
HAL Id: hal-01675373
https://hal.science/hal-01675373

Submitted on 4 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Value of Variables
Beniamino Accattoli, Claudio Sacerdoti Coen

To cite this version:
Beniamino Accattoli, Claudio Sacerdoti Coen. On the Value of Variables. Information and Compu-
tation, 2017, 255, pp.224 - 242. �10.1016/j.ic.2017.01.003�. �hal-01675373�

https://hal.science/hal-01675373
https://hal.archives-ouvertes.fr

On the Value of Variables

Beniamino Accattolia, Claudio Sacerdoti Coenb

aINRIA, UMR 7161, LIX, École Polytechnique
bDepartment of Computer Science and Engineering, University of Bologna, Italy

Abstract

Call-by-value and call-by-need λ-calculi are defined using the distinguished syn-
tactic category of values. In theoretical studies, values are variables and abstrac-
tions. In more practical works, values are usually defined simply as abstrac-
tions. This paper shows that practical values lead to a more efficient process of
substitution—for both call-by-value and call-by-need—once the usual hypothesis
for implementations hold (terms are closed, reduction does not go under abstrac-
tion, and substitution is done in micro steps, replacing one variable occurrence at
a time). Namely, the number of substitution steps becomes linear in the number
of β-redexes, while theoretical values only provide a quadratic bound. We com-
plete the picture by showing that the same quadratic / linear bounds also hold for
theoretical / practical versions of call-by-name.

Keywords:

Introduction

The theory and the practice of functional programming languages are some-
times far apart. For instance, the theory is based on the λ-calculus, where terms
may have free variables, reduction is non-deterministic (but confluent), and can
take place everywhere in the term. In practice—i.e. in the implementation of func-
tional languages—only closed λ-terms are considered, reduction is deterministic,
and in particular it is weak, i.e. it does not take place under abstraction.

Theoretical and Practical Values. Plotkin’s call-by-value λ-calculus [27] is a the-
oretical object of study introduced to model a concrete case, Landin’s SECD ma-
chine [20]. In such a calculus there is a primitive notion of value and β-redexes can
fire only when the argument is a value. For Plotkin—and for most of the huge the-
oretical literature that followed—values are variables and abstractions; let us call

Preprint submitted to Elsevier January 4, 2018

them theoretical values. However, most CBV abstract machines (or imperative
extensions of Plotkin’s calculus [13]) employ a notion of practical value that in-
cludes abstractions and excludes variables. For instance, Paolini and Ronchi della
Rocca’s book [28] on the parametric λ-calculus, a generalization of Plotkin’s cal-
culus based on a parametric notion of value, requires that the given notion of value
is theoretical (i.e. that it includes variables), while Pierce’s book [26], driven by
programming and implementations, uses practical values. Under the usual prac-
tical hypotheses—terms are closed, reduction does not go under abstraction—the
difference between the two notions of value is not extensionally observable, as it
does not affect the result of evaluation. Moreover, with a small-step operational
semantics—used in most theoretical works—the difference is also not intension-
ally observable.

In practical works, however, the usual small-step semantics is decomposed in
a micro-step semantics, in which substitution acts on a variable occurrence at a
time, i.e. with the granularity of abstract machines (or of that of substructural op-
erational semantics [25]). We show that with micro-steps the difference between
the two notions of value is intensionally observable: the practical variant leads
to a more efficient implementation of substitution, where efficiency is measured
relatively to the number of β-redexes, that is the time cost model of reference.
Thus, we explain the gap between theory and practice, providing a theoretical
justification for practical values.

The Linear Substitution Calculus. Our framework is the Linear Substitution Cal-
culus (LSC) [1, 9, 5], a calculus with explicit substitutions refining a calculus
by Robin Milner [23], that is a flexible tool in between theory and practice. It is
theoretically well-founded, as it arises from graphical and logical studies on the λ-
calculus, of which it is a refinement, and practically useful, as it faithfully models
most environment-based abstract machines [4], and—remarkably—the number of
evaluation steps in the LSC is a reasonable measure of the time complexity of a
λ-term [9, 7]. One of its key features is its simplicity: it can model an abstract
machine using only two rules, corresponding to multiplicative and exponential
cut-elimination in linear logic. The first rule, the multiplicative one (m, deals
with β-redexes, replacing them with explicit substitutions. The second rule, the
exponential one(e, replaces a single occurrence of a variable with the content of
its associated explicit substitution, mimicking the micro-step mechanism at work
in abstract machines.

Contributions. In this paper we study the overhead of the substitution process in
micro-step operational semantics of λ-calculus. The complexity of the overhead

2

is obtained by bounding the number of substitution/exponential steps ((e) as a
function of the number of β/multiplicative steps ((m). We provide bounds for
the main evaluation strategies, i.e. call-by-name, call-by-value and call-by-need,
studying two variants for each strategy, one with practical and one with theoret-
ical values. Uniformly, for theoretical values the bound is quadratic, while for
practical values is linear, and we also provide terms reaching the bounds.

Call-by-Name (CBN). Call-by-name does not rely on values, or, equivalently, ev-
erything, including variables, is a value. At first sight, then, CBN is theoretical.
In [9], Accattoli and Dal Lago show that for theoretical CBN the overhead of
substitutions is quadratic (in the number of β steps). The worst cases, i.e. those
reaching the quadratic bound, are given by malicious chains of renamings, i.e. of
substitutions of a variable for a variable.

Call-by-Value (CBV). In CBV, if values are theoretical then the overhead is quadratic,
as malicious chains are still possible. On the other hand, we show that it is enough
to remove variables from values—therefore switching to practical values—to
avoid these expensive chains and obtain a globally linear overhead. The proof
of the bound is particularly simple and, curiously, it holds only under the assump-
tion that evaluation terminates. We also show that theoretical/practical values can
be seen as different ways of closing a (benign) critical pair arising from the switch
to micro-step evaluation (see Sect. 4), providing a further explanation for the dis-
crepancy in the literature.

Call-by-Need (CBNeed). Call-by-need evaluation is usually defined using practi-
cal values [21, 11, 22, 12, 16] and can be modularly expressed in the LSC. As for
CBV, theoretical values induce a quadratic bound, while practical values provide
a linear bound. The proof for the practical case, however, is inherently different.
In particular, it does not rely on any termination hypotheses. We actually provide
two proofs. The first one is simpler, but provides a laxer bound (linear, but with a
larger constant). The second one adds labels to refine the analysis, and establishes
the exact bound.

Practical CBN. We complete the picture by studying a practical version of CBN,
where the substitution rules are refined so that variables are never substituted.
We prove that Practical CBN has a linear overhead, by adapting a result from
the literature [29] (discussed below, among related works). Curiously, the proof
follows the structure of the CBV case rather than the CBNeed case.

3

Justifying Practical Values. One of the motivations of this work is to find a theo-
retical justification for practical values, that escape usual argument based on logic
or rewriting. Logically, both CBV and CBNeed have a foundation in the so-called
boring translation of λ-calculus into linear logic [18, 2], but such a translation
wraps both variables and abstractions inside the ! modality—the connective allow-
ing non-linear behavior—thus enabling the substitution of both. At the rewriting
level, the strategies implemented by abstract machines can be justified as being
standard strategies, in the sense of the standardization theorem. Now, the strate-
gies with practical values are not standard in the wider calculi with theoretical
values, thus the switch to practical values cannot be justified that way. Our re-
sults provide an alternative explanation, based on the relative complexity of the
substitution process.

Abstract Machines. The difference between the LSC and abstract machines is that
the former isolates the logical and computational essence of evaluation, removing
the search of the next redex implemented by the latter. This claim is made precise
in a companion paper [4] by Accattoli, Barenbaum, and Mazza, that studies the
relationship with several abstract machines from the literature. The result is that
abstract machines and their search of the redex induce only a linear overhead with
respect to the number of steps in the corresponding calculi. Via that work, our
bounds apply to concrete implementation models.

Linear Logic. From a linear logic perspective the bound is quite surprising. The
exponentials (i.e. the substitutions), responsible for duplications, are expected to
capture most of the computing time, while the multiplicatives are usually seen as
negligible in terms of cost. One may suspect that the number of steps is not a
good complexity measure, as substitution may be very costly to implement. But it
is not the case here, as our exponential steps can be implemented in time linear in
the size of the initial term (because of the properties of the micro-step evaluation
strategy we consider), and can thus be taken as a realistic measure of complexity,
see [9, 7].

Conference vs Journal Paper. This is the extended version of our previous paper
presented at WoLLIC 2014 [10]. Here we provide an even simpler proof for the
CBV case and add an alternative proof of the CBNeed case, whose plus is the
simplicity, as it avoids labels, and whose minus is that it gives 3 rather than 2 for
the constant of the linear factor. We also add the study of a practical version of
CBN, and clarify some points left open in [10]. Finally, we provide a more abstract
view of the problem, emphasizing the role of elementary operational properties.

4

Related Work. After the conference we discovered that in [29], Sands, Gustavs-
son, and Moran proved results similar to ours. They provide linear bounds for
every evaluation mechanism, but with a quite different focus. A comparison fol-
lows:

1. Speed-ups vs Variables: they are interested in speed-up theorems rather than
on the role of variables or on the dynamics of substitutions.

2. Abstract Machines vs ES: they deal with abstract machines rather than ex-
plicit substitutions. In some sense their results are stronger, because they
bound also the overhead of the machine. Our study however can be modu-
larly lifted to abstract machines, by composing the results here with those
in the companion paper [4]. Moreover, the LSC is considerably simpler
and more abstract than abstract machines, while it retains their asymptotic
behavior (see [4] and Sect. 8).

3. Exact Bounds: for CBV and CBNeed we show that our bounds are exact,
exhibiting terms reaching the bound.

4. Name vs Value / Need? No: our identification of the value of variables
provides symmetric results for CBN / CBV / CBNeed, clarifying the prob-
lem. From their work indeed it seems that CBV and CBNeed have naturally
lower substitution overhead than CBN. We show, however, that Theoretical
CBV and CBNeed have quadratic overheads exactly as CBN.

5. Call-by-Need: in [29] the authors deal with CBN and CBV and refer to [24]
for CBNeed, but in [24] the result for CBNeed is only outlined. Here instead
we dissect its dynamics providing 2 different proofs of the linear overhead.

6. Practical Call-by-Name: our study of Practical CBN is adapted from the
one in [29]. The differences are that our definition of the strategy is slightly
lazier, see Sect. 7.

7. Decomposed Proofs: we add an abstract view and an in-depth analysis of
the proofs. In particular, we show that, despite all mechanisms have linear
bounds, the proofs in fact rely on different principles with subtle properties.

More generally, the issue of renaming chains, and the optimization used in [29]
for lowering the overhead of CBN, repeatedly appear in the literature on abstract
machines, often with reference to space consumption and space leaks, for instance
in Wand’s [32] (section 2), Friedman et al.’s [17] (section 4), and Sestoft’s [30]
(section 4). None of these works, however, provides a complexity analysis of the
problem nor of the solution.

Another linear bound appears in Dal Lago and Martini’s [14], where it is
shown that evaluation in the CBV λ-calculus (corresponding to our(m) and eval-

5

uation in a related graph-rewriting formalism (playing the role of the LSC, and
accounting for(m and(e) are linearly related (and so(e is linear in(m). They
do not discuss the difference between theoretical and practical values, but they
employ practical values at the graphical level, exactly as our results prescribe.

Summing up this paper gives a neat view over a recurrent issue in the literature
on functional languages and abstract machines, whose solutions became folklore
optimizations. For the first time here the issue is studied theoretically, per se,
and thoroughly, as the problem of substitution overheads induced by the value of
variables in a micro-step scenario.

Plan of the Paper. The next section explains why the value of variables is not
observable with small-step evaluation. Sect. 2 shows how to obtain the quadratic
bound for Theoretical CBN, recalling the results in [9]. Sect. 3 deals with Practical
CBV, and Sect. 4 with the theoretical variant. In Sect. 5 we study both Theoreti-
cal and Practical CBNeed, and in Sect. 6 we provide an alternative proof for the
practical case. In Sect. 7 a practical variant of CBN is analyzed. Sect. 8 concludes
with a discussion about the actual complexity of implementing the calculi.

1. Overview

Small-Step and Micro-Step Evaluation. In [27], Plotkin introduces both the CBN
and CBV evaluation strategies. As it is nowadays standard, terms are closed and
evaluation is weak and small-step. Under such hypotheses, excluding variables
from values (or from the substitutable terms in CBN) has no consequences. This
fact follows from two easy observations:

1. The argument u of a β-redex is out of abstractions. If evaluation is weak
and the term is closed then u cannot be a variable.

2. Closed terms reduce to closed terms.

So variables are never substituted and the value of variables is not observable.
When turning to micro-step evaluation the situation changes. Micro-steps rely

on sharing, that in this paper is realized by explicit substitutions, i.e. an additional
constructor t[x�u] representing the delayed substitution of u for x in t. Explicit
substitut/ions (ES) are avatars of let expressions, as t[x�u] is just a compact
notation for let x = u in t, and in particular ES are binders, as x is bound in t (in
t[x�u]).

Weak evaluation with ES necessarily goes under ES, so micro-step variants
of CBN and CBV evaluate under binders. Therefore, arguments can look locally

6

open even if the term is globally closed, as for instance in ((λy.t)x)[x�I], (with I
the identity), where λy.t is applied to the locally open argument x even if the term
is globally closed.

The Issue with Variables. Let us give a sketch of the issue we are concerned with
in this paper. Consider the term t := x[x�y][y�I]. If variables are duplicable then
t would evaluate as follows (the operational semantics will be precisely defined in
the next sections):

x[x�y][y�I]→ y[x�y][y�I]→ I[x�y][y�I]

If variables are not duplicable then the evaluation of t would rather be as follows:

x[x�y][y�I]→ x[x�I][y�I]→ I[x�I][y�I]

The example shows that the final result is essentially the same, as one always ob-
tains the identity in some environment. There is a substantial difference, however.
The second approach modifies the environment as to avoid future repetitions of
the substitution sequence. The example does not show it, but if x later comes
back in evaluating position then the first approach still needs 2 steps, while the
second approach only requires one step. Now the length of the substitution se-
quence can be arbitrary, and repeated appearances of x can make the overhead of
the first approach considerably larger than the second one, up to the point where
the asymptotic complexity is affected. This paper provides precise bounds on the
overhead.

Summary of the Results. In CBV and CBNeed the difference between the two
approaches amounts to different definitions of values. Having variables among
values—i.e. adopting theoretical values and thus following the first approach—
induces a quadratic overhead of the substitution process. Turning to practical
values and embracing the second approach, instead, speeds up the substitution
process, inducing a linear overhead. In CBN there is no primitive notion of value,
but the two approaches still make sense, as one may simply exclude variables from
the substitutable terms. The two possibilities, called Theoretical and Practical
CBN in analogy to CBV and CBNeed, have the same quadratic/linear bounds, as
we show.

For theoretical CBN, CBV, and CBNeed the results that we obtain are all based
on the same reasoning and can be expressed with the same statement. Curiously,
Theoretical CBV requires some care in the definition, as we show, because its
naive definition induces a critical pair.

The practical cases are all linear but each one requires a different reasoning:

7

• Practical CBV (Sect. 3): the proof is extremely simple, but it is necessary
to assume that evaluation terminates. The coefficient of the linear bound is
2, and we show it to be tight.

• Practical CBNeed (Sect. 5 and Sect. 6): we give two different proofs of the
linear bound. A simple but lax one, providing 3 as the coefficient of the
bound, and a more sophisticated one, relying on a simple labeling of the
terms, that provides the optimal coefficient 2. None of the proofs assumes
termination.

• Practical CBN (Sect. 7): the proof for CBN is similar to the one for Practical
CBV, in particular it rests on a termination hypothesis. It is however less
precise than for CBV, as it provides only 3 as coefficient. We do not know
if this coefficient is tight, we conjecture not.

On the Relationship Between Micro-Step and Small-Step Strategies. We formu-
late all systems as strategies in the Linear Substitution Calculus, that is a λ-
calculus with explicit substitutions. We do not show that the micro-step strategies
implement the corresponding, more traditional small-step strategies without ex-
plicit substitutions. On the one hand because we do not want to blur the focus of
the paper. On the other hand because these are routine proofs and can either be
found in the literature or can be obtained by minimal variations:

• Theoretical CBN: the proof can be found in [9].

• Practical CBN: informal proof in Sect. 7.

• Practical CBV: it follows either by the fact that it is the micro-step strategy
implemented by the CEK machine, as shown in [4], that in turn is known to
implement also small-step CBV, or as a special case of study done in [6].

• Theoretical CBV: it can be obtained as a simple variation on the one for
Theoretical CBN.

• Practical CBNeed: note that for CBNeed the question is different, because
there are no small-step CBNeed strategies. As for CBV, in [4] Practical
CBNeed is shown to the strategy implemented by standard CBNeed abstract
machines.

8

• Theoretical CBNeed: the typical correctness theorem for CBNeed is that it
is observationally equivalent to CBN. A slightly weaker form of correctness
for Theoretical CBNeed is shown by Delia Kesner in [19], where it is proven
to be termination equivalent to CBN.

The next section discusses the usual (i.e. Theoretical) CBN case, already well-
studied in the literature. The rest of the paper will deal with the other combinations
of values and strategies.

2. Theoretical Call-by-Name

Terms and Contexts. The language of the linear substitution calculus, shared by
all the calculi treated in the paper, is generated by the following grammar:

t, u,w, r ::= x | λx.t | tu | t[x�u]

The constructor t[x�u] is called an explicit substitution (of u for x in t). Both λx.t
and t[x�u] bind x in t, with the usual notion of α-equivalence and of free/bound
variable (occurrence).

A closed term is a term without free variables. An initial term is a closed term
with no explicit substitutions.

The operational semantics is defined using contexts, i.e. terms with one oc-
currence of the hole 〈·〉, an additional constant. For CBN evaluation contexts are
defined by the following grammar (where H is a mnemonic for (weak) head):

H ::= 〈·〉 | Ht | H[x�t]

The plugging H〈t〉 (resp. H〈H′〉) of a term t (resp. context H′) in a context H
is defined as

〈t〉 := t 〈H′〉 := H′

(Ht)〈u〉 := H〈u〉t (Ht)〈H′〉 := H〈H′〉t
(H[x�t])〈u〉 := H〈u〉[x�t] (H[x�t])〈H′〉 := H〈H′〉[x�t]

Plugging will be silently extended to all other notions of context at work in the
paper (in the expected way).

Substitution contexts are defined by L ::= 〈·〉 | L[x�t].

9

Rewriting Rules. As usual, the rewriting rules are obtained by first defining the
rewriting rules at top level, and then taking their closure by evaluation contexts. A
peculiar aspect of the LSC is that contexts are however also used to define the rules
at top level. Such a use of contexts is how locality on proof nets (the graphical
language for linear logic proofs) is reflected on terms. For Theoretical CBN (a
practical variant will be studied in Sect. 7), the rewriting relation is (TCBN:=(m
∪(e, where(m and(e are given by:

Rule at Top Level Contextual Closure
L〈λx.t〉u 7→m L〈t[x�u]〉 H〈t〉(m H〈u〉 iff t 7→m u

H〈x〉[x�u] 7→e H〈u〉[x�u] H〈t〉(e H〈u〉 iff t 7→e u

Examples:

((λx.λy.t)u)w(m (λy.t)[x�u]w(m t[y�w][x�u]

(xt)[y�u][x�z][z�w](e (zt)[y�u][x�z][z�w](e (wt)[y�u][x�z][z�w]

We silently work modulo α-equivalence to avoid variable capture in the rewrit-
ing rules, and in 7→e we assume that the context H does not capture the variable x
nor the free variables of u. Derivations are possibly empty sequences of rewriting
steps, noted d, d′, d′′, etc.

In the literature, (TCBN is known as weak linear head reduction, and it has
been shown to be the strategy implemented by both the KAM [15, 4] and the π-
calculus [3]. Rule(m, turning (generalized) β-redexes into explicit substitutions,
corresponds to the multiplicative case of cut-elimination in proof nets, while(e,
implementing substitution in micro steps, corresponds to the exponential case.
This terminology comes from the linear logic interpretation of the LSC. At times,
the literature employs an alternative terminology for which(m is noted→dB and
called B at a distance (in some papers on explicit substitutions the B-rule is the
variation over the β-rule where the redex introduces the explicit substitutions in-
stead of doing the meta-level substitution) and(e is noted→ls and called linear
substitution. Sometimes the LSC is presented with a further rule for garbage col-
lection (or weakening, in the logical terminology), but not here.

Exponential vs Multiplicative Analysis. The LSC provides a simple framework
to study the overhead of the substitution process. The overhead itself is given
as the number of exponential steps with respect to the number of multiplicative

10

steps, that are identified with β-redexes. Remarkably, the substitution process is
encapsulated in just one rule.

For CBN, the relationship between (m and (e is already well-known from
the literature [9, 7]. Given a derivation d let us note |d|e and |d|m the number of
exponential and multiplicative steps in d, respectively. Then:

Theorem 2.1 (Quadratic Bound for Theoretical CBN [9]). Let d : t (∗TCBN u be a
derivation from an initial term t. Then |d|e = O(|d|2m) (and so |d| = O(|d|2m)).

The Proof, Abstractly. In [7] this result is generalized and its proof is axioma-
tized. It relies on the fact that CBN micro-step evaluation has the following prop-
erty, relating the number of potential exponential steps to the number of previous
multiplicative steps.

Local Boundedness Property: a micro-step strategy(has the local bound-
edness property if given a derivation d : t (∗ u followed by a sequence of
e-steps u(k

e w then k = O(|d|m).

For the sake of completeness, we show that a locally bounded strategy has a
quadratic overhead. This abstract result (together with the proof of local bound-
edness [9, 7]) provides the proof of Theorem 2.1.

Theorem 2.2 (Local Bound ⇒ Quadratic Bound). Let (be a strategy with the
local boundedness property and d : t (∗ u be a derivation from an initial term t.
Then |d|e = O(|d|2m) (and so |d| = O(|d|2m)).

Proof. Since both(m and(e terminate (it is a general property of the LSC [1]),
d has the shape:

t = w1 (
a1
m r1 (

b1
e w2 (

a2
m r2 (

b2
e . . .wk (

ak
m rk (

bk
e u

By the local boundedness property, we obtain bi ≤
∑i

j=1 a j. Then:

|d|e =

k∑
i=1

bi ≤

k∑
i=1

i∑
j=1

a j

Note that
∑i

j=1 a j ≤
∑k

j=1 a j = |d|m and k ≤ |d|m. So

|d|e ≤
k∑

i=1

i∑
j=1

a j ≤

k∑
i=1

|d|m ≤ |d|2m

Finally, |d| = |d|m + |d|e ≤ |d|m + |d|2m = O(|d|2m). �

11

Now let us turn to the local boundedness property. It holds in general for any
strategy (having the two following syntactic properties (using the notation of
the theorem):

Trace: the number |u|[] of explicit substitutions in u is exactly |d|m.
Syntactic Boundedness: the length of a sequence of (e steps from u is
≤ |u|[].

Their proofs for the CBN strategy(TCBN can be found in [9] or—in a more general
form—in [7]. Actually, both the trace and the syntactic boundedness properties
follow from the subterm property, also proved in [9]:

Subterm: a strategy (has the subterm property if given a derivation d :
t (∗ u the terms duplicated along d are subterms of t (up to α-equivalence).

Finally, the subterm property is obtained as a corollary of a syntactic invari-
ant of (TCBN, peculiar to micro-step evaluation and owing its name to the linear
logic representation of λ-calculus, where arguments and explicit substitutions are
wrapped into !-boxes:

Box: if d : t (∗TCBN u then every argument and every content of a substitution
in u is a subterm of t (up to α-equivalence).

This schema will be followed by all theoretical strategies in the paper. We
will prove the box, subterm, trace and syntactic boundedness invariants. There-
fore, the local boundedness property will hold, implying the quadratic bound by
Theorem 2.2.

The quadratic bound holds for any derivation (not necessarily to normal form)
and is tight, as it is reached for instance by δδ (where δ = λx.(xx)). Evaluation of
δδ starts as follows

δδ (m (x1x1)[x1�δ] (e
(δx1)[x1�δ] (m
(x2x2)[x2�x1][x1�δ] (e
(x1x2)[x2�x1][x1�δ] (e
(δx2)[x2�x1][x1�δ] (m
(x3x3)[x3�x2][x2�x1][x1�δ] (e
(x2x3)[x3�x2][x2�x1][x1�δ] (e
(x1x3)[x3�x2][x2�x1][x1�δ] (e . . .

(1)

12

It is easily seen that the sequences of e-steps are strictly increasing in length. After
the n-th m-step we have indeed n e-steps:

(xnxn)[xn�xn−1] . . . [x2�x1][x1�δ] (e
(xn−1xn)[xn�xn−1] . . . [x2�x1][x1�δ] (e
. . .
(x1xn)[xn�xn−1] . . . [x2�x1][x1�δ] (e
(δxn)[xn�xn−1] . . . [x2�x1][x1�δ] (m
(xn+1xn+1)[xn+1�xn][xn�xn−1] . . . [x2�x1][x1�δ] (e . . .

(2)

In particular, such steps are all variable renaming but for the last of the sequence,
that creates an m-step, and generates a new sequence of n + 1 renamings, and so
on. In other words, these malicious sequences meet the bound in the syntactic
boundedness property.

Let us point out that the bound is reached also by some normalizing terms.
For example, we can adapt δδ to run only for n iterations. Let I be the identity
function, and let [[n]] be the n-th Scott’s numeral [31], defined by [[0]] = λy.λz.y
and [[n + 1]] = λy.λz.z[[n]]. In ordinary λ-calculus, [[n]]t f reduces to f (f (. . . (t)))
where f is applied n times. The modified δδ we are looking for is ττ[[n]] where
τ = λx.λn.(nI(xx)) that, in ordinary λ-calculus, reduces as follows:

ττ[[n]]⇒ [[n]]I(ττ)⇒ ττ[[n − 1]]⇒ . . .⇒ [[0]]I(ττ)⇒ I

Evaluating the term in Theoretical CBN takes (n + 1)(n + 4)/2 exponential steps
but only 4(n + 1) multiplicative steps. Such a formula has been tested by running
an implementation of Theoretical CBN.

3. Practical Call-by-Value

We present first Practical CBV, because its definition is standard. Theoretical
CBV instead requires a slight technical adjustment (of which we were not aware
in the conference paper [10]), and it is then postponed to Sect. 4.

Left-to-Right CBV. The underlying language is the same as for CBN, but we dis-
tinguish (practical) values, noted v, that are given by abstractions only, and an-
swers L〈v〉, given by a value in a substitution context (see Sect. 2 for the definition
of substitution contexts). Evaluation contexts for CBV, implementing left-to-right
CBV, are defined by:

E ::= 〈·〉 | Et | L〈v〉E | E[x�t]

13

Rewriting Rules. For Practical CBV the rewriting relation is (PCBV:=(m ∪ (e,
where(m and(e are re-defined as follows:

Rule at Top Level Contextual closure
L〈λx.t〉L′〈v〉 7→m L〈t[x�L′〈v〉]〉 E〈t〉(m E〈u〉 iff t 7→m u

E〈x〉[x�L〈v〉] 7→e L〈E〈v〉[x�v]〉 E〈t〉(e E〈u〉 iff t 7→e u

As for CBN, we silently work modulo α-equivalence and in 7→e the context E
does not capture x nor the free variables of v.

Let us revisit the δδ example of Sect. 2, used to show that the quadratic bound
is tight for CBN. Practical values give:

δδ (m (x1x1)[x1�δ] (e
(δx1)[x1�δ] (e
(δδ)[x1�δ] (m
(x2x2)[x2�δ][x1�δ] (e
(δx2)[x2�δ][x1�δ] (e
(δδ)[x2�δ][x1�δ] (m
(x3x3)[x3�δ][x2�δ][x1�δ] (e . . .

(3)

Where it is easily seen that for any d : δδ (∗ t we have the linear relationship
|d|e ≤ 2|d|m. This fact suggests that any CBV derivation d verifies |d|e = O(|d|m).
Curiously, it turns out that this is not true for any derivation, as forthcoming
Lemma 3.2 will show, but only for those reaching a normal form.

Exponential vs Multiplicative Analysis. We first need some invariants of Practical
CBV. With respect to Theoretical CBN the box invariant is replaced by the value
invariant but it plays exactly the same role. The proper invariant is a new simple
property peculiar to CBV, while the syntactic boundedness property does not hold,
as we discuss after the lemma.

Lemma 3.1 (Practical CBV Invariants). Let t be initial and d : t (∗PCBV u.

1. Value: every value in u is a value in t (up to α);
2. Subterm: the terms duplicated along d are subterms of t (up to α);
3. Proper: every substitution in u contains an answer;
4. Trace: the number |u|[] of explicit substitutions in u is exactly |d|m.

Proof. Easy inductions on the length of d. Point 1 is used to prove Point 2 ((PCBV
only duplicates values), in turn used to prove Point 3 and Point 4. �

14

Somewhat surprisingly, in CBV the local boundedness property does not hold.
Let us show it. Let tn stand for t applied to itself n times, associating to the right,
i.e. tn := t(t(t(t . . .))) n times, and set I := λy.y. We have

Lemma 3.2 (No Local Boundedness for (PCBV). The derivation (λx.xn)I (m
xn[x�I] (n

e In[x�I] is a counter-example to both the local and syntactic bound-
edness properties1.

It seems even worse than in CBN, while instead, globally, it is a faster mech-
anism, of a different nature. Note, for instance, that the e-steps in the counter-
example are independent, i.e. they are not generated by malicious chains of sub-
stitutions as in CBN. Note also that if evaluation keeps going, the term In[x�I]
needs n multiplicative steps to reach its normal form. This suggests that observ-
ing evaluations to normal form one can find a linear global bound. We will show
that the gap between |d|e and |d|m is linearly bounded by the number of values in
the end term, and this will give us the bound when the end term is a value, i.e. a
normal form.

Let us provide an intuition for the forthcoming proof of the linear bound. An
exponential step makes a new copy of a value. A multiplicative step consumes the
value in its left subterm. Therefore it is possible to bound the number of e-steps
with the number of values in the term plus the number of those already consumed
(that is the number of multiplicative steps). To be formal, let us introduce the CBV
size of the term.

Definition 3.3 (CBV Size). The CBV size | · |CBV of a term counts the number of
values that are not inside another value. It is defined recursively as follows:

|x|CBV := 0
|v|CBV := 1
|tu|CBV := |t|CBV + |u|CBV

|t[x�u]|CBV := |t|CBV + |u|CBV

In just one surprisingly simple lemma we obtain the main invariant relating
(e,(m, and the CBV size. The corollary uses the previous invariants to instanti-
ate it in the terminating case, obtaining the linear bound.

1In another work (done during the preparation of the final version of this paper) we proved
that there is a bound on the exponentials if one takes into account also the size of the initial term.
Precisely, the number of (e steps is linear in the number of (m steps and the size of the initial
term. The result is contained in the submitted paper [8], formulated for abstract machines, but it
holds for the LSC too, mutatis mutandis.

15

Lemma 3.4 (Main Practical CBV Invariant). Let d : t (n
PCBV u. Then |d|e ≤

|d|m + |u|CBV .

In the conference version of this paper [10] we actually proved a stronger in-
variant, namely |d|e ≤ |d|m + |u|CBV − |t|CBV . Here we simplified it because such a
stronger form is not exploited in the proof of the global linear bound. The stronger
invariant would actually allow to remove the +1 in the linear bound given by forth-
coming Corollary 3.5, providing the same bound of CBNeed (see Theorem 6.4).
Since the gain is minimal, we prefer to present the lighter invariant.

Proof. By induction on n. Case n = 0 is obvious. Otherwise d′ : t (n−1
PCBV w and d

extends d′ with w(PCBV u. By i.h., |d′|e ≤ |d′|m + |w|CBV . Cases:

• the last step is exponential. Then

w = E〈E′〈x〉[x�L〈v〉]〉(e E〈L〈E′〈v〉[x�v]〉〉 = u

and |u|CBV = |w|CBV + 1. Thus

|d|e = |d′|e + 1 ≤i.h. |d′|m + |w|CBV + 1 = |d|m + |w|CBV + 1 = |d|m + |u|CBV

• the last step is multiplicative. Then

w = E〈L〈λx.r〉L′〈v〉〉(m E〈L〈r[x�L′〈v〉]〉〉 = u

and |u|CBV = |w|CBV − 1 + |r|CBV , so that |w|CBV = |u|CBV + 1 − |r|CBV . Note
also that |d|m = |d′|m + 1. Thus

|d|e = |d′|e ≤i.h. |d′|m + |w|CBV

= |d|m − 1 + |w|CBV

= |d|m − 1 + |u|CBV + 1 − |r|CBV

= |d|m + |u|CBV − |r|CBV ≤ |d|m + |u|CBV

�

Corollary 3.5 (Linear Bound for Practical CBV). Let t be initial and d : t (∗PCBV
L〈v〉. Then |d|e ≤ 2|d|m + 1.

Proof. By the proper invariant (Lemma 3.1.3) every substitution contains a value
plus some substitutions, each one recursively having the same shape, so |L〈v〉|CBV =

|L〈v〉|[] +1, where 1 accounts for the value v. By the trace invariant (Lemma 3.1.4)
|L〈v〉|[] = |d|m, and so |L〈v〉|CBV ≤ |d|m + 1. Then the main invariant (Lemma 3.4)
gives: |d|e ≤L.3.4 |d|m + |L〈v〉|CBV ≤ |d|m + |d|m + 1 = 2|d|m + 1. �

16

Right-to-Left CBV. In this section we studied left-to-right CBV. The dual right-
to-left strategy can be obtained modularly by simply redefining the grammar of
evaluation context as

E ::= 〈·〉 | EL〈v〉 | tE | E[x�t]

and by using this new notion also at top level in the definition of the exponential
rule. Our proof for the bound with practical values holds unchanged also for the
right-to-left strategy. Note indeed that our proof does not rely on the fact that the
strategy is left-to-right. We use the fact that evaluation is weak, it involves proper
terms, and it has the trace property. All these facts are easily seen to hold for the
right-to-left strategy as well, for which the linear bound then follows.

4. Theoretical Call-by-Value

In this section we show that Theoretical CBV has a quadratic overhead, for
both left-to-right and right-to-left strategies. We postponed the study of these
cases because of a subtlety, that requires a small change to the exponential rule.
In the conference version of this paper [10], we did not yet fully understand the
issue.

The technical point is that switching from practical to theoretical values—
leaving everything else unchanged—introduces a critical pair. The pair is benign,
as it does not impact on the result of evaluation. Since programming languages are
modeled by deterministic strategies, however, one of the two paths of the diagram
has to be fixed, and the choice has an impact on the substitution overhead. Both
right-to-left and left-to-right naı̈ve Theoretical CBV admit the following critical
pair:

E〈t[x�y]〉[y�v] m� E〈(λx.t)y〉[y�v] (e E〈(λx.t)v〉[y�v]

The natural solution is to give precedence to the multiplicative step, as it takes
place in a outer evaluation context. Additionally, remark that giving precedence
to the exponential redex induces exactly Practical CBV, and such a choice has
already been studied. We believe that such a critical pair is (one of) the hidden
reason for the discrepancy between the theoretical and practical use of values in
the literature.

In order to solve the pair in favor of the multiplicative step the exponential rule
has to be refined, asking that only variable occurrences in applicative contexts are
replaced.

17

Definition 4.1 (Applicative Context). An evaluation context E is applicative if E =

E′〈Lt〉, i.e. if its hole is applied to an argument, possibly with some substitutions
in between (given by L).

Now we define(TCBV:=(m ∪ (e where(m is as for practical CBV and(e
is re-defined as follows:

Rule at Top Level
E〈x〉[x�L〈v〉] 7→e L〈E〈v〉[x�v]〉 if E is applicative

Contextual Closure
E〈t〉(e E〈u〉 if t 7→e u

Note that such a definition is not ad-hoc, as it matches CBV weak linear head
reduction as in [3], where it is defined by mimicking evaluation in the π-calculus
(according to a CBV translation). It is easily seen that (TCBV is deterministic.
Moreover, an answer now is a theoretical value in a substitution context.

The typical quadratic example for Theoretical CBN, given by δδ, evaluates
exactly in the same way with Theoretical CBV, for both left-to-right and right-to-
left strategies:

δδ (m (x1x1)[x1�δ] (e
(δx1)[x1�δ] (m
(x2x2)[x2�x1][x1�δ] (e
(x1x2)[x2�x1][x1�δ] (e
(δx2)[x2�x1][x1�δ] (m
(x3x3)[x3�x2][x2�x1][x1�δ] (e
(x2x3)[x3�x2][x2�x1][x1�δ] (e
(x1x3)[x3�x2][x2�x1][x1�δ] (e . . .

(4)

In contrast to the practical case, the theoretical exponential rule has the syntac-
tic boundedness property, and thus the abstract reasoning for Theoretical CBN can
be applied unchanged (to both left-to-right and right-to-left strategies), obtaining
a quadratic overhead.

Lemma 4.2 (Theoretical CBV Invariants). Let t be initial and d : t (∗TCBV u.

1. Value: every value in u is a value in t (up to α);
2. Subterm: the terms duplicated along d are subterms of t (up to α);
3. Proper: every substitution in u contains an answer;

18

4. Trace: the number |u|[] of explicit substitutions in u is exactly |d|m;
5. Syntactic Boundedness: the length of a sequence of (e steps from u is
≤ |u|[].

Proof. Points 1-4 are as for the practical case (i.e. they are easy inductions on the
length of d, as in Lemma 3.1). Point 5 follows from the fact that a sequence of
exponential steps can only keep renaming on the same place until an abstraction
is substituted and thus a multiplicative redex is created (because the context is
now required to be applicative). For scoping reasons, the substitutions involved in
the sequence are all different and appearing from left to right, i.e. the number of
e-steps is ≤ |u|[]. �

Theorem 4.3 (Quadratic Bound for Theoretical CBV). Let d : t (∗TCBV u be a
Theoretical CBV derivation from an initial term t. Then |d|e = O(|d|2m) (and so
|d| = O(|d|2m)).

Proof. The trace and syntactic boundedness invariants of Lemma 4.2, together,
give the local boundedness property, in turn implying the quadratic bound by The-
orem 2.2. �

5. Theoretical and Practical Call-by-Need

For call-by-need (CBNeed), the analysis is, again, different. At first sight, CB-
Need is very similar to CBN, as it has the local boundedness property. CBNeed,
however, has also the flavor of CBV. While in CBN any substitution sequence can
have length |d|m, in CBNeed it is the concatenation of all chains that is bound
by (twice) |d|m. As for CBV, there is a matching, or consumption phenomenon:
firing a substitution chain of length k consumes k preceding multiplicative steps,
decreasing the bound for the chains to come (note that in CBV multiplicative steps
consume exponential steps, while here it is the other way around).

We will provide two proofs of the linear bound. A first easy one, and a second
one providing a tighter bound, at the price of some technicalities. Both proofs
lead to the bound by distinguishing between different forms of substitutions, but in
different ways. The first proof focuses on the occurrences on which substitutions
act, distinguishing those that give rise to a(m redex, called applicative, and those
that do not, called inert. The second proof distinguishes between substitutions
that have already substituted somewhere, labeled with a black dot, and those that
did not act yet, labeled with a white circle.

19

This section deals with Theoretical CBNeed and with the first proof for Prac-
tical CBNeed. The definition of the labeled system and the second proof for Prac-
tical CBNeed are instead treated in Sect. 6.

The CBNeed Calculus. Terms, values, and answers are defined as before. CB-
Need evaluation contexts are defined by:

N ::= 〈·〉 | Nt | N[x�t] | N′〈x〉[x�N]

Note that CBNeed evaluation contexts extend the weak head contexts for call-
by-name with a clause (N′〈x〉[x�N]) that turns them into hereditary weak head
contexts. This new clause is how sharing is implemented by the strategy.

A pleasant fact about CBNeed is that the theoretical and practical variant differ
only in the definition of value, as the rewriting rules can be kept unchanged. Then
we define value-agnostic rewriting relation(Need:=(m ∪(e as:

Rule at Top Level Contextual closure
L〈λx.t〉u 7→m L〈t[x�u]〉 N〈t〉(m N〈u〉 iff t 7→m u

N〈x〉[x�L〈v〉] 7→e L〈N〈v〉[x�v]〉 N〈t〉(e N〈u〉 iff t 7→e u

And then use(TNeed and(PNeed for the strategies obtained by instantiating(Need
with theoretical and practical values, respectively. Note that the multiplicative
rule is taken from the CBN calculus. Therefore the definiens of a substitution
is not necessarily an answer. The exponential rule comes instead from the CBV
calculus, and requires arguments to be evaluated to answers before being substi-
tuted, reflecting the by need content of the strategy. Such a simple presentation of
CBNeed is adopted also in [4].

Theoretical CBNeed. Both Theoretical and Practical CBNeed satisfy the same
invariants of CBN, but for the box invariant that is replaced by the value invariant,
as in CBV. We then state the invariants lemma in a value-agnostic way.

Lemma 5.1 (CBNeed Invariants). Let t be initial and d : t (∗Need u.

1. Value: every value in u is a value in t (up to α);
2. Subterm: the terms duplicated along d are subterms of t (up to α);
3. Trace: the number |u|[] of explicit substitutions in u is exactly |d|m;
4. Syntactic Boundedness: the length of a sequence of (e steps from u is
≤ |u|[].

20

Exactly as for the other theoretical cases, the quadratic bound follows ab-
stractly from the invariants.

Theorem 5.2 (Quadratic Bound for Theoretical CBNeed). Let d : t (∗TNeed u be
a derivation from an initial term t. Then |d|e = O(|d|2m) (and so |d| = O(|d|2m)).

Proof. The trace and syntactic boundedness properties of Lemma 5.1, together,
give the local boundedness property, in turn implying the quadratic bound by The-
orem 2.2. �

Finally, the quadratic bound for (TNeed is tight as it is reached by δδ, that
evaluates exactly as in CBN (see Sect. 2).

Practical CBNeed. The practical strategy(PNeed evaluates δδ as follows:

δδ (m (x1x1)[x1�δ] (e
(δx1)[x1�δ] (m
(x2x2)[x2�x1][x1�δ] (e
(x2x2)[x2�δ][x1�δ] (e
(δx2)[x2�δ][x1�δ] (m
(x3x3)[x3�x2][x2�δ][x1�δ] (e
(x3x3)[x3�δ][x2�δ][x1�δ] (e
(δx3)[x3�δ][x2�δ][x1�δ] (m . . .

(5)

Where it is easily seen that for any d : δδ (∗PNeed t we have |d|e ≤ 2|d|m. We
are going to show that—in contrast to CBV—this bound holds for any CBNeed
derivation, i.e. the derivation does not need to end on a normal form.

A First Easy Proof of the Linear Bound for Practical CBNeed. The idea is to
distinguish between variable occurrences whose replacement creates a(m redex,
called applicative, and those that do not, called inert.

Applicative (A) and inert (I) evaluation contexts are defined by:

A ::= Lt | N〈A〉;
I ::= L | N〈N′〈x〉[x�I]〉

Lemma 5.3. Let N be a CBNeed evaluation context. Then either N is applicative
or it is inert.

Proof. By induction on N. Cases:

1. Empty, i.e. N = 〈·〉. Then N is inert.

21

2. Left Application, i.e. N = N′t. By i.h., N′ is either applicative or inert. If it
is applicative then N is applicative (and not inert). If N′ is inert and has the
form L then N = Lt is applicative and not inert, otherwise N is inert and not
applicative.

3. Left of a Substitution, i.e. N = N′[x�t]. It follows from the i.h., as the addi-
tion of an explicit substitution cannot change the applicative/inert nature of
a context.

4. Right of a Substitution, i.e. N = N′〈x〉[x�N′′]. Note that N is applica-
tive/inert iff N′′ is. Then it follows from the i.h..

�

A substitution step, that writes explicitly as

N′〈N〈x〉[x�L〈v〉]〉(e N′〈L〈N〈v〉[x�v]〉〉

is applicative or inert depending on the nature of the context of the substituted
occurrence of x, i.e. on the nature of N′〈N〈·〉[x�L〈v〉]〉.

The number of consecutive inert exponential steps can easily be bounded. By
the syntactic boundedness property (Lemma 5.1.4) we already know that it is
bounded by the number of substitutions in the term, but the bound can be im-
proved.

Let a substitution t[x�u] be basic if u has the form L〈y〉. The basic size |t|b
of a term t is the number of its substitutions that are basic. We are about to prove
refinements of the trace and syntactic properties, where the role of the number of
substitutions in the term is replaced by the role of basic substitutions.

For the trace property note that basic substitutions are created by multiplicative
steps, never duplicated, and consumed by inert steps. Formally,

Lemma 5.4 (Basic Trace). Let t be initial and d : t (∗PNeed u. Then |u|b ≤ 2|d|m −
|d|ei.

Intuition tells that a multiplicative step creates at most one basic substitution,
which is the intended semantics. Multiplicative steps indeed create a basic substi-
tution whenever the argument has the form L′〈y〉, e.g. as in

N〈L〈λx.t〉L′〈y〉〉(m N〈L〈t[x�L′〈y〉]〉〉

Unfortunately, they may create two basic substitutions at once, which is the reason
why the lemma is forced to count 2 for every multiplicative step. Basic substitu-
tions, in fact, can also be obtained as follows

N〈t[x�(λy.y)u]〉(m N〈t[x�y[y�u]]〉

22

i.e. a multiplicative step turns the substitution in which it takes place, i.e. [x�(λy.y)u]
into a basic one, beyond possibly introducing a new basic substitution with [y�u].
These accidents are responsible for the lax bound of this section. In the next sec-
tion we will provide a different, finer analysis, where every multiplicative step will
count for 1.

Proof. By induction on the length k of d. If k = 0 the statement holds. Then
consider d′ : t (k−1

PNeed
w, for which the i.h. provides |w|b ≤ 2|d′|m−|d′|ei. Consider

the additional step w(PNeed u. Cases:

1. Multiplicative step. As remarked right before the proof we have |u|b ≤ |w|b+
2. Since |d|m = |d′|m + 1 and |d|e = |d′|e, the statement holds:

|u|b ≤ |w|b + 2 ≤i.h. 2|d′|m − |d′|ei + 2 = 2(|d|m − 1) − |d′|ei + 2 = 2|d|m − |d|ei

2. Applicative exponential. Then none of the involved quantities changes.
3. Inert exponential. Then |u|b = |w|b − 1, |d|m = |d′|m and |d|e = |d′|e + 1, and

the statement holds.

�

The next lemma is the refinement of the syntactic boundedness property, and
it bounds the number of consecutive inert steps. Actually, it shows a bit more, as
it also says something about applicative steps.

Lemma 5.5 (Almost Inert Chains, or Basic Syntactic Boundedness). If t (k
e u

then k ≤ |t|b + 1 and all steps except possibly the last one are inert.

Proof. If k = 1 the statement holds by Lemma 5.3. Then let k > 1, so that
t (e w (k−1

e u, and consider the step t (e w. It cannot be applicative, otherwise
the next step would be multiplicative. So it is inert (Lemma 5.3). Let I be the inert
context around the substituted variable. Two cases

1. I is a list of substitutions L. Then

t = L〈x〉[x�L′〈v〉](e L′〈L〈v〉[x�v]〉 = w

and w is normal, contradicting the hypothesis k > 1.

23

2. I has the hole in a basic substitution I = N〈N′〈x〉[x�L]〉. By i.h., k − 1 ≤
|w|b+1 and all steps of w(k−1

e u except possibly the last one are inert. Note
that the step t (e w is inert and—by the subterm property (Lemma 5.1.2)
and because values are practical—it turns exactly one basic substitution in
t into a non-basic one in w, leaving the others unchanged. Therefore |t|b =

|w|b + 1. Then k ≤ |w|b + 2 = |t|b + 1.

�

Theorem 5.6 (Linear Bound for Practical CBNeed). Let t be initial and d :
t (∗PNeed u. Then |d|e ≤ 3|d|m + 1.

Proof. Given that both (m and (e terminate (for (m it is evident, for (e it
follows from the (basic) syntactic boundedness property, i.e. Lemma 5.1.4 or
Lemma 5.5), d writes uniquely as:

t = t1 (
a1
m w1 (

b1
e t2 . . . tk (

ak
m wk (

bk
e u

Note that, since chains are almost inert (Lemma 5.5), in bi there is at most one
applicative substitution step. Let di : t (∗PNeed wi be the prefix of d ending on wi

(including a j and b j for j < i, plus ai, but not bi). Defining b0 := 0 we obtain
|di|ei ≥

∑i−1
j=0(b j − 1). The basic trace property (Lemma 5.4) then gives:

bi ≤ |wi|b + 1 ≤L.5.4 2|di|m − |di|ei + 1 ≤ 2|di|m −

i−1∑
j=1

(b j − 1) + 1

We conclude with the following chain, where the last step is given by observing
that k ≤ |d|m:

|d|e =
∑k

i=0 bi ≤ bk +
∑k−1

i=0 bi ≤

2|dk|m −
∑k−1

j=0(b j − 1) + 1 +
∑k−1

i=0 bi =

2|d|m −
∑k−1

j=0(−1) + 1 =

2|d|m + k + 1 ≤ 3|d|m + 1
�

6. The Exact Bound for Practical Call-by-Need, via Labels

The analysis of the previous section relies on a syntactic invariant, providing 3
as constant for the linear factor. As shown before, however, the evaluation of δδ—
i.e. the typical worst case—suggests the constant rather to be 2. Here we obtain

24

such an improved bound. The analysis is based on a different dynamic invariant,
captured syntactically via an elementary notion of labeled substitution. It works
according to the following schema:

1. White Substitutions: every multiplicative step produces a new substitution,
distinguished by being white t[x�u]◦;

2. Black Substitutions: the first time a white substitution [x�u]◦ is used, re-
placing x somewhere, it changes, becoming black [x�u]•;

3. Almost White Chains: a chain of substitution steps can contain at most one
black step, which is the first one, if any (note the difference with the previous
section, where almost basic chains can have at most one applicative step, but
at then end, not at the beginning);

4. Bound on Black Steps: thus black steps are bound by the number of alter-
nations between exponential and multiplicative evaluation, i.e. are linear in
|d|m;

5. Bound on White Steps: white substitutions are created by multiplicative
steps, never duplicated, and consumed on first use, so the total number of
white steps is bound by |d|m;

6. Bound on Exponential Steps: therefore all substitution steps together are
bound by 2|d|m.

This approach can be seen as a simple form of amortized analysis.

The Labeled Calculus. The labeled language is given by:

t, u,w, r ::= x | v | tu | t[x�u]◦ | t[x�u]•

v ::= λx.t

A white substitution t[x�u]◦ represents a substitution that has never substituted
its content yet. A black substitution t[x�u]• instead is an already evaluated sub-
stitution, i.e. one that has already acted on some variable occurrence. An invariant
of evaluation will be that black substitutions contain values. We use t[x�u]◦• for
t[x�u]◦ or t[x�u]•. Of course, we need to redefine also substitution and evalua-
tion contexts, duplicating the cases for substitution:

L ::= 〈·〉 | L[x�t]◦ | L[x�t]•;
N,M ::= 〈·〉 | Nt | N[x�t]◦ | N[x�t]• | N〈x〉[x�N]◦ | N〈x〉[x�N]•.

According to the informal semantics, the rewriting rules are:

25

Rule at Top Level Contextual closure
L〈λx.t〉u 7→m L〈t[x�u]◦〉 N〈t〉(m N〈u〉 iff t 7→m u

N〈x〉[x�L〈v〉]◦ 7→e◦ L〈N〈v〉[x�v]•〉 N〈t〉 →e◦ N〈u〉 iff t 7→e◦ u
N〈x〉[x�L〈v〉]• 7→e• L〈N〈v〉[x�v]•〉 N〈t〉 →e• N〈u〉 iff t 7→e• u

The rewriting relation is(PNeed◦•:=(m ∪ →e◦ ∪ →e•. Let→e◦• stay for→e◦ or
→e•.

Note that a used substitution—i.e. a black one—has to contain a (practical)
value, while on white substitutions there is no constraint. Clearly, there can be
terms that are ill-labeled, e.g. t[x�y]•[y�u]◦, because y is not a practical value.
Then we need a notion of well-labeled term. A term is black-proper if every black
substitution contains a practical value. As expected, black-properness is stable
under evaluation. We will also need the subterm property, proved exactly as for
the unlabeled case of the previous section (but now concerning the syntax with
labels). We restate it for the sake of completeness.

Lemma 6.1 (Labeled CBNeed Invariants). Let t be a λ-term and d : t (∗
PNeed◦•

u.

1. Subterm: the terms duplicated along d are subterms of t (up to α);
2. Black-Proper: u is black-proper.

Proof. By induction on the length k of t (k
PNeed◦•

u. �

We omit the details of the relationship between the unlabeled and the labeled
systems, which is straightforward and would only distract the reader from the
focus of the paper. Note indeed that the rewriting rules act on labels, but do not
depend on them, so that both lifting unlabeled derivations to the labeled system,
and projecting labeled derivations by erasing labels commute with evaluation.

Multiplicative vs Exponential Analysis. As for the previous proof of the linear
bound, the reasoning here is based on two facts that refine the trace and the syn-
tactic boundedness properties. We use |t|◦ for the number of white substitutions in
t and |d|e◦ for the number of→e◦ steps in d.

White substitutions are created by multiplicative steps and consumed on first
use. Therefore their number is exactly |d|m − |d|e◦. This is the labeled refinement
of the trace property. Formally,

Lemma 6.2 (White Trace). Let t be initial and d : t (∗
PNeed◦•

u. Then |u|◦ =

|d|m − |d|e◦.

Proof. By induction on the length k of d.

26

1. Base case, i.e. k = 0. Then |u|◦ = 0 because t is a λ-term (it has no explicit
substitution) and |d|◦ = |d|e◦ = 0, so the statement holds.

2. Inductive case, i.e. k > 0. Then t (k−1
PNeed◦•

w (PNeed◦• u and let d′ be the
derivation t (k−1

PNeed◦•
w. By i.h., |w|◦ = |d′|m − |d′|e◦. Cases of w(u:

(a) w (m u. The step creates a new white substitution and does not du-
plicate/erase any other white substitution, so |u|◦ = |w|◦ + 1. Since
|d|m = |d′|m + 1 and |d|e◦ = |d′|e◦, the statement holds.

(b) w →e◦ u. By the subterm property (Lemma 6.1.1) the copied value
has no substitution, so we have |u|◦ = |w|◦ − 1. Since |d|m = |d′|m and
|d|e◦ = |d′|e◦ + 1, the statement holds.

(c) w →e• u. By the subterm property the copied value has no substitu-
tion, so |u|◦ = |w|◦. Since |d|m = |d′|m and |d|e◦ = |d′|e◦, the statement
holds.

�

Substitution sequences satisfy the following bounds.

Lemma 6.3 (Syntactic Boundedness). Let t be an initial term and t (∗
PNeed◦•

u.

1. Almost White Chains: if u →e◦•→e◦• w then u →e◦•→e◦ w, i.e. the second
step is not black;

2. Local Syntactic Boundedness on White Steps: if u→k
e◦ w then k ≤ |u|◦.

The first point states that sequences of→e• steps are degenerated, as they have
at most length one, and can only appear after multiplicative steps. The second
point is a refined version of the syntactic boundedness property for CBN (see
Sect. 2).

Apparently, both our proofs rely on the same almost white/basic chains prop-
erty. Note however that here the eventual black step is at the beginning of the
chain, while in the previous section the eventual applicative step is at the end of
the chain.

Proof.

1. By a technical and ordinary analysis of the possibilities, that can be found
in the appendix of the conference paper [10].

2. By induction on k. If k = 0 the statement trivially holds. If u →e◦ r →k−1
e◦

w by the subterm property (Lemma 6.1.1) the substitution step does not
duplicate any substitution and turns exactly one white substitution into a
black one. So, |r|◦ = |u|◦ − 1. By i.h. we obtain k − 1 ≤ |u|◦ − 1 and so
k ≤ |u|◦.

27

�

The exact bound on the overhead for practical CBNeed, valid for any deriva-
tion (no termination hypothesis) and matched by e.g. δδ, can now easily be proved.

Theorem 6.4 (Linear Bound for Practical CBNeed). Let t be initial and d :
t (∗

PNeed◦•
u. Then

1. Global Linear Black Bound: |d|e• ≤ |d|m;
2. Global Linear White Bound: |d|e◦ ≤ |d|m;
3. Global Linear Bound: |d|e ≤ 2|d|m.

The proof of Point 2 is the interesting part, where the local syntactic bounded-
ness on white steps and the white trace property are used together.

Proof. Given that (m is evidently terminating, and according to Lemma 6.3, d
writes uniquely as (where→(1)

e• means 0 or 1 steps of→e•):

t = t1 (
a1
m w1 →

(1)
e• u1 →

b1
e◦ t2 . . . tk (

ak
m wk →

(1)
e• uk →

bk
e◦ u

Clearly |d|e• ≤ |d|m, and Point 1 is proved.
For Point 2, let di : t (∗

PNeed◦•
wi be the prefix of d ending on wi (including

a j and b j for j < i, plus ai, but not bi). Note that defining b0 := 0 we obtain
|di|e◦ =

∑i−1
j=0 b j for i ∈ {1, . . . , k}. Now we can easily estimate the generic term bi

and conclude the proof of the point:

bi ≤L.6.3 |ui|◦ =L.6.2 |di|m − |di|e◦ = |di|m −
∑i−1

j=0 b j

|d|e◦ =
∑k

i=0 bi = bk +
∑k−1

i=0 bi ≤ |dk|m −
∑k−1

j=0 b j +
∑k−1

i=0 bi = |dk|m = |d|m

Point 3, follows from Point 1, Point 2, and |d|e = |d|e◦ + |d|e•. �

Let us conclude with a comment. The call-by-need LSC, used here and in [4],
can be seen as a variant of Chang and Felleisen’s calculus [12], that is a λ-calculus
without explicit substitutions implementing call-by-need by micro-step evaluation
and only one contextual rewriting rule. The result we just obtained shows that a
syntax having an explicit constructor for substitutions may provide insights that
are not accessible using the traditional syntax of λ-calculus.

28

7. Practical Call-by-Name

In this section we reconsider CBN and define a practical variant. We simply
remove variables from the set of substitutable terms, but since the rules are not
defined by means of values, the variant is slightly more technical to define. We
show that also this further practical case has a linear overhead.

The case study of Practical CBN, however, is quite peculiar. On the one
hand it is expected to be linear, in analogy to CBV and CBNeed. On the other
hand CBN allows for generalized chains of substitutions—impossible in CBV
and CBNeed—that look suspicious, and seem to suggest that the overhead is in
fact quadratic. Let us sketch the issue.

Generalized Chains are Harmless. Think of renaming chains as terms of the
form:

t[x0�x1][x1�x2] . . . [xn−1�xn][xn�u]

where u is an abstraction. Renaming chains are in fact more general, as the sub-
stitutions of the chain are not necessarily next to each other. We will soon have
to deal with the general form, but for the sake of the present explanation let us
consider such a simple form.

In CBV and CBNeed these are the only possible chains. In CBN however the
generic variable xi can be replaced by an application having xi as head variable
and u need not to be an abstraction. Let us then consider generalized chains of the
form:

t[x0�H1〈x1〉][x1�H2〈x2〉] . . . [xn−1�Hn〈xn〉][xn�u]

Turning to practical values removes renaming chains, but it does not remove such
generalized chains. One then suspects that the quadratic overhead still affects
Practical CBN. Somewhat surprisingly, instead, generalized chains are harmless
and the overhead is linear.

Defining Practical CBN. To implement Practical CBN the exponential rule has to
be changed, forbidding the substitution of variables. Since this obviously blocks
evaluation we have to add a further exponential rule, whose role is to walk through
a chain of renaming substitutions until it finds a non renaming one that can act.
This is analogous to what happens in CBNeed, where evaluation enters into sub-
stitutions as well, but it is simpler. Practical CBN, indeed, enters substitutions
only to shorten renaming chains, not to share evaluation. In particular, CBNeed
multiplicative steps can take place inside substitutions, while in Practical CBN
this cannot happen.

29

The walk is implemented via a new notion of context. We first give the defini-
tion and then provide explanations.

Chain contexts are defined by:

C ::= H〈x〉[x�〈·〉] | C〈x〉[x�〈·〉] | H〈C〉

The exponential rule is then split in two, the shallow and the chain case:

Rule at Top Level
Shallow : H〈x〉[x�u] 7→se H〈u〉[x�u] if u is not a variable
Chain : C〈x〉[x�u] 7→ce C〈u〉[x�u] if u is not a variable

Contextual Closure
Shallow : H〈t〉(se H〈u〉 iff t 7→se u
Chain : H〈t〉(ce H〈u〉 iff t 7→ce u

The multiplicative rule is left unchanged.

Explaining Chain Contexts. Let us give a few examples, motivating the defini-
tions of chain contexts. The first case of chain context enters in a chain. It is used
in(ce when the length of the chain is 1. Consider the following example (I is the
identity):

x[x�y][y�I](ce x[x�I][y�I]

where the chain context is x[x�〈·〉], i.e. of the form H〈x〉[x�〈·〉].
The second case is used to walk through the chain, handling chains of length

greater than 1. For instance

x[x�y][y�z][z�I](ce x[x�y][y�I][z�I]

where the chain context is x[x�y][y�〈·〉], i.e. of the form C〈x〉[x�〈·〉].
The third case is C := H〈C′〉, that could equivalently be replaced by the two

productions C := C′t and C := C′[x�t]. It is used to intertwine the substitutions
of a chain with other independent constructors in the term, like in:

(x[x�y]t)[y�z][x′�u][z�I](ce (x[x�y]t)[y�I][x′�u][z�I]

where the substitutions of the previous example are alternated with applications
and unrelated substitutions.

30

Last, one could easily merge the two exponential rules, by defining chain con-
texts to include weak head contexts, i.e. using the following definition of chain
context:

C ::= H | C〈x〉[x�〈·〉] | H〈C〉

However in our analysis it will be necessary to distinguish between shallow and
chain steps, which is why we did not employ this more compact presentation.

Correctness. One should of course prove that our practical strategy implements
CBN evaluation. In particular, that our notion of chain context is well-defined, so
that evaluation does not stop prematurely because a case has been forgotten. Such
a study is however omitted: it is routine and would only distract from the focus of
the paper. Anyway, for the skeptical reader we provide a high-level perspective,
based on two remarks:

1. The unfolding does not change. Practical CBN only refines the exponen-
tial rule. The routine proof that the strategy implements small-step CBN
is obtained by projecting multiplicative steps on β-steps via unfolding, i.e.
by turning explicit substitutions into ordinary meta-level substitutions. A
key point is that exponential steps do not change the unfolding, so that the
modification of the rules is safe with respect to projection.

2. Evaluation does not stop prematurely. One may suspect that our exponential
rules do not cover all possible cases. Let us explain why our definition is
correct. Remember that evaluation is weak and only considers closed terms.
Now, if t = H〈x〉 it is easy to see that there must be a chain of substitutions
s.t. t = C〈u〉 with u not a variable, otherwise t would be open.

Multiplicative vs Exponential Analysis. The evaluations of δδ in practical CBN
and practical CBNeed (page 21) coincide. This is what makes us conjecture that
the exact bound is |d|e ≤ 2|d|m. Our proof provides only |d|e ≤ 3|d|m + 1. It is along
the lines of the CBV case, i.e. it uses a notion of size and requires that evaluation
terminates. First of all, the usual invariants.

Lemma 7.1 (Practical CBN Invariants). Let t be initial and d : t (∗PCBN u.

1. Box: every argument and the content of every substitution in u are subterms
of t (up to α);

2. Subterm: the terms duplicated along d are subterms of t (up to α);
3. Trace: the number |u|[] of explicit substitutions in u is exactly |d|m.

31

Proof. Easy inductions on the length of d. Point 1 is used to prove Point 2, in turn
used to prove Point 3. �

Let |u|¬x be 0 if u is a variable and 1 otherwise.

Definition 7.2 (CBN Size). The CBN size | · |CBN for terms, evaluation, and chain
contexts is defined recursively as follows:

|x|CBN := 0
|v|CBN := 1
|tu|CBN := |t|CBN + |u|¬x + 1

|t[x�u]|CBN := |t|CBN + |u|¬x + 1

|〈·〉|CBN := 0
|Hu|CBN := |H|CBN + |u|¬x + 1

|H[x�u]|CBN := |H|CBN + |u|¬x + 1

|H〈x〉[x�〈·〉]|CBN := |H〈x〉|CBN + 1
|C〈x〉[x�〈·〉]|CBN := |C〈x〉|CBN + 1

|H〈C〉|CBN := |H|CBN + |C|CBN

We have the following immediate property of CBN size.

Lemma 7.3 (Contextual Factorization). Let H and C be a CBN evaluation and a
chain context, respectively. Then

1. |H〈t〉|CBN = |H|CBN + |t|CBN

2. |C〈t〉|CBN = |C|CBN + |t|¬x.

Proof.

1. By induction on H.
2. By induction on C.

�

As for the CBV case just one simple lemma relates (e, (m, and the CBN
size, providing the global linear bound for the terminating case as a corollary.

Lemma 7.4 (Main Practical CBN Invariant). Let d : t (n
PCBN u. Then |d|e ≤

|d|m + |u|CBN .

32

Proof. By induction on n. Case n = 0 is obvious. Otherwise d′ : t (n−1
PCBN w and d

extends d′ with w(PCBN u. By i.h., |d′|e ≤ |d′|m + |w|CBN . Cases of the last step:

• Shallow Exponential. Then

w = H〈H′〈x〉[x�r]〉(se H〈H′〈r〉[x�r]〉 = u

with r not a variable. Note that since r is not a variable we have |r|CBN ≥ 1
(this is the key property that fails in Theoretical CBN). Then

|d|e = |d′|e + 1 ≤i.h. |d′|m + |w|CBN + 1
= |d|m + |w|CBN + 1
≤ |d|m + |w|CBN + |r|CBN

=L.7.3.1 |d|m + |H〈H′[x�r]〉|CBN + |r|CBN

=L.7.3.1 |d|m + |u|CBN

• Chain Exponential. Then

w = H〈C〈x〉[x�r]〉(ce H〈C〈r〉[x�r]〉 = u

with r not a variable. Note that |H〈C〈r〉[x�r]〉|CBN =L.7.3.2 |H〈C[x�r]〉|CBN +

|r|¬x and that |r|¬x = 1 (again, this would fail in Theoretical CBN). Then

|d|e = |d′|e + 1 ≤i.h. |d′|m + |w|CBN + 1
= |d|m + |w|CBN + 1
= |d|m + |w|CBN + |r|¬x

=L.7.3.2 |d|m + |H〈C[x�r]〉|CBN + |r|¬x

=L.7.3.2 |d|m + |u|CBN

• Multiplicative. Then

w = H〈L〈λx.q〉r〉(m H〈L〈q[x�r]〉〉 = u

Note also that |d|m = |d′|m+1 and |L〈q[x�r]〉|CBN = |L〈λx.q〉r|CBN−1+|q|CBN ,
i.e. |L〈λx.q〉r|CBN = |L〈q[x�r]〉|CBN + 1 − |q|CBN . Thus

|d|e = |d′|e ≤i.h. |d′|m + |w|CBN

= |d|m − 1 + |w|CBN

=L.7.3.1 |d|m − 1 + |H|CBN + |L〈λx.q〉r|CBN

= |d|m − 1 + |H|CBN + |L〈q[x�r]〉|CBN + 1 − |q|CBN

≤ |d|m + |H|CBN + |L〈q[x�r]〉|CBN − |q|CBN

=L.7.3.1 |d|m + |u|CBN − |q|CBN

≤ |d|m + |u|CBN

33

�

Corollary 7.5 (Linear Bound for Practical CBN). Let t be initial and d : t (∗PCBN
L〈v〉. Then |d|e ≤ 3|d|m + 1.

Proof. Let’s estimate L〈v〉. Every substitution in L contributes at most 2, as 1 is
given by the substitution itself, and 1 bounds the value of | · |¬x on its content. The
trace invariant (Lemma 7.1.3) gives |L〈v〉|[] = |d|m. Finally, the value v counts
for 1. Summing up, |L〈v〉|CBN ≤ 2|d|m + 1. Substituting such a bound in the main
invariant (Lemma 7.4) gives: |d|e ≤L.7.4 |d|m + |L〈v〉|CBN ≤ |d|m + 2|d|m + 1 =

3|d|m + 1. �

We conclude with a few comments:

• Exact Bound. We do not know if the obtained bound is exact. We were
not able to find an example reaching the bound, nor to improve the bound.
We conjecture that the bound can be improved to 2|d|m, as for CBV and
CBNeed. The proof schema used here, relying on a static measure as for
CBV, seems to not be suited for the exact bound, as it forces constraints on
the measure that prevents to obtain 2|d|m. Probably a refinement along the
lines of the labeled CBNeed proof, based on a more dynamic analysis, could
provide the exact bound. Such a refinement however is non-trivial, as Prac-
tical CBN lacks some of the properties of Practical CBNeed, in particular
substituted terms are not necessarily abstractions.

• Comparison with Sands, Gustavssons, and Moran. The analysis in this
section essentially adapts the measure for the optimized CBN machine of
[29]. The difference is that our approach is lazier. In [29], an optimized
CBN is obtained by modifying the multiplicative rather than the exponential
rule. The idea is to look at the argument of a multiplicative redex, and, in
case it is a variable, the argument is substituted on-the-fly. Namely the
multiplicative rule splits as:

L〈λx.t〉y (m1 L〈t{x�y}〉
L〈λx.t〉u (m2 L〈t[x�u]〉 if u is not a variable

In such an eager approach the advantage is that renaming chains are never
created, obtaining a very compact environment. The same optimization ap-
pears in Wand’s [32] (section 2), Friedman et al.’s [17] (section 4), and
Sestoft’s [30] (section 4), motivated as an optimization about space rather

34

than time. The drawback of the eager approach are that chains are always
shortened, even if they will never be used, and that multiplicative steps are
no longer implementable in constant time (even if the change does not affect
the overall complexity).

• General Optimization. Beyond the obvious attempt to say something new,
we preferred to study the lazier variant because 1) it does not touch β-
redexes but only the substitution process, which is from where the prob-
lem originates, and 2) we employ it also in our recent work [6], where we
study the micro-step evaluation of an extended CBV calculus, suffering of
malicious renaming chains. The aim, then, is to show that walking through
renaming chains is a general optimization, independent of the contingent
setting.

8. Remarks about the Complexity of Evaluation

This paper provides linear and quadratic bounds on the number of substitution
steps. To extract proper complexity bounds one should also consider the com-
plexity of implementing a rewriting step. Of course, it depends very much on
the actual representation of terms and on the overhead of the actual abstract ma-
chine implementing the strategy of interest. A uniform abstract view is however
possible.

Multiplicative steps are in general implementable in constant time. Exponen-
tial steps are more complex, as they require the copy of a subterm. Thanks to
the subterm property, an exponential step takes time at most linear in the size of
the initial term. Consequently, the substitution overhead is actually bilinear, i.e.
linear in the number of β-steps and in the size of the initial term.

Environment-based abstract machines implement the rewriting steps within
these bounds. Some machines are implemented without ever copying subterms,
but this comes at other expenses (typically the handling of local environments,
bound by the size of the initial term, see [4]) that re-introduce a dependency from
the initial term. Therefore, the complexity is bilinear even when the implementa-
tion does not actually copy subterms.

Beyond such a size factor due to exponential steps, abstract machines add a
further overhead given by the search of the next redex to reduce. In [4] such
an overhead is shown to be bilinear for any machine execution of a number of
CBN/CBV/CBNeed machines. In [29] the authors show that for executions to
normal form the overhead for the search of the redex becomes linear (they prove

35

it for a CBV machine and an optimized CBN machine). Such an improvement is
somewhat surprising and worth to be better understood. Asymptotically, however,
it does not change the situation because the bilinearity of exponential steps cannot
be removed.

Summing up, with practical values all weak evaluation schemes are imple-
mentable with a bilinear overhead, and such an asymptotical behavior seems to
be independent of the actual implementation technique (de Bruijn indexes, graph-
reduction, local/global environments, copy of subterms, etc). Dually, with the-
oretical values all weak evaluation schemes have an overhead quadratic in the
number of steps and linear in the size of the initial term.

Conclusions

This paper provided a theoretical explanation for a subtle point about the im-
plementation of functional languages: avoiding the substitution of variables im-
proves the substitution overhead from quadratic to linear, for every evaluation
scheme. Linear bounds already appeared in the literature [29, 14]. Our additions
to the picture were:

1. A high-level point of view on the role of variables, identifying malicious
chains of renaming as the responsible of inefficient overheads.

2. The identification of a critical pair for micro-step CBV whose different clos-
ing paths correspond to employ theoretical or practical values, explaining
the lack of uniformity in the literature.

3. Symmetric results for CBN, CBV, and CBNeed. The literature suggests an
asymmetric reading of overheads, for which CBV and CBNeed have a nat-
urally lower overhead than CBN, that can be made equally efficient with a
further optimization. We restore the symmetry showing that if variables are
substituted then CBV and CBNeed are as inefficient as CBN. Said differ-
ently, substitution overheads are determined by the value of variables and
not by the evaluation scheme.

4. A detailed, abstract, and modular study of the problem. We provided both
a high-level decomposition of the proofs and a sharp low-level analysis of
the dynamics.

Acknowledgements

To Pablo Barenbaum, for help with some technical details.

36

Bibliography

[1] Accattoli, B., 2012. An abstract factorization theorem for explicit substitu-
tions. In: 23rd International Conference on Rewriting Techniques and Ap-
plications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan. pp.
6–21.
URL http://dx.doi.org/10.4230/LIPIcs.RTA.2012.6

[2] Accattoli, B., 2012. Proof nets and the call-by-value lambda-calculus. In:
Proceedings Seventh Workshop on Logical and Semantic Frameworks, with
Applications, LSFA 2012, Rio de Janeiro, Brazil, September 29-30, 2012.
pp. 11–26.
URL http://dx.doi.org/10.4204/EPTCS.113.5

[3] Accattoli, B., 2013. Evaluating functions as processes. In: Proceedings 7th
International Workshop on Computing with Terms and Graphs, TERM-
GRAPH 2013, Rome, Italy, 23th March 2013. pp. 41–55.
URL http://dx.doi.org/10.4204/EPTCS.110.6

[4] Accattoli, B., Barenbaum, P., Mazza, D., 2014. Distilling abstract machines.
In: Proceedings of the 19th ACM SIGPLAN international conference on
Functional programming, Gothenburg, Sweden, September 1-3, 2014. pp.
363–376.
URL http://doi.acm.org/10.1145/2628136.2628154

[5] Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C., 2014. A nonstandard
standardization theorem. In: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014. pp. 659–670.
URL http://doi.acm.org/10.1145/2535838.2535886

[6] Accattoli, B., Coen, C. S., 2015. On the relative usefulness of fireballs. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2015, Kyoto, Japan, July 6-10, 2015. pp. 141–155.
URL http://dx.doi.org/10.1109/LICS.2015.23

[7] Accattoli, B., Dal Lago, U., 2014. Beta reduction is invariant, indeed. In:
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July

37

14 - 18, 2014. p. 8.
URL http://doi.acm.org/10.1145/2603088.2603105

[8] Accattoli, B., Guerrieri, G., 2016. Implementing open call-by-value.
Submitted.
URL https://sites.google.com/site/beniaminoaccattoli/

Accattoli%2C%20Guerrieri%20-%20Implementing%20Open%20CbV.

pdf?attredirects=0

[9] Accattoli, B., Lago, U. D., 2012. On the invariance of the unitary cost model
for head reduction. In: 23rd International Conference on Rewriting Tech-
niques and Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012,
Nagoya, Japan. pp. 22–37.
URL http://dx.doi.org/10.4230/LIPIcs.RTA.2012.22

[10] Accattoli, B., Sacerdoti Coen, C., 2014. On the value of variables. In: Logic,
Language, Information, and Computation - 21st International Workshop,
WoLLIC 2014, Valparaı́so, Chile, September 1-4, 2014. Proceedings. pp.
36–50.
URL http://dx.doi.org/10.1007/978-3-662-44145-9_3

[11] Ariola, Z. M., Felleisen, M., 1997. The call-by-need lambda calculus. J.
Funct. Program. 7 (3), 265–301.

[12] Chang, S., Felleisen, M., 2012. The call-by-need lambda calculus, revisited.
In: Programming Languages and Systems - 21st European Symposium on
Programming, ESOP 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 - April 1, 2012. Proceedings. pp. 128–147.
URL http://dx.doi.org/10.1007/978-3-642-28869-2_7

[13] Crank, E., Felleisen, M., 1991. Parameter-passing and the lambda calculus.
In: Conference Record of the Eighteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, Orlando, Florida, USA, January 21-23,
1991. pp. 233–244.
URL http://doi.acm.org/10.1145/99583.99616

[14] Dal Lago, U., Martini, S., 2009. On constructor rewrite systems and the
lambda-calculus. In: Automata, Languages and Programming, 36th Inter-
natilonal Collogquium, ICALP 2009, Rhodes, greece, July 5-12, 2009, Pro-

38

ceedings, Part II. pp. 163–174.
URL http://dx.doi.org/10.1007/978-3-642-02930-1_14

[15] Danos, V., Regnier, L., 2004. Head linear reduction. Tech. rep.

[16] Danvy, O., Zerny, I., 2013. A synthetic operational account of call-by-need
evaluation. In: 15th International Symposium on Principles and Practice
of Declarative Programming, PPDP ’13, Madrid, Spain, September 16-18,
2013. pp. 97–108.
URL http://doi.acm.org/10.1145/2505879.2505898

[17] Friedman, D. P., Ghuloum, A., Siek, J. G., Winebarger, O. L., 2007. Im-
proving the lazy krivine machine. Higher-Order and Symbolic Computation
20 (3), 271–293.
URL http://dx.doi.org/10.1007/s10990-007-9014-0

[18] Girard, J.-Y., 1987. Linear logic. Theoretical Computer Science 50, 1–102.

[19] Kesner, D., 2016. Reasoning about call-by-need by means of types. In:
Foundations of Software Science and Computation Structures - 19th Inter-
national Conference, FOSSACS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings. pp. 424–441.
URL http://dx.doi.org/10.1007/978-3-662-49630-5_25

[20] Landin, P. J., Jan. 1964. The Mechanical Evaluation of Expressions. The
Computer Journal 6 (4), 308–320.
URL http://dx.doi.org/10.1093/comjnl/6.4.308

[21] Launchbury, J., 1993. A natural semantics for lazy evaluation. In: Confer-
ence Record of the Twentieth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Charleston, South Carolina,
USA, January 1993. pp. 144–154.
URL http://doi.acm.org/10.1145/158511.158618

[22] Maraist, J., Odersky, M., Wadler, P., 1998. The call-by-need lambda calcu-
lus. J. Funct. Program. 8 (3), 275–317.

[23] Milner, R., 2007. Local bigraphs and confluence: Two conjectures. Electr.
Notes Theor. Comput. Sci. 175 (3), 65–73.

39

[24] Moran, A., Sands, D., 1999. Improvement in a lazy context: An opera-
tional theory for call-by-need. In: POPL ’99, Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, TX, USA, January 20-22, 1999. pp. 43–56.
URL http://doi.acm.org/10.1145/292540.292547

[25] Pfenning, F., Simmons, R. J., 2009. Substructural operational semantics as
ordered logic programming. In: Proceedings of the 24th Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los
Angeles, CA, USA. pp. 101–110.
URL http://dx.doi.org/10.1109/LICS.2009.8

[26] Pierce, B. C., 2002. Types and Programming Languages. MIT Press, Cam-
bridge, MA, USA.

[27] Plotkin, G. D., 1975. Call-by-name, call-by-value and the lambda-calculus.
Theor. Comput. Sci. 1 (2), 125–159.

[28] Ronchi Della Rocca, S., Paolini, L., 2004. The Parametric λ-Calculus.
Springer Berlin Heidelberg.

[29] Sands, D., Gustavsson, J., Moran, A., 2002. Lambda calculi and linear
speedups. In: The Essence of Computation, Complexity, Analysis, Trans-
formation. Essays Dedicated to Neil D. Jones [on occasion of his 60th birth-
day]. pp. 60–84.
URL http://dx.doi.org/10.1007/3-540-36377-7_4

[30] Sestoft, P., 1997. Deriving a lazy abstract machine. J. Funct. Program. 7 (3),
231–264.
URL http://journals.cambridge.org/action/displayAbstract?
aid=44087

[31] Wadsworth, C. P., 1980. Some unusual λ-calculus numeral systems. In:
Seldin, J., Hindley, J. (Eds.), To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism. Academic Press.

[32] Wand, M., 2007. On the correctness of the krivine machine. Higher-Order
and Symbolic Computation 20 (3), 231–235.
URL http://dx.doi.org/10.1007/s10990-007-9019-8

40

