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Abstract. The model behind functional programming languages is the
closed λ-calculus, that is, the fragment of the λ-calculus where evaluation
is weak (i.e. out of abstractions) and terms are closed. It is well-known
that the number of β (i.e. evaluation) steps is a reasonable cost model in
this setting, for all natural evaluation strategies (call-by-name / value /
need). In this paper we try to close the gap between the closed λ-calculus
and actual languages, by considering an extension of the λ-calculus with
pattern matching. It is straightforward to prove that β plus matching
steps provide a reasonable cost model. What we do then is finer: we
show that β steps only, without matching steps, provide a reasonable cost
model also in this extended setting—morally, pattern matching comes for
free, complexity-wise. The result is proven for all evaluation strategies
(name / value / need), and, while the proof itself is simple, the problem
is shown to be subtle. In particular we show that qualitatively equivalent
definitions of call-by-need may behave very differently.

This work is part of a wider research effort, the COCA HOLA project [3].

1 Introduction

Functional programming languages are modeled on the λ-calculus. More precisely,
on the dialect in which evaluation is weak, that is, it does not enter function
bodies, and terms are closed—we refer to this setting as to the closed λ-calculus.
In contrast to other models such as Turing machines, in the λ-calculus it is far
from evident that the number of evaluation steps is a reasonable cost model for
time. Its evaluation rule, β-reduction, is in fact a complex, non-atomic operation,
for which there exist size exploding families, i.e. families of programs whose code
grows at an exponential rate with respect to the number of β-reductions.

The time cost models of the closed λ-calculus. Since the work of Blelloch and
Greiner [17], it is known that the number of β-steps in the call-by-value closed
λ-calculus can indeed be considered as a reasonable cost model. Roughly, one can
consider β as an (almost) atomic operation, counting 1 (actually a cost bound
by the size of the initial term) for each step. The key point is that β can be
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simulated efficiently, using simple forms of shared evaluation such as environment-
based abstract machines, circumventing size explosion. Sands, Gustavsson, and
Moran have then showed that ordinary abstract machines for call-by-name and
call-by-need closed λ-calculi are also reasonable [34]. Similar results have also
been obtained by Martini and Dal Lago (by combining the results in [22] and
[21]), and then the whole question has been finely decomposed and studied by
Accattoli, Barenbaum, Mazza, and Sacerdoti Coen [6,14]. It is thus fair to say
that the number of β-steps is the time cost model of the closed λ-calculus.

Functional programming languages and the negligible cost hypothesis. There is a
gap between the closed λ-calculus and an actual functional language, that usually
has various constructs and evaluation rules in addition to β-reduction. From the
cited results it would easily follow that the number of β-steps plus the steps for
the additional constructs is a reasonable cost model. In practice, however, a more
parsimonious cost model is used: for functional programs the number of function
calls (aka β-reductions) is usually considered as (an upper bound on) its time
complexity—this is done for instance by Charguéraud and Pottier in [18]. The
implicit hypothesis is that the cost of β-reduction dominates the cost of all these
additional rules, so that it is fair to ignore them, complexity-wise—that is, they
can be considered to have zero cost. To the best of our knowledge, however, such
a negligible cost hypothesis has never been proved.

The cost of pattern matching. This paper is a first step towards proving the
negligible cost hypothesis. Here, we extend the study of cost models to the
closed λ-calculus with constructors and pattern matching. It turns out that the
problem is subtler than what folklore suggests: evaluation steps related to pattern
matching can easily be exponential in the number of β-steps—i.e. they are far
from being dominated by β. We show, however, that evaluation can be simulated
so that matching steps are tamed. The cost of pattern matching is proved to be
indeed negligible: matching steps can be assigned zero cost, as they are linear in
the number of β-steps and the size of the initial term, the two key parameters
in the study of cost models. Therefore, our results provide formal arguments
supporting common practice, despite the apparently bad behavior of pattern
matching.

In contrast to the ordinary closed λ-calculus, where call-by-name / value /
need strategies can be treated with the same techniques, for pattern matching
these evaluation strategies behave less uniformly. Namely:

– Call-by-name (CbN) explodes: we show that in CbN there are matching
exploding families, that is, families {tn}n∈N of terms where tn evaluates in n
β-steps and 2n matching steps, suggesting that the cost of pattern matching
is far from being negligible.

– Call-by-value (CbV) is reasonable: the explosion of matching steps in CbN
is connected to the re-evaluation of function arguments, it is then natural
to look at the CbV case, where arguments are evaluated once and for all. It
turns out that in CbV matchings are negligible, namely they are bilinear,
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that is, linear in the number of β-steps and the size of the initial term, and
that such a bound is tight.

– Call-by-need (CbNeed) is sometimes reasonable: CbNeed is halfway CbN and
CbV, as it is operationally equivalent to CbN but it avoids the re-evaluation
of arguments as in CbV—in particular CbNeed rests on values. The problem
here is subtle, and amounts to how values are defined. If constructors are
always considered as values, independently of the shape of their arguments,
then there are matching exploding families similar—but trickier—to those
affecting CbN. If constructors are considered as values only when they are
applied to variables, then one can adapt the proof used for CbV, and show
that matchings are negligible.

– Call-by-name (CbN) is reasonable, actually : being operationally equivalent to
CbN, CbNeed can be seen as an efficient simulation of CbN, proving that the
matching exploding families of CbN are a circumventable problem, similarly
to the size exploding families for β-reduction.

The context of the paper. The problem of the cost of pattern matching arises as
an intermediate steps in a more ambitious research program, going beyond the
negligible cost hypothesis. Our real goal in fact is the complexity analysis of the
abstract machine at work in the kernel of Coq1 [20]. Such a machine has been
designed and partially studied by Barras in his PhD thesis [16], and provides
a lightweight approach compared to the compilation scheme by Grégoire and
Leroy described in [25]. It is used to decide convertibility of terms, which is the
bottleneck of the type-checking (and thus proof-checking) algorithm. It is at
the same time one of the most sophisticated and one of the most used abstract
machines for the λ-calculus. The goal is to prove it reasonable, that is, to show
that the overhead of the machine is polynomial in the number of β-steps and in
the size of the initial term, and eventually design a new machine along the way,
if the existing one turns out to be unreasonable.

Barras’ machine executes a language that is richer than λ-calculus. In par-
ticular, it includes constructors and pattern matching, to which the paper is
devoted—this justifies the choice of the particular presentation of pattern match-
ing that we adopt, rather than other formalisms such as Cirstea and Kirchner’s
rewriting calculus [19], Klop, van Oostrom, and de Vrijer’s λ-calculus with pat-
terns [29], or Jay and Kesner’s pure pattern calculus [26]. The machine actually
implements call-by-need strong (i.e. under abstraction) evaluation, while here we
only deal with the closed case. This is done for the sake of simplicity, because
the subtleties concerning pattern matching are already visible at the closed level,
but also because the closed case is of wider interest, being the one modeling
functional programming languages.

The value of the paper. To our knowledge, our work is the first study of the
asymptotic cost of pattern matching in a functional setting. As we explained,

1 The kernel of Coq is the subset of the codebase which ensures that only valid
proofs are accepted. Hence the use of an abstract machine, which has a better ratio
efficiency/complexity than the use of a compiler or a naive interpreter.
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this paper provides an example of the subtleties hidden in passing from the
ideal, abstract setting of the closed λ-calculus to an actual, concrete functional
language—and the case we study here is still quite abstract—motivating further
complexity analyses of programming features beyond the core of the λ-calculus.
Another interesting point is the fact that the study of cost models is used to
discriminate between different presentations of CbNeed that would otherwise
seem equivalent. Said differently, complexity and cost models are used here as
language design principles.

The style of the paper. We adopt a lightweight, minimal style, focusing on
communicating ideas rather than providing a comprehensive treatment of the
calculi under study. The style is akin to that of a functional pearl—the reasoning
is in fact simple, not far from a pearl. A more thorough study is left to an
eventual longer version of this work. In particular, our results are proved using
simple calculi with explicit substitutions (ES) inspired by the linear substitution
calculus—a variation over a λ-calculus with ES by Robin Milner [32] developed by
Accattoli and Kesner [2,8]—in which both the search of the redex and α-renaming
are left to the meta-level. To be formal, we should make both tasks explicit in
the form of an abstract machine. The work of Accattoli and coauthors [6,9,4]
has however repeatedly showed that these tasks require an overhead linear in
the number of β-steps and the size of the initial term, and in some cases even
logarithmic in the size of the initial term (see the companion paper [7])—in the
terminology of this paper, the costs of search and α-renaming are negligible.

At the technical level, for the study of cost models we mostly adopt the
techniques and the terminology (linear substitution calculus, subterm invariant,
harmony, etc) developed by Accattoli and his coauthors (Dal Lago, Barenbaum,
Mazza, Sacerdoti Coen, Guerrieri) in [10,6,9,11,4].

2 Call-by-Name and Matching Explosion

Here we consider the case of the CbN closed λ-calculus extended with constructors
and pattern matching. Since the aim is to show a degeneracy, we proceed quickly
(omitting the error handling, for instance), delaying a more formal treatment to
the next section on CbV, where we show a positive result.

Constructors and pattern matching. The language is the ordinary λ-calculus
extended with a fixed finite set of constructors c1, . . . ck—therefore, k is a constant
parameter of the language. Each constructor ci takes a fixed number kci (≥ 0)
of arguments, e.g. ci(t1, . . . , tkci ). Constructors are supposed to be fully applied
from the beginning, and the application of constructors to their arguments is
not the application of the λ-calculus—that is, we write ci(t1, . . . , tkci ) and not
cit1, . . . , tkci , thus ruling out partial applications such as e.g. cit1 (assuming that
kci > 1). There also is a pattern matching operator case t {b}, where b is a set
of branches—since k is fixed, for the sake of simplicity we assume that every
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case t {b} has a branch for every constructor. Namely:

Terms t, u ::= x | λx.t | t u | ci(t) | case t {b}
Branches b ::= ci(x)⇒ ui

where the bold font denotes vectors according to the following conventions:

– t is the notation for a vector of terms t1, . . . , tn, whose length is left implicit
as much as possible;

– ci(t) and ci(x) assume that t and x have the right arity kci , and
– ci(x)⇒ ui is a compact notation for c1(x)⇒ u1, . . . , ck(x)⇒ uk.

Moreover, ci(x1, . . . , xkci ) ⇒ ui binds the variables x1, . . . , xkci in ui. Finally,
the size of a term is the number of its term constructors (that is, the number of
productions used to derive it using the grammar for terms), and it is noted |t|.

Evaluation. The small-steps operational semantics is the usual one for CbN,
extended with an evaluation context and a rewriting rule for pattern matching.

CbN Evaluation Contexts C ::= 〈·〉 | Ct | caseC {b}

Rule at Top Level Contextual closure
(λx.t)u 7→β t{x�u} C〈t〉 →β C〈u〉 if t 7→β u

case ci(t) {ci(x)⇒ ui} 7→case ui{x�t} C〈t〉 →case C〈u〉 if t 7→case u

To help the reader getting used to our notations, let us unfold the 7→case rule:

case ci(t1, . . . , tkci ) {c1(x)⇒ u1, . . . , ck(x)⇒ uk} 7→case

ui{x1�t1} . . . {xkci �tkci}

The union of →β and →case is noted →CbN. A derivation d : t →∗ u is a
potentially empty sequence of evaluation →β and →case steps, whose length /
number of β steps / number of →case steps is denoted by |d| / |d|β / |d|case. As
it is standard, we silently work modulo α-equivalence.

The matching exploding family. We already have enough ingredients to build a
matching exploding family. Consider a a zeroary constructor 0. Now, define the
following family of closed terms:

t1 := λx.casex {0⇒ casex {0⇒ 0}}
tn+1 := λx.(tn(casex {0⇒ casex {0⇒ 0}}))

Our exploding family is actually given by {tn 0}n∈N, for which we want to
prove that tn0→n

β→2n

case 0. To this aim, we need the following auxiliary family:

u0 := 0 un+1 := caseun {0⇒ caseun {0⇒ 0}})

Now, in two steps, we prove a slightly more general statement, namely tnuk →n
β

un+k →2n+k

case 0.
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Proposition 1.

1. Linear β prefix: there exists a derivation dn : tnuk →n
β un+k for n ≥ 1 and

k ≥ 0;
2. Exponential pattern matching suffix: there exists a derivation en : un →∗case 0

with |en| = Ω(2n) for n ≥ 1.
3. Matching exploding family: there exists a derivation fn : tn0 →∗ 0 with
|tn0| = O(n), |fn|β = n, and |fn| = Ω(2n).

Proof. Point 3 is obtained by concatenating Point 1 and Point 2.
Point 1 and Point 2 are by induction on n. Cases:

– Base case, i.e. n = 1.
1. Linear β prefix : the derivation d1 is given by

t1uk = (λx.casex {0⇒ casex {0⇒ 0}})uk
→β caseuk {0⇒ caseuk {0⇒ 0}}) = uk+1

2. Exponential pattern matching suffix : the derivation e1 given by the fol-
lowing sequence has indeed 21 = 2 steps, as required:

u1 = case 0 {0⇒ case 0 {0⇒ 0}})
→case case 0 {0⇒ 0} →case 0

– Inductive case.
1. Linear β prefix : the derivation dn+1 is given by

tn+1uk = (λx.(tncasex {0⇒ casex {0⇒ 0}}))uk
→β tncaseuk {0⇒ caseuk {0⇒ 0}}))
= tnuk+1

(by i.h.)
dn
→n
β un+k+1

2. Exponential pattern matching suffix : the derivation en+1 is given by:

un+1 = caseun {0⇒ caseun {0⇒ 0}})
(by i.h.)

en
→∗ case 0 {0⇒ caseun {0⇒ 0}})
→case caseun {0⇒ 0}

(by i.h.)
en
→∗ case 0 {0⇒ 0} →case 0

Now, |en+1| = 2 + 2 · |en| =i.h. 2 + 2 ·Ω(2n) = Ω(2n+1).

3 Call-by-Value, LIME, and the Bilinear Bound

It is easy to see that the matching exploding family of the previous section does
not explode if evaluated according to the CbV strategy. Said differently, the
problem seems to be about the re-evaluation of arguments.
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We prove here that for the CbV closed λ-calculus extended with constructors
and pattern matching the number of β-steps (alone, i.e. without matching steps)
is a reasonable cost model. Despite the absence of matching explosion, to reach
our goal we have to address the underlying size explosion problem that affects
every λ-calculus with a small-step operational semantics, and so we have to
adopt sharing and an abstract machine-like formalism. In the terminology of the
introduction, we have to define a framework simulating the small-step calculus,
in order to tame size explosion.

Therefore, we switch from a small-step operational semantics to a micro-step
one, that is, we replace β-reduction →β and meta-level substitution t{x�u}
with a multiplicative rule →m, turning a β-redex (λx.t)u into an explicit, delayed
substitution t[x�u], and an exponential rule→e, replacing one variable occurrence
at the time, when it ends up in evaluation position. The terminology multiplicative
/ exponential comes from the connection with linear logic, that is however kept
hidden here—see [6] for more details—just bear in mind that the exponential
rule does not have an exponential cost, the name is due to other reasons.

For the sake of simplicity, we define the micro-step calculus but not the
small-step one, and thus we also omit the study of the correspondence between
the two. It would be obtained by simply unfolding the explicit substitutions (ES),
and it is standard—see [4] for a detailed similar study in CbN. The only point
that is important is that in such a correspondence there is a bijection between
the evaluation steps at the two levels, except for the exponential steps, that
vanish, because ES are unfolded by the correspondence. In particular, the number
of multiplicative and β-steps coincide, and they can thus be identified for our
complexity analyses.

Introducing LIME. Our proof uses a new simple formalism, the LInear Matching
calculus by valuE (shortened LIME ), that is a variation over other formalisms
studied by Accattoli and coauthors (the value substitution calculus [13], the
GLAM abstract machine [9], and the micro-substituting abstract machine [4]).

Let us explain how to classify LIME in the zoo of decompositions of the
λ-calculus. There are three tasks that in the λ-calculus are left implicit or at the
meta-level and that are addressed by finer frameworks such as abstract machines
or calculi with ES:

1. Substitution: delaying and decomposing the substitution process;
2. Search: searching for the next redex to reduce;
3. Names: handling/avoiding α-renaming.

The original approach to calculi with ES [1] addressed all these tasks. With
time, it was realized that the handling of names could be safely left implicit,
see Kesner’s [28] for a survey. More recently, also the search of the redex has
been factored out, bringing it back to the implicit level, making ES act at a
distance, without percolating through the term. The paradigmatic framework of
this simpler, at a distance approach is the linear substitution calculus (LSC), a
variation over a λ-calculus with ES by Robin Milner [32] developed by Accattoli
and Kesner [2,8]—a LSC-like calculus is used in forthcoming Sect. 4. LIME, as
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the LSC, addresses only the substitution task, letting the other two implicit. Here,
however, we add a further simplification: it groups all ES in a global environment,
in a way inspired by abstract machines and at work also in Accattoli’s [4]. The
literature of course contains also other formalisms employing a global environment
or factoring out the search of the redex, at least [36,34,38,24,27,23,35], but usually
developed focusing on other points.

The only data structure in LIME is the global environment E for delayed
substitutions. With respect to abstract machines, the idea is that the transitions
for the search of the redex are omitted (together with the related data structures,
such as stacks and dumps), because the transitions corresponding to β, matching,
and substitution transitions are expressed via evaluation contexts. For what
concerns α-renaming, we follow the same approach used in the mainstream
approach to the λ-calculus, leaving it at the meta-level and applying it on-the-fly.
Our choice is justified by the fact that, as already pointed out in the introduction,
previous work has repeatedly showed that the costs of handling search and names
explicitly are negligible, when one is interested is showing that the overhead is
not exponential.

Our result is that the number of steps of LIME is bilinear, that is, linear in the
number of β-steps and the size of the initial term, that are the two fundamental
parameters in the study of cost models. Additionally, we show that our bound is
tight. Making search and names explicit usually has only an additional bilinear
cost, that would not change the asymptotic behavior. The choice of omitting
them, then, is particularly reasonable.

Defining LIME. The idea is that a term t is paired with an environment E,
to form a program p. There is a special program err, denoting that an error
occurred, that can happen in two cases: because of a pattern matching on an
abstraction, or the application of a constructor to a further argument—the two
cases are spelled out by the forthcoming rewriting rules. Evaluation is right-to-left,
and values include abstractions, error, and constructors applied recursively to
values. In particular, variables are excluded from values as it is standard in the
literature on abstract machines, see [14]. The language is thus defined by:

Terms t, u ::= x | λx.t | t u | c(t) | case t {b} | err
Branches b ::= ci(x)⇒ ui

Values v, w ::= λx.t | c(v) | err
Environments E ::= ε | [x�v] :: E

Programs p ::= (t, E)

Eval. Contexts C ::= 〈·〉 | tC | Cv | c(t, . . . , C, . . . , v) | caseC {b}

Note that the definition of evaluation contexts forces the evaluation of constructor
arguments, from right to left. Most of the time we write programs (t, E) without
the parentheses, i.e. simply as t E. Evaluation→CbV is the relation obtained as the
union of the following rewriting rules (m for multiplicative and e for exponential).
They are not defined at top level and then closed by evaluation context but are
defined directly at the global level (by means of evaluation contexts, of course):
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C〈(λx.t) v〉 E →m C〈t〉 [x�v] :: E
C〈x〉 E :: [x�v] :: E′ →e C〈v〉 E :: [x�v] :: E′

C〈case ci(v) {cj(x)⇒ uj}〉 E →case C〈ui〉 [x�v] :: E
C〈caseλx.t {b}〉 E →err1 err ε

C〈ci(v) t〉 E →err2 err ε

where rule →case has been written compactly. Its explicit form is

C〈case ci(v1, . . . , vkci ) {cj(x)⇒ uj}〉 E
→case C〈ui〉 [x1�v1] . . . [xkci �vkci ] :: E

As before, a derivation d : t→∗CbV u is a potentially empty sequence of evaluation
steps, whose length / number of →a steps is denoted by |d| / |d|a for a ∈
{m, e, case, err1, err2}.

The free and bound variables of a term are defined as expected—err has
no free variables. The free variables of a program are defined by looking at
environments from the end, as follows:

fv(t, ε) := fv(t) fv(t, E :: [x�v]) := (fv(t, E) \ {x}) ∪ fv(v)

As expected, a program is closed if its set of free variables is empty. As it is
standard, we silently work modulo α-equivalence.

Progress and harmony. The choice of LIME for our study is justified by the
similarity with the formalisms used in the studies on functional cost models
[6,9,11,4] and with the one used in the Coq abstract machine designed by Barras
[16]. A further justification is the fact that it is conservative with respect to CbV
closed λ-calculus in a sense that we are now going to explain.

A fundamental property of the CbV closed λ-calculus is that terms either
evaluate to a value or they diverge. This property has been highlighted and called
progress by Wright and Felleisen [39] and later extensively used by Pierce [33],
among others. In these studies, however, the property is studied in relationship
to a typing system, as a tool to prove its soundness (typed programs cannot go
wrong). Accattoli and Guerrieri in [11] focus on it in an untyped setting and call
it harmony because it expresses a form of internal completeness, in two ways.
First, it shows that in the closed λ-calculus CbV can be seen as a notion of
call-by-normal-form. Note the subtlety: one cannot define call-by-normal-form
evaluation directly, because one needs evaluation to define normal forms—a call-
by-normal-form calculus thus requires a certain harmony in its definition. Second,
the property shows that the restriction to CbV β-reduction has an impact on the
order in which redexes are evaluated, but evaluation never gets stuck, as every
β-redex will eventually become a CbV β-redex and be fired, unless evaluation
diverges (and with no need of types). In [11], harmony is showed to hold for
the fireball calculus, an extension of the CbV closed λ-calculus with open terms.
LIME rests on closed terms but adds constructors and pattern matching, and so
its harmony does not follow from the one of the closed λ-calculus.

Now, we show that LIME is harmonious—types have no role here, so we
prefer to refer to harmony rather than to progress. Let us stress however that
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harmony has no role in the complexity analysis, it is presented here only to show
that LIME is not ad-hoc.

Harmony is generally showed for single steps, showing that a term either
reduces or it is a value.

Proposition 2 (Progress / harmony for LIME). Let (t, E) be a closed
program. Then either (t, E)→CbV (u,E′) or t is a value.

Proof. By induction on t. Cases:

– Value, i.e. t = v. Then no rules apply;
– Variable, i.e. t = x. Note that E contains a substitution [x�v] because the

program is closed, and so →e applies.
– Application, i.e. t = u s. The i.h. on (s, E) gives
• s reduces. Then so does (t, E);
• s is a value. The i.h. on (u,E) gives
∗ u reduces. Then so does (t, E);
∗ u is a value. Then either →m (if u is an abstraction) or →err2 (if u is

a constructor) applies.
– Constructor that is not a value, i.e. t = c(u). Then there is a rightmost

argument s in u that is not a value. By i.h., (s, E) reduces, and so does
(c(u), E).

– Match, i.e. t = caseu {b}. The i.h. on (u,E) gives:
• u reduces. Then so does (t, E);
• u is a constructor. Then →case applies;
• u is an abstraction. Then →err1 applies.

Complexity analysis. For complexity analyses, one usually assumes that the
initial program p comes with an empty environment, that is, p = (t0, ε) . The
two fundamental parameters for analyses of a derivation d : (t0, ε)→∗CbV q are

1. Length of its small-step evaluation: the number |d|m of m-steps in the derivation
d, that morally is the number of β-steps at the omitted small-step level.

2. Input : the size |t0| of the initial term t0;

Our aim is to show that the length |d| of a d is bilinear, that is, linear in |d|m
and |t0|. Since error-handling rules can only appear once, and only at the end of
a derivation, they do not really play a role. Therefore, the goal is to prove that
the number of exponential →e and matching →case steps is bilinear. To prove it,
we need the following measure | · |v of terms and programs (where k is the number
of constructors in the language and kci is the arity of the i-th constructor), that
simply counts the number of free variable occurrences and of case constructs
out of abstractions, i.e. of the locations where →e and →case steps can act:

|x|v := 1 |λx.t|v := 0 |err|v := 0

|t u|v := |t|v + |u|v |ci(t)|v := Σ
kci
j=1|tj |v |(t, E)|v := |t|v

|case t {ci(x)⇒ ui}|v := 1 + |t|v +max{|ui|v | i = 1, . . . , k}
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Note that for the branches of a case construct we use the max, because only
one of them is selected by →case while the others are discarded. The measure is
extended to evaluation contexts by setting |〈·〉|v := 0 and defining it on the other
cases as for terms. The following properties of the measure follow immediately
from the definition:

Lemma 3 (Basic properties of the measure).

1. Values: |v|v = 0 for every value v.
2. Size Upper Bound: |t|v ≤ |t| for every term t.
3. Context Factorization: |C〈t〉|v = |C|v + |t|v.

From these properties a straightforward inspection of the rules shows, as
expected, that

Lemma 4 (Exponential and matching rules decrease the measure). If
(t, E)→a (u,E′) then |(t, E)|v > |(u,E′)|v for a ∈ {e, case}.

Lemma 4 implies that the length of a sequence of exponential and matching
steps is bounded by the measure of the code at the beginning of the sequence,
that by Lemma 3.2 is bounded by the size of that code. To conclude, we have
to establish the connection between multiplicative steps and code sizes. It turns
out that →m can increase the measure only by an amount bounded by the size
of the initial term. This property follows by an invariant known as the subterm
property, that relates the size of terms along the derivation with the size of the
initial one. It is the key property for complexity analyses, playing a role akin
to that of the cut-elimination theorem for sequent calculi, or of the subformula
property for proof search. It does not hold in the ordinary λ-calculus, because it
requires meta-level substitution to be decomposed in micro-steps. It can instead
be found in many abstract machines and other setting decomposing β-reduction.

The subterm property can be formulated in various ways. Sometimes it states
that the size of duplicated subterms is bounded by the size of the initial term.
In LIME, it takes a different form. The multiplicative rule →m can increase the
measure because it opens an abstraction, that being a value has measure 0, and
potentially exposes new free variable occurrences and case constructs. Therefore,
the important point is to bound the size of abstraction bodies, which is why the
property takes the following form.

Lemma 5 (LIME subterm property). Let d : (t0, ε)→∗CbV (u,E) be a LIME
derivation. Then the size of every abstraction in u and E is bounded by the size
|t0| of the initial term.

Proof. By induction on the length of the derivation d. The base case |d| = 0 is
immediate. For a non-empty derivation consider the last step (s, E′)→CbV (u,E).
By i.h., the statement holds for (s, E′). The rules may move abstractions from
s to E′ or vice-versa, but they never substitute inside abstractions (evaluation
contexts are weak, i.e. they do not go under abstraction) nor create them out of
the blue.
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Let us stress why the property requires meta-level substitution to be de-
composed: it is only because LIME never replaces variable occurrences under
abstraction that the size of abstractions does not grow.

We can then conclude with the bound on the length of derivations.

Theorem 6 (LIME bilinear bound). Let d : (t0, ε) →∗CbV (u,E) be a LIME
derivation. Then |d| = O(|t0| · (|d|m + 1)).

Proof. First of all, note that a error-handling rules can appear only at the end
of the evaluation process, and they end it. So, we omit them, and consider them
included in the big O notation, in the additive constant.

The measure is non-negative, and at the beginning is bound by the size
|t0| of the initial term, by the size upper bound (Lemma 3.2). Rules →e and
→case decrease the size, that is increased only by the multiplicative rule →m that
opens an abstraction (whose content was ignored by the measure before) but
the increment given by the body of the abstraction is bound by the size of the
initial term by the subterm property (plus the size upper bound and the context
factorization of the measure). Thus the number of →e and →case steps is bound
by |t0| · (|d|m + 1). Finally, one has to add the multiplicative steps themselves,
and the eventual final error step—therefore, |d| = O(|t0| · (|d|m + 1)).

Tightness of the bilinear bound, and the increased number of exponentials. We
finish this study by showing that this bound is asymptotically optimal, that is,
by showing a family of derivations reaching the bilinear bound. Our family is a
diverging one, obtained by a simple hack of the famous diverging term δδ. Of
course, the example can be made terminating at the cost of some additional
technicalities, we use a diverging family only for the sake of simplicity.

Before giving the example, let us point out a subtlety. Theorem 6 states
in particular that the number of exponential steps is bilinear. Accattoli and
Sacerdoti Coen have shown that in the CbV (and CbNeed) closed λ-calculus
(that is, without pattern matching) a stronger bound holds: exponentials do not
depend on the size of the initial term, and are linear only in the number of β-steps.
It is natural to wonder whether in LIME the bilinearity involves only matching
steps, and so exponentials are actually linear, or if instead both matching and
exponential steps are bilinear. The example shows that both are bilinear.

For the example, we consider a unary constructor c and a zeroary constructor
0, but for the sake of conciseness the matching constructs in the family will
specify only one branch. Define:

C0 := (y y) 〈·〉 δn := λy.λxn.Cn〈xn〉
Cn+1 := case c(〈·〉) {c(xn)⇒ Cn〈xn〉} tn := (δn δn) 0

Note that

(Cn〈0〉, E) = (case c(0) {c(xn−1)⇒ Cn−1〈xn−1〉}, E)
→case (Cn〈xn−1〉, [xn−1�0] :: E)
→e (Cn−1〈0〉, [xn−1�0] :: E)
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And so we can iterate, obtaining the derivation:

(Cn〈0〉, E) = (case c(0) {c(xn−1)⇒ Cn−1〈xn−1〉}, E)
(→case→e)

n (C0〈0〉, [x0�0] :: . . . :: [xn−1�0] :: E)

Defining E0 := [x0�0] :: . . . :: [xn−1�0] we then have (Cn〈0〉, E) (→case→e

)n (C0〈0〉, E0 :: E). Starting from tn and a generic environment E, we obtain the
following derivation d (that does not in fact depend on E):

(tn, E) = (((λy.λxn.Cn〈xn〉) δn) 0, E)
→m ((λxn.Cn〈xn〉)0, [y�δn] :: E)
→m (Cn〈xn〉, [xn�0] :: [y�δn] :: E)
→e (Cn〈0〉, [xn�0] :: [y�δn] :: E)

(→case→e)
n (C0〈0〉, E0 :: [xn�0] :: [y�δn] :: E)

= ((y y)0, E0 :: [xn�0] :: [y�δn] :: E)
→e ((y δn)0, E0 :: [xn�0] :: [y�δn] :: E)
→e ((δn δn)0, E0 :: [xn�0] :: [y�δn] :: E)
= (tn, E0 :: [xn�0] :: [y�δn] :: E)

More compactly, (tn, E)→∗CbV (tn, E
′) with O(1) (namely 2) →m steps and Ω(n)

→case and Ω(n)→e steps. Now, consider the m-th iteration dm of d starting from
(tn, ε). Since the size of the initial term is proportional to n (i.e. |tn| = Θ(n)), the
number of steps in dm is linear in the size of the initial term tn, and each iteration
is enabled by a β/m step, so it is also linear in the number of β-steps. That is, we
obtained that both |dm|e and |dm|case have lower bound Ω(|tn| · |dm|m), reaching
the bilinear upper bound for both kinds of step.

4 Call-by-Need, LINED, and the Bilinear Bound

CbNeed evaluation is the variation over CbV where arguments that are not needed
are not evaluated, so that the cases in which CbV diverges but CbN terminates
are avoided, marrying the efficiency of CbV with the better behavior with respect
to termination of CbN—classic references on CbNeed are [37,30,31,15,36].

Being based on CbV, CbNeed rests on values, and for our study the key
point turns out to be the definition of values in the case of constructors. In this
section constructors are values only when their arguments are variables. Under
this hypothesis, we can smoothly adapt the proof of the previous section, and
show that pattern matching is negligible. In the next section we shall study the
variant in which every constructor is considered as a value, independently of the
shape of its arguments.

Here we adopt the presentation of CbNeed of Accattoli, Barenbaum, and
Mazza [6], resting on the linear substitution calculus. With respect to LIME, the
only difference is that the environment is integrated inside the term itself and
the notion of program disappears—in CbNeed is not possible to disentangle the
term and the environment, unless more data structures are used. Let us call this
framework LINED, for LInear matching calculus by NEeD.

The grammar of LINED is:
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Terms t, u ::= x | λx.t | t u | c(t) | case t {b} | err | t[x�u]
Branches b ::= ci(x)⇒ ui

Values v, w ::= λx.t | c(x) | err

Subs. Contexts L ::= 〈·〉 | L[x�t]
Eval. Contexts N,M ::= 〈·〉 | N t | N [x�u] |M〈x〉[x�N ] | caseN {b}

Answers a ::= L〈v〉

where t[x�u] is called an explicit substitution (ES) and binds x in t—it is
absolutely equivalent to write let x = u in t, it is just more concise. Note the
category of answers, that are simply values in an environment.

The key point for CbNeed evaluation is the case M〈x〉[x�N ] in the definition
of evaluation contexts (where we implicitly assume that M does not bind x),
whose role is to move evaluation inside the ES / environment [x�N ].

Rewriting rules. Now that the environment is entangled with the term, most
rules have to work up to a segment of the environment, that is, a substitution
context L. This is standard in the framework of the linear substitution calculus.
All rules but the last one (→err3 , that is a global rule) are defined at top level
and then closed by evaluation contexts:

Rules at Top Level (plus →err3)
L〈λx.t〉 u 7→m L〈t[x�u]〉

N〈x〉[x�L〈v〉] 7→e L〈N〈v〉[x�v]〉
caseL〈ci(y)〉 {ci(x)⇒ ui} 7→case L〈ui[x�y]〉

c(t) 7→cstr c(x)[x�t] if t 6= y
caseL〈λx.t〉 {b} 7→err1 err

L〈c(x)〉 t 7→err2 err

N〈err〉 →err3 err

Contextual closure
N〈t〉 →a N〈u〉 if t 7→a u for a ∈ {m, e, cstr, case, err1, err2}

We use →CbNeed to denote the union of all these rules. Note the side condition
t 6= y for 7→cstr: it is a compact way of saying that at least one term in t is not
a variable, whose aim is to avoid silly diverging derivations. The rule can be
optimized by avoiding to replace those elements in t that are already variables,
but to show that the overhead is not exponential this is not needed. Note also that
rule →case now asks the arguments of the constructor to match to be variables,
because if they are not then →cstr applies first.

Harmony. As for LIME, harmony holds for LINED, and, as before, we show it to
stress that LINED is not an ad-hoc framework. Here, however, it is formulated in a
slightly different way, on open terms. The reason is that in the case of a term of the
form t[x�u], the subterm t—to which we want to apply the inductive hypothesis—
might be open even when the whole term is closed. Therefore harmony has now a
new, third case for open terms: closed terms however cannot fall in this category,
and so on them harmony takes its usual form.
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Proposition 7 (Progress / harmony for LINED). Let t be a term of
LINED. Either t →CbNeed u, or t is an answer, or t is an open term of the
form N〈x〉 where N does not bind x.

Proof. By induction on t. Cases:

– Value, i.e. t = v. Then t is an answer (and it is not of the two other forms).
– Variable, i.e. t = x. Then t is an open term.
– Application, i.e. t = u s. The i.h. on u gives
• u reduces or is open. Then so does t;
• u is a constructor value in a substitution context. Then →err2 applies;
• u is an abstraction in a substitution context. Then →m applies.
• u is an error in a substitution context. Then →err3 applies.

– Substitution, i.e. t = u[x�s]. The i.h. on u gives
• u reduces or is open with head variable not x. Then so does t;
• u is open with hereditary head variable x. Then →e applies;
• u is an answer. Then so is t.

– Constructor that is not a value, i.e. t = c(u). Then →cstr applies.
– Match, i.e. t = caseu {b}. The i.h. on u gives:
• u reduces or is open. Then so does t;
• u is a constructor value in a substitution context. Then →case applies;
• u is an abstraction in a substitution context. Then →err1 applies.
• u is an error in a substitution context. Then →err3 applies.

Complexity analysis. The bounds for LINED are obtained following the same
reasoning done for LIME, but using a slightly different measure. There are two
differences. First, in LINED evaluation enters inside ES, so now the measure
takes them into account. Second, in LINED the analysis has to bound also the
number of →cstr steps, not present in LIME. Accordingly, the measure now
counts 1 for every constructor out of abstractions. The measure | · |n for LINED
is thus defined by:

|x|n := 1 |v|n := 0 |t[x�u]|n := |t|n + |u|n
|t u|n := |t|n + |u|n |ci(t)|n := 1 +Σ

kci
j=1|tj |n

|case t {ci(x)⇒ ui}|n := 1 + |t|n +max{kci + |ui|n | i = 1, . . . , k}

Note that also the definition on case constructs is different with respect to the
measure for LIME, as it now adds kci . The reason: →case creates kci ES that in
LINED contribute to the measure, while in LIME they do not.

As before, the measure is extended to evaluation contexts by setting |〈·〉|v := 0
and defining it on the other cases as for terms. The following properties of the
measure follow immediately from the definition:

Lemma 8 (Basic properties of the measure).

1. Size Upper Bound: |t|n ≤ |t| for every term t.
2. Context Factorization: |N〈t〉|n = |N |n + |t|n and in particular |L〈t〉|n =
|L|n + |t|n.
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Next, we show that the measure decreases with the rules other than the
multiplicative one, standing for β, and the error handling rules (that are trivial).

Lemma 9 (Exponential, matching and constructor rules decrease the
measure). If t→a u then |t|n > |u|n for a ∈ {e, case, cstr}.

Proof.

– Exponential : t = N〈x〉[x�L〈v〉]→e L〈N〈v〉[x�v]〉 = u. Then:

|N〈x〉[x�L〈v〉]|n = 1 + |N |n + 0 + |L|n >
0 + |N |n + 0 + |L|n = |L〈N〈v〉[x�v]〉|n

– Matching : t = caseL〈ci(y)〉 {ci(x)⇒ ui} →case L〈ui[x�y]〉 = u. Then:

|t|n = 1 + 0 + |L|n +max{kcj + |uj |n | j = 1, . . . , k}
> |L|n + kci + |ui|n = |L〈ui[x�y]〉|n

– Constructor : t = c(t)→cstr c(x)[x�t] = u. We have:

|c(t)|n = 1 +Σ|t|n > 0 +Σ|t|n = |c(x)[x�t]|n

As for LIME, the bilinear bound rests on a subterm property. Both the
property and the bound are proved exactly as in the CbV case. Moreover, the
example showing that the bound for LIME is tight applies also to LINED.

Lemma 10 (LINED subterm property). Let d : t0 →∗CbNeed u be a LINED
derivation. Then the size of every abstraction in u and is bounded by the size |t0|
of the initial term.

Theorem 11 (LINED bilinear bound). Let d : t0 →∗CbNeed u be a LINED
derivation. Then |d| = O(|t0| · (|d|m + 1)).

5 Call-by-Need, ExpLINED, and Matching Explosion

Here we consider ExpLINED, a variant of LINED where constructors are always
considered as values, not only when they are applied to variables. The effect of
this change is dramatic: it re-introduces matching explosions, even if arguments
are still evaluated once and for all, because constructors then can be exploited to
block the evaluation of subterms. This case study is used to stress two facts: first,
the no negligible cost hypothesis for pattern matching is less obvious than it seems,
and second, the study of cost models can be used as a language design principle,
to discriminate between different and yet equivalent operational semantics2.

2 We do not prove the equivalence between the two formulations of CbNeed studied
in the paper, but the difference is essentially that in one case c(t) is reduced to
c(x)[x�t] (via →cstr) while in the other case it is left unchanged—the two calculi
compute the same result, up to substitutions, just with very different complexities.
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ExpLINED. For the sake of conciseness and readability, ExpLINED is defined by
pointing out the differences with respect to LINED, rather than repeating all the
definitions. The grammar of values of ExpLINED is:

v ::= λx.t | err | c(t)

Dynamically, rule →cstr is removed while →case is slightly modified, to fire with
every constructor, independently of the shape of its arguments:

caseL〈ci(t)〉 {ci(x)⇒ ui} →case L〈ui[x�t]〉

Matching exploding family. We are now going to define a matching exploding
family. The idea is similar to that of the family for CbN, that is, to repeatedly
trigger the evaluation of arguments—in CbN we used arguments of β-redexes,
now we exploit constructor arguments. The family is trickier to define and analyze.
In fact, the definition of the family requires a delicate decomposition via contexts,
and the calculations are more involved. Moreover, it took us a lot more time to
find it. The trick, however, is essentially the same used for CbN.

As before, we use two constructors c, that is unary, and 0, that is zeroary.
We introduce various notions of contexts, and the exploding family is given by
Dn〈tn〉, but we decompose the analysis in two steps.

Terms and contexts are then defined by:

En := casexn {c(y)⇒ case y {0⇒ 〈·〉}}
tn := En〈En〈0〉〉

C1 := 〈·〉[x1�c(0)] D1 := (λx1.〈·〉)c(0)
Cn+1 := Cn〈〈·〉[xn+1�c(tn)]〉 Dn+1 := Dn〈(λxn+1.〈·〉)c(tn)〉

Proposition 12.

1. Linear multiplicative prefix: for any term u there exists a derivation dn :
Dn〈u〉 →n

m Cn〈u〉;
2. Exponential pattern matching suffix: if N does not capture xn then there

exists a context L and a derivation en : Cn〈N〈tn〉〉 →∗ Cn〈N〈L〈0〉〉〉 with
|en|case = Ω(2n+1) and |en|e = Ω(2n+1).

3. Matching exploding family: there exists a context L and a derivation fn :
Dn〈tn〉 →∗ Cn〈L〈0〉〉 with |Dn〈tn〉| = O(n), |fn|m = n, |fn|case = Ω(2n+1),
and |fn|e = Ω(2n+1).

Proof. Point 3 is obtained by concatenating Point 1 and Point 2 (taking the
empty evaluation context N = 〈·〉).

Point 1 and Point 2 are by induction on n. Cases:

– Base case, i.e. n = 1.
1. Linear multiplicative prefix : the derivation d1 is given by

D1〈u〉 = (λx1.u)c(0)
→m u[x1�c(0)] = C1〈u〉



18 B. Accattoli, B. Barras

2. Exponential pattern matching suffix : the first part of the evaluation e1 of
the statement is given by

C1〈N〈t1〉〉 = N〈t1〉[x1�c(0)]
= N〈casex1 {c(y)⇒ case y {0⇒ En〈0〉}}〉[x1�c(0)]
→e N〈case c(0) {c(y)⇒ case y {0⇒ En〈0〉}}〉[x1�c(0)]
→case N〈case y {0⇒ En〈0〉}[y�0]〉[x1�c(0)]
→e N〈case 0 {0⇒ En〈0〉}[y�0]〉[x1�c(0)]
→case N〈En〈0〉[y�0]〉[x1�c(0)]

Let us now expand En and continue with the second part of e1:

N〈En〈0〉[y�0]〉[x1�c(0)]
= N〈casex1 {c(z)⇒ case z {0⇒ 0}}[y�0]〉[x1�c(0)]
→e N〈case c(0) {c(z)⇒ case z {0⇒ 0}}[y�0]〉[x1�c(0)]
→case N〈case z {0⇒ 0}[z�0][y�0]〉[x1�c(0)]
→e N〈case 0 {0⇒ 0}[z�0][y�0]〉[x1�c(0)]
→case N〈0[z�0][y�0]〉[x1�c(0)]

= N〈L〈0〉〉[x1�c(0)]
= C1〈N〈L〈0〉〉〉

where |e1|case = 4 = Ω(21+1) and |e1|e = 4 = Ω(21+1).
– Inductive case.

1. Linear multiplicative prefix : note that Cn is an evaluation context for
every n. Then dn+1 is given by

Dn+1〈u〉 = Dn〈(λxn+1.u)c(tn)〉

(by i.h.)
dn
→n

m Cn〈(λxn+1.u)c(tn)〉
→m Cn〈u[xn+1�c(tn)]〉 = Cn+1〈u〉

2. Exponential pattern matching suffix : note that En〈u〉 has the form Nu〈xn〉
with Nu = case 〈·〉 {c(y)⇒ case y {0⇒ u}}, and so tn = En〈En〈0〉〉 =
NEn〈0〉〈xn〉 and En〈0〉 = N0〈xn〉. The derivation en+1 is constructed as
follows. It starts with

Cn+1〈N〈tn+1〉〉
= Cn〈N〈tn+1〉[xn+1�c(tn)]〉
= Cn〈N〈NEn+1〈0〉〈xn+1〉〉[xn+1�c(tn)]〉
→e Cn〈N〈NEn+1〈0〉〈c(tn)〉〉[xn+1�c(tn)]〉
→case Cn〈N〈case y {0⇒ En+1〈0〉}[y�tn]〉[xn+1�c(tn)]〉

Now, let us set N ′ := N〈case y {0 ⇒ En+1〈0〉}[y�〈·〉]〉[xn+1�c(tn)].
Then, en+1 continues as follows

Cn〈N〈case y {0⇒ En+1〈0〉}[y�tn]〉[xn+1�c(tn)]〉
= Cn〈N ′〈tn〉〉

(by i.h.)
en
→∗ Cn〈N ′〈L〈0〉〉〉
= Cn〈N〈case y {0⇒ En+1〈0〉}[y�L〈0〉]〉[xn+1�c(tn)]〉
→e Cn〈N〈L〈case 0 {0⇒ En+1〈0〉}[y�0]〉〉[xn+1�c(tn)]〉
→case Cn〈N〈L〈En+1〈0〉[y�0]〉〉[xn+1�c(tn)]〉
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Using the equality En+1〈0〉 = N0〈xn+1〉, we continue with

Cn〈N〈L〈En+1〈0〉[y�0]〉〉[xn+1�c(tn)]〉
= Cn〈N〈L〈N0〈xn+1〉[y�0]〉〉[xn+1�c(tn)]〉
→e Cn〈N〈L〈N0〈c(tn)〉[y�0]〉〉[xn+1�c(tn)]〉
= Cn〈N〈L〈case c(tn) {c(z) ⇒ case z {0 ⇒ 0}}[y�0]〉〉[xn+1�c(tn)]〉

→case Cn〈N〈L〈case z {0 ⇒ 0}[z�tn][y�0]〉〉[xn+1�c(tn)]〉

Now, let us set N ′′ := N〈L〈case z {0 ⇒ 0}[z�〈·〉][y�0]〉〉[xn+1�c(tn)].
Then, en+1 continues and ends as follows

Cn〈N〈L〈case z {0⇒ 0}[z�tn][y�0]〉〉[xn+1�c(tn)]〉
= Cn〈N ′′〈tn〉〉

(by i.h.)
en
→∗ Cn〈N ′′〈L′〈0〉〉〉
= Cn〈N〈L〈case z {0⇒ 0}[z�L′〈0〉][y�0]〉〉[xn+1�c(tn)]〉
→e Cn〈N〈L〈L′〈case 0 {0⇒ 0}[z�0]〉[y�0]〉〉[xn+1�c(tn)]〉
→case Cn〈N〈L〈L′〈0[z�0]〉[y�0]〉〉[xn+1�c(tn)]〉

= Cn〈N〈L′′〈0〉〉[xn+1�c(tn)]〉
= Cn+1〈N〈L′′〈0〉〉〉

Now, |en+1|case = 4 + 2 · |en|case =i.h. 4 + 2 · Ω(2n+1) = Ω(2(n+1)+1) and
|en+1|e = 4 + 2 · |en|e =i.h. 4 + 2 ·Ω(2n+1) = Ω(2(n+1)+1).

6 Conclusions

Contributions. For functional programming languages, it is generally assumed
that the number of function calls, aka β-steps, is a reasonable cost model, since
all other operations are dominated by the cost of β-steps. This paper shows that
such a negligible cost hypothesis is less obvious than it seems at first sight, by
considering constructors and pattern matching and showing that in CbN the
number of pattern matching steps can be exponential in the number of β-steps.
Furthermore, it shows that matching explosions are possible also in CbNeed, if
evaluation is defined naively.

On the positive side, we showed that in CbV, and for a less naive formulation
of CbNeed, the cost of pattern matching is indeed negligible: the number of
matching steps is bilinear, that is, linear in the number of β-steps and in the
size of the initial term. Summing up, we confirmed the negligible cost hypothesis
for pattern matching, pointing out at the same time its subtleties. A novelty, is
the use of cost models as a language design principle, to discriminate—in this
paper—between otherwise equivalent formulations of CbNeed.

Coq and further extensions. The main motivation behind our work is the devel-
opment of the analysis of the Coq abstract machine, that executes a language
richer than the λ-calculus, including in particular pattern matching. To that
aim, our CbNeed formalism, LINED, has to be further extended with fixpoints,
and evaluation has to be generalized as to handle open terms and go under
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abstraction. Here we omitted the study of fixpoints because they behave like
β-redexes, being function calls, and their cost is not negligible, i.e. they have
to be counted for complexity analyses. Moreover, all our results smoothly scale
up to languages with fixpoints, without surprises. We plan to include them in a
longer, journal version of this work. Open terms and evaluation under abstraction
instead require more sophisticated machineries [10,9,5,11,12], whose adaptation
to CbNeed and pattern matching is under development.

It would also be interesting to study other features of programming languages,
such as first-class (delimited) continuations or other forms of effects, even if they
are not part of the language executed by the Coq abstract machine.
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