and right-invariant vector fields commute. This concludes the proof. �

Recall that, given a symplectic manifold (M,Ω) with dimM = 2n, and an embedding
Λ : N → M with dimN = n, then Λ is Lagrangian if Λ∗Ω = 0. We will denote by Λ∗Pρ the
pull-back bundle, that is, the bundle on S defined by the following commutative diagram:

Λ∗Pρ
i

//

��

Pρ

π

��

S
Λ

// S × S

(22)

Hence with this notation, the inclusion i : Λ∗Pρ → Pρ induces a connection form on Pρ,
which is again a R-principal bundle. From Proposition 3.9 and the definition of Lagrangian
embedding, we have:

Corollary 3.11. Let ρ = (ρl, ρr) : π1(S) → PSL2R×PSL2R be a representation with ρl, ρr
Fuchsian, and let Λ : S → (S × S,Ωρ) be an embedding. Then Λ is Lagrangian if and only
if (Λ∗Pρ, i

∗ωρ) is flat.

Remark 3.12. Recall that we have already produced several examples of ρ-equivariant em-

beddings σ̃ : S̃ → T 1
⋆ ÃdS

3, with the property that the image of the differential of σ̃ is in the
horizontal distribution. For instance those given by lifting an equivariant embedding into

ÃdS3 (Lemma 3.7), or in Example 3.8.
By ρ-equivariance, π ◦ σ̃ induces an embedding (say, Λσ̃) of S into S × S, where S × S is

endowed with the symplectic form Ωρ. By Corollary 3.11, Λσ̃ is a Lagrangian embedding.
Hence σ̃ induces a Lagrangian submanifold in (S × S,Ωρ). In [Bar16] it has been already
proved that the submanifold Λσ̃(S) is Lagrangian, by means of different arguments. In the
present work, we will deal with the global character of the problem, thus giving an obstruction
to find a global parallel section over a given Lagrangian submanifold of (S × S,Ωρ). The
local theory was already clarified in [Bar16, §3].

As a particular case, suppose σ : S̃ → AdS3, σ̃ is its lift to ÃdS3 and σ̃N is the associated

map into T 1
⋆ ÃdS

3. It is known from [KS07] that, if σ(S̃) has curvature different from
zero at every point, then the image of the embedding Λ : S → S × S is a graph over
S, that is Λ(x) = (x, ϕ(x)) for a diffeomorphism ϕ isotopic to the identity. Moreover,
0 = Λ∗Ω = Ωl−ϕ∗Ωr. Hence one recovers the already known result that ϕ : (S,Ωl) → (S,Ωr)
is a symplectomorphism isotopic to the identity.

4. Flat subbundles and their holonomy

In this section we study the symplectic geometry of (S×S,Ωρ), by means of the flux map
for Lagrangian embeddings Λ : S → (S×S,Ωρ), and we relate it to the holonomy of the flat
principal R-bundles Λ∗Pρ.
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4.1. Lagrangian embeddings. Let us consider the space of Lagrangian embeddings of S
into (S × S,Ωρ) isotopic to the diagonal

∆ : x ∈ S 7→ (x, x) ∈ S × S .

That is, we define:

Mρ := {Λ : S → (S × S,Ωρ) : Λ∗Ωρ = 0,Λ ∼ ∆} .

There is a right action on Mρ of the group

Diff0(S) := {ϕ : S → S diffeomorphism, ϕ ∼ id} ,

by pre-composition:

Mρ ×Diff0(S) → Mρ (Λ, ϕ) 7→ Λ ◦ ϕ .

Hence we define

Lρ := Mρ/Diff0(S) .

We say that a path f• : [0, 1] → Lρ is smooth if there exists a smooth lift Λ• : [0, 1] → Mρ

such that ft = [Λt].
Now, let Λ• : [0, 1] → Mρ be a piecewise smooth path of Lagrangian embeddings. Con-

sider a loop ℓ : S1 → S, with ℓ(1) = x0, where we adopted the notation S1 = {e2πis : s ∈
[0, 1]}. Let

Fℓ : S
1 × [0, 1] → (S × S,Ωρ)

be defined by

Fℓ(e
2πis, t) = Λt(ℓ(e

2πis)) . (23)

By [Sol13, Lemma 6.1], the integral
∫

S1×[0,1]

F ∗
ℓ Ωρ =

∫

S1×[0,1]

Ωρ

(
dFℓ

ds
,
dFℓ

dt

)
dsdt

only depends on the homotopy class of the loop ℓ and on the homotopy class of the path
[Λ•] : [0, 1] → Lρ. This justifies the following definition:

Definition 4.1. Given a piecewise smooth path [Λ•] : [0, 1] → Lρ, define

Flux : C∞([0, 1],Lρ) → Hom(π1(S),R)

as the function

Flux([Λ•]) : τ 7→

∫

S1×[0,1]

F ∗
ℓ Ωρ ,

where Fℓ(e
2πis, t) = Λt(ℓ(e

2πis)) and τ = [ℓ] ∈ π1(S).

The above construction is very general in symplectic geometry. However, as we shall see
later, in our special case the map Flux does not even depend on the homotopy class of the
path Λ•, but only on its endpoints Λ0 and Λ1.

4.2. Variation of the holonomy. By Corollary 3.11, given any Λ ∈ Mρ, the bundle Λ
∗Pρ

is a flat principal R-bundle, that is, Λ∗Pρ admits trivializations with transition maps which
are translations. Moreover, if [Λ1] = [Λ2] ∈ Lρ, then (Λ1)

∗Pρ and (Λ2)
∗Pρ are isomorphic

as flat R-bundles.
Let us recall the definition of holonomy in this case.

Definition 4.2. Given an affine R-bundle E → S with a flat connection ω, the holonomy
is the representation holE : π1(S) → R such that for every loop ℓ : S1 → S with ℓ(1) = x0,
and for every section p : [0, 1] → E such that p(s) ∈ Eℓ(e2πis) and ω(p′(s)) = 0, then
holE([ℓ]) = t0 where t0 ∈ R is the unique value such that

p(0) = ϕt0 ◦ p(1) .
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In fact, due to the condition of flatness of the connection ω, it turns out that the definition
of holE : π1(S) → R does not depend on the representative ℓ of an element τ ∈ π1(S), nor
on the initial point p(0). We say that a flat R-bundle E → S is trivial if its holonomy is the
trivial representation. Indeed, this is equivalent to saying that E admits a parallel global
section.

Observe that, since the structure group of flat R-bundles is contractible, the bundles of
the form Λ∗Pρ are always topologically trivial.

Proposition 4.3. Let ρ = (ρl, ρr) : π1(S) → PSL2R×PSL2R be a representation with ρl, ρr
Fuchsian, and let Λ ∈ Mρ. Let Σ be any global section of Λ∗Pρ → S. Then

holΛ∗Pρ
(τ) =

∫

τ

Σ∗ωρ . (24)

The fact that the right-hand side of Equation (24) does not depend on the choice of the
global section Σ follows from the following lemma, which will be also important in the proof.
This is a consequence of the general formula for the transformation rule for the connection
form on a principal bundle, see for instance [KN96, Chapter 2], hence we omit the proof.

Lemma 4.4. Let S0 ⊂ S×S be a submanifold. Suppose Σ1,Σ2 : S0 → Pρ are sections, and
let f : S0 → R be such that

Σ2(x) = ϕf(x) ◦ Σ1(x)

for every x ∈ S0. Then

Σ∗
2ωρ = Σ∗

1ωρ + df .

Applying Lemma 4.4 to S0 = Λ(S), we obtain that the 1-forms Σ∗
1ωρ and Σ∗

2ωρ differ by
a coboundary, and thus the right-hand side in Equation (24) does not depend on the choice
of the section Σ. We can now complete the proof of Proposition 4.3.

Proof of Proposition 4.3. Let Σ be a global section of Λ∗Pρ → S. Let S̃ be the universal

cover of S, lift Λ : S → (S, hl)× (S, hr) to the Lagrangian embedding Λ̃ : S̃ → H2×H2, and

Σ to a section Σ̃ of the pull-back bundle of Λ∗Pρ over S̃, which is identified to Λ̃∗P .
By Equation (16) and Proposition 3.9, we have

d(Σ∗ωρ) = Σ∗dωρ = Σ∗Rρ = Σ∗(πρ)
∗Ωρ = Ωρ ,

and therefore, as Λ is a Lagrangian embedding,

d(Λ∗Σ∗ωρ) = Λ∗Ωρ = 0 .

This means that the 1-form Λ∗Σ∗ωρ is closed, and thus also its lift Λ̃∗Σ̃∗ω. Since S̃ is simply

connected, there exists a function f0 : S̃ → R such that

Λ̃∗Σ̃∗ω = −df0 .

Now, consider the section Σ0 of Λ̃∗P defined by

Σ0(x) = ϕ(f0◦Λ̃−1)(x) ◦ Σ̃(x) .

By Lemma 4.4, Σ0 is a parallel section over Λ̃(S̃). Hence, it follows from Definition 4.2 that

holΛ∗Pρ
(τ) = f0(x0)− f0(τ(x0)) = −

∫

ℓ̃

df0 ,

where ℓ̃ : [0, 1] → S̃ is any path connecting x0 to τ(x0). Hence

holΛ∗Pρ
(τ) =

∫

ℓ̃

Λ̃∗Σ̃∗ω =

∫

τ

Λ∗Σ∗ωρ ,

as claimed. �
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We are now ready to show that, given two Lagrangian embeddings Λ0,Λ1 : S → (S ×
S,Ωρ), the difference between the holonomy of Λ∗

0Pρ and Λ∗
1Pρ coincides precisely with the

value of the map Flux on a path of Lagrangian embeddings connecting Λ0 and Λ1.

Proposition 4.5. Let Λ• : [0, 1] → Mρ be a smooth path of Lagrangian embeddings. Then

holΛ∗

1
Pρ

= holΛ∗

0
Pρ

+ Flux([Λ•]) .

Proof. Let Σ : S × S → Pρ be a global section, and define Σt = Σ ◦ Λt : S → Λ∗
tPρ. From

Proposition 4.3, we have:

holΛ∗

1
Pρ
(τ) − holΛ∗

0
Pρ
(τ) =

∫

τ

(Σ∗
1ωρ − Σ∗

0ωρ) . (25)

Now, let us consider the map

F : S × [0, 1] → (S × S,Ωρ) F (x, t) = Λt(x) .

Consider the 1-form ηρ = F ∗Σ∗ωρ on (S × [0, 1]). Then we have, for any v ∈ TxS,

(Σ∗
1ωρ − Σ∗

0ωρ)(v) =

∫ 1

0

(L ∂
∂t
ηρ)(x,t)(v)

=

∫ 1

0

(dηρ)(x,t)

(
∂

∂t
, v

)
− d

(
ηρ

(
∂

∂t

))
(v) .

(In the first equality above, L denotes the Lie derivative.) Hence we have
∫

τ

(Σ∗
1ωρ − Σ∗

0ωρ) =

∫

τ

∫ 1

0

(dηρ)(x,t)

(
∂

∂t
, ·

)
, (26)

since the last term in the previous equation is an exact 1-form and thus its periods vanish.
Now, recall from Proposition 3.9 that the curvature of Pρ is Rρ = dωρ = π∗Ωρ, where ωρ

is the connection form of Pρ, and thus Ωρ = Σ∗dωρ. Therefore

dηρ = d(F ∗Σ∗ωρ) = F ∗Σ∗(dωρ) = F ∗Ωρ . (27)

Finally, if ℓ : [0, 1] → S is a representative of τ ∈ π1(S), the restriction of F to the image
of ℓ coincides with the function Fℓ defined in Equation (23):

F (ℓ(e2πis), t) = Fℓ(e
2πis, t)

Hence, applying this fact and Equation (27) inside Equation (26), we obtain
∫

τ

(Σ∗
1ωρ − Σ∗

0ωρ) =

∫

ℓ(S1)×[0,1]

F ∗Ωρ =

∫

S1×[0,1]

F ∗
ℓ Ωρ = Flux([Λ•]) ,

where in the last step we applied Definition 4.1. By Equation (25), this concludes the
proof. �

4.3. Orbits of Hamiltonian diffeomorphism group. In this subsection we collect some
results on the flux homomorphism in relation with symplectic geometry, which will be rele-
vant in the proof of our main results. We won’t give any proof of the stated results in this
subsection; references are provided.

First, let us remark that the flux homomorphism was defined classically (by Calabi in
[Cal70], see also [Ban78]) on the universal cover of the group of symplectomorphisms of a
symplectic manifold. To be precise, if (M,ΩM ) is a symplectic manifold, let Symp0(M,ΩM )
be the connected component of the identity in the group of symplectomorphisms of (M,ΩM ),

and let [Φ•] ∈ S̃ymp0(M,Ω) be the homotopy class of a smooth path

Φ• : [0, 1] → Symp(M,Ω) ,

with Φ0 = id. Then the flux homomorphism introduced by Calabi is a map:

F̂lux : S̃ymp0(M,Ω) → H1
dR(M,R)



EQUIVARIANT MAPS INTO AdS3 AND THE SYMPLECTIC GEOMETRY OF H
2
× H

2 21

defined in the following way. Let ξt be the generating vector field of Φt, namely

ξt0(x) =
d

dt

∣∣∣∣
t=t0

Φt ◦ Φ
−1
t0 (x) . (28)

Then

F̂lux([Φ•]) =

∫

[0,1]

ΩM (ξt, ·)dt ∈ H1
dR(M,R) .

It turns out again that F̂lux only depends on the homotopy class of Φ•, and that it is a
group homomorphism.

Remark 4.6. If (M,ΩM ) = (S×S, p∗lΩS − p∗rΩS), where ΩS is a symplectic form on S, then
it is easy to check that:

• A diffeomorphism Φ : (S,ΩS) → (S,ΩS) is symplectomorphism if and only if its
graph is a Lagrangian submanifold of (M,ΩM );

• If we denote Λt the graph of Φt, or more precisely

Λt(x) = (x,Φt(x)) ∈ S × S ,

then

Flux([Λ•])(τ) =

∫

τ

F̂lux([Φ•])

for every τ ∈ π1(S).

Hence for those Lagrangian submanifolds of (M,Ω) which are graphs of symplectomorphism,
the two definitions of flux coincide — up to the standard identification of H1

dR(S,R) with
Hom(π1(S),R).

Recall the following definition of Hamiltonian isotopies and symplectomorphisms:

Definition 4.7. A Hamiltonian isotopy is a path Φ• : [0, 1] → Symp(M,ΩM ) for which
there exist Hamiltonian functions Ht : M → R for every t such that

dHt = ΩM (ξt, ·) ,

where ξt is the generating vector field as in Equation (28). We say that two symplectomor-
phisms Φ1,Φ2 : (M,ΩM ) → (M,ΩM ) are Hamiltonian isotopic is there exists a Hamiltonian
isotopy connecting them. A symplectomorphism Φ : (M,ΩM ) → (M,ΩM ) is Hamiltonian
if it is Hamiltonian isotopic to the identity. Finally, we denote Ham(M,ΩM ) the group of
Hamiltonian symplectomorphisms.

The bridge between the two definitions of flux is covered by the following fact, which is
proved in [Sol13, Lemma 6.6]. Here (and in the rest of the paper) we restrict to the case
(M,ΩM ) = (S × S,Ωρ), which is the case of our interest.

Lemma 4.8 ([Sol13, Lemma 6.6]). Let [Λ•] : [0, 1] → Lρ be a smooth path of Lagrangian
submanifolds, where Λt : S → (S × S,Ωρ). Then there exists a path of symplectomorphisms
Φt : (S × S,Ωρ) → (S × S,Ωρ) such that

[Φ• ◦ Λ0] = [Λ•] and Φ0 = id .

Moreover, for every τ ∈ π1(S),

Flux([Λ•])(τ) =

∫

τ

(Λ0)
∗F̂lux([Φ•]) .

In fact, in [Sol13, Lemma 6.6] the previous lemma is proved under the assumption that
the restriction (pull-back) map

Λ∗
0 : H1

dR(M,R) → H1
dR(S,R)
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is surjective, which is satisfied in our situation. Moreover, in the case under consideration
here, Flux([Λ•]) only depends on the endpoints Λ0 and Λ1 of the smooth path Λ•. This
follows from Proposition 4.5.

Hence also the following corollary applies (recalling that Ham(M,ΩM ) denotes the group
of Hamiltonian symplectomorphism):

Corollary 4.9 ([Sol13, Corollary 6.8]). Two Lagrangian submanifolds [Λ0], [Λ1] ∈ Lρ of
(S × S,Ωρ) are in the same orbit of the action of Ham(S × S,Ωρ) on Lρ if and only if
Flux([Λ•]) = 0 for some (hence for every) smooth path [Λ•] : [0, 1] → Lρ connecting them.

5. Proofs of the main results

In this section we will conclude the proof of the main results stated in the Introduction.
In particular, let us show Theorem 1.2:

Theorem 1.2. Let ρ = (ρl, ρr) : π1(S) → PSL2R× PSL2R, where ρl and ρr are Fuchsian

representations, and let ρ̃ : π1(S) → Isom0(ÃdS3) be its standard lift. Then
{
Λσ̃ :

σ̃ is a ρ̃-equivariant embedding orthogonal

to the orbits of the geodesic flow

}
= Ham(S × S,Ωρ) · ΛML ,

where ΛML is the unique minimal Lagrangian submanifold of (S × S,Ωρ) isotopic to the
diagonal.

Proof. Recall that, from the definition of the connection form ω on π : T 1
⋆ ÃdS

3 → H2 ×H2

(Definition 3.5), and the fact that image(π◦σ̃)/ρ(π1(S)) is the submanifold Λσ̃ ⊂ (S×S,Ωρ)
associated to σ̃, we obtain that σ̃ is orthogonal to the orbits of the geodesic flow if and only
if it gives a parallel section of πρ|π−1

ρ (Λσ̃)
: π−1

ρ (Λσ̃) → Λσ̃ over Λσ̃.

Let us now show the two inclusions. First, let us observe that ΛML certainly can be

obtained as Λσ̃max
, where σmax is the (unique) ρ-equivariant embedding of S̃ into AdS3 of

vanishing mean curvature, and σ̃max is its normal ρ̃-equivariant lift into T 1
⋆ ÃdS

3. Now from
any other Λ in the Ham(S×S,Ωρ)-orbit of ΛML, let Λ• be a smooth path of Lagrangian em-
beddings connecting Λ and ΛML. From Corollary 4.9, Flux([Λ•]) = 0, and from Proposition
4.5, Λ∗Pρ and Λ∗

MLPρ have the same holonomy. Since σ̃max induces a parallel global section
over ΛML, the holonomy of Λ∗

MLPρ is trivial. Hence also the holonomy of Λ∗Pρ is trivial —
that is, it admits a parallel global section. Hence Λ = Λσ̃ for some σ̃.

Conversely, given any σ̃, let Λσ̃ be the corresponding embedding of S into (S × S,Ωρ).
Then Λ∗

σ̃Pρ is a flat R-bundle by the observation at the beginning of this proof. In particular
Λσ̃ is Lagrangian by Corollary 3.11. Moreover, the holonomy of Λ∗

σ̃Pρ is trivial. Since we
already know (as above) that the holonomy of Λ∗

MLPρ is trivial, from Proposition 4.5 we
obtain that Flux([Λ•]) = 0 for any smooth path Λ• : [0, 1] → Mρ connecting Λσ̃ and ΛML.
Hence from Corollary 4.9, Λσ̃ and ΛML are in the same Ham(S × S,Ωρ)-orbit. �

Then we have the following direct corollary of Theorem 1.2:

Corollary 1.1. Let ρ = (ρl, ρr) : π1(S) → PSL2R× PSL2R, where ρl and ρr are Fuchsian

representations. Then for every ρ-equivariant spacelike embedding σ : S̃ → AdS3, Λσ is
Hamiltonian isotopic to the unique minimal Lagrangian submanifold ΛML isotopic to the
diagonal.

Proof. From Lemma 3.7, σ induces a ρ̃-equivariant embedding σ̃N : S̃ → T 1
⋆ ÃdS

3, which is
orthogonal to the orbits of the geodesic flow. Hence from Theorem 1.2, Λσ̃N

is in the same
Ham(S×S,Ωρ)-orbit as ΛML. In other words, there exists a Hamiltonian isotopy connecting
Λσ̃N

and ΛML. Since Λσ̃N
= Λσ, this concludes the proof. �
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The question whether any Lagrangian submanifold Λ of (S×S,Ωρ) Hamiltonian isotopic

to ΛML can be obtained as Λσ for some ρ-equivariant embedding σ : S̃ → AdS3 (hence for an

embedding into AdS3, not only into T 1
⋆ ÃdS

3), is still open. For instance, Example 3.8 shows
that some parallel section of Λ∗Pρ might correspond to an equivariant embedding into AdS3,
but some other may give rise to singular maps when one projects down to AdS3. (Actually,
two parallel sections of Λ∗Pρ only differ by the action of R on the R-principal bundle Pρ.)

Hence the best situation one might hope is that there always exists at least one parallel
section which induces an equivariant embedding into AdS3. We do not have any positive
result in this direction at the present time.

Another remark which should be made is that, if Λ is a Lagrangian submanifold such
that, for a path Λ• connecting Λ and ΛML one has Flux([Λ•]) ∈ Hom(π1(S), 2πZ), then one

can take on the universal cover a parallel global section of T 1
⋆ ÃdS

3 over Λ̃ ⊂ H2×H2. From
Remark 2.4, this section is of course not ρ̃-equivariant, but it is instead ρ̃′-equivariant for

some other lift ρ̃′ of ρ : π1(S) → PSL2R× PSL2R to Isom0(ÃdS3).

Hence in this case, this global section still induces a ρ-equivariant map σ : S̃ → AdS3.
However, this equivariant map σ will never be non-singular if Flux([Λ•]) 6= 0, as a conse-
quence of Lemma 2.1.
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