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Abstract. The theory of the call-by-value λ-calculus relies on weak
evaluation and closed terms, that are natural hypotheses in the study of
programming languages. To model proof assistants, however, strong evalu-
ation and open terms are required. Open call-by-value is the intermediate
setting of weak evaluation with open terms, on top of which Grégoire and
Leroy designed the abstract machine of Coq. This paper provides a theory
of abstract machines for open call-by-value. The literature contains ma-
chines that are either simple but inefficient, as they have an exponential
overhead, or efficient but heavy, as they rely on a labelling of environments
and a technical optimization. We introduce a machine that is simple and
efficient: it does not use labels and it implements open call-by-value within
a bilinear overhead. Moreover, we provide a new fine understanding of
how different optimizations impact on the complexity of the overhead.

This work is part of a wider research effort, the COCA HOLA project
https://sites.google.com/site/beniaminoaccattoli/coca-hola.

1 Introduction

The λ-calculus is the computational model behind functional programming
languages and proof assistants. A charming feature is that its definition is based
on just one macro-step computational rule, β-reduction, and does not rest on
any notion of machine or automaton. Compilers and proof assistants however are
concrete tools that have to implement the λ-calculus in some way—a problem
clearly arises. There is a huge gap between the abstract mathematical setting of
the calculus and the technical intricacies of an actual implementation. This is why
the issue is studied via intermediate abstract machines, that are implementation
schemes with micro-step operations and without too many concrete details.

Closed and Strong λ-Calculus. Functional programming languages are based on
a simplified form of λ-calculus, that we like to call closed λ-calculus, with two
important restrictions. First, evaluation is weak, i.e. it does not evaluate function
bodies. Second, terms are closed, that is, they have no free variables. The theory
of the closed λ-calculus is much simpler than the general one.

Proof assistants based on the λ-calculus usually require the power of the full
theory. Evaluation is then strong, i.e. unrestricted, and the distinction between
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open and closed terms no longer makes sense, because evaluation has to deal
with the issues of open terms even if terms are closed, when it enters function
bodies. We refer to this setting as the strong λ-calculus.

Historically, the study of strong and closed λ-calculi have followed orthogonal
approaches. Theoretical studies rather dealt with the strong λ-calculus, and it is
only since the seminal work of Abramsky and Ong [1] that theoreticians started
to take the closed case seriously. Dually, practical studies mostly ignored strong
evaluation, with the notable exception of Crégut [13] (1990) and some very recent
works [19,6,3]. Strong evaluation is nonetheless essential in the implementation
of proof assistants or higher-order logic programming, typically for type-checking
with dependent types as in the Edinburgh Logical Framework or the Calculus of
Constructions, as well as for unification in simply typed frameworks like λ-prolog.

Open Call-by-Value. In a very recent work [8], we advocated the relevance of the
open λ-calculus, a framework in between the closed and the strong ones, where
evaluation is weak but terms may be open. Its key property is that the strong
case can be described as the iteration of the open one into function bodies. The
same cannot be done with the closed λ-calculus because—as already pointed
out—entering into function bodies requires to deal with (locally) open terms.

The open λ-calculus did not emerge before because most theoretical studies
focus on the call-by-name strong λ-calculus, and in call-by-name the distinction
open/closed does not play an important role. Such a distinction, instead, is delicate
for call-by-value evaluation, where Plotkin’s original operational semantics [22]
is not adequate for open terms. This issue is discussed at length in [8], where
four extensions of Plotkin’s semantics to open terms are compared and shown to
be equivalent. That paper then introduces the expression Open Call-by-Value
(shortened Open CbV ) to refer to them as a whole, as well as Closed CbV and
Strong CbV to concisely refer to the closed and strong call-by-value λ-calculus.

The Fireball Calculus. The simplest presentation of Open CbV is the fireball
calculus λfire, obtained from the CbV λ-calculus by generalizing values into fireballs.
Dynamically, β-redexes are allowed to fire only when the argument is a fireball
(fireball is a pun on fire-able). The fireball calculus was introduced without a
name by Paolini and Ronchi Della Rocca [21,23], then rediscovered independently
first by Leroy and Grégoire [20], and then by Accattoli and Sacerdoti Coen [2].
Notably, on closed terms, λfire coincides with Plotkin’s (Closed) CbV λ-calculus.

Coq by Levels. In [20] (2002) Leroy and Grégoire used the fireball calculus to
improve the implementation of the Coq proof assistant. In fact, Coq rests on
Strong CbV, but Leroy and Grégoire design an abstract machine for the fireball
calculus (i.e. Open CbV) and then use it to evaluate Strong CbV by levels: the
machine is first executed at top level (that is, out of all abstractions), and then
re-launched recursively under abstractions. Their study is itself formalized in
Coq, but it lacks an estimation of the efficiency of the machine.

In order to continue our story some basic facts about cost models and abstract
machines have to be recalled (see [4] for a gentle tutorial).
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Interlude 1: Size Explosion. It is well-known that λ-calculi suffer from a degener-
acy called size explosion: there are families of terms whose size is linear in n, that
evaluate in n β-steps, and whose result has size exponential in n. The problem is
that the number of β-steps, the natural candidate as a time cost model, then
seems not to be a reasonable cost model, because it does not even account for
the time to write down the result of a computation—the macro-step character
of β-reduction seems to forbid to count 1 for each step. This is a problem that
affects all λ-calculi and all evaluation strategies.

Interlude 2: Reasonable Cost Models and Abstract Machines. Despite size explo-
sion, surprisingly, the number of β-steps often is a reasonable cost model—so
one can indeed count 1 for each β-step. There are no paradoxes: λ-calculi can
be simulated in alternative formalisms employing some form of sharing, such as
abstract machines. These settings manage compact representations of terms via
micro-step operations and produce compact representations of the result, avoiding
size explosion. Showing that a certain λ-calculus is reasonable usually is done by
simulating it with a reasonable abstract machine, i.e. a machine implementable
with overhead polynomial in the number of β-steps in the calculus. The design
of a reasonable abstract machine depends very much on the kind of λ-calculus
to be implemented, as different calculi admit different forms of size explosion
and/or require more sophisticated forms of sharing. For strategies in the closed
λ-calculus it is enough to use the ordinary technology for abstract machines, as
first shown by Blelloch and Greiner [12], and then by Sands, Gustavsson, and
Moran [24], and, with other techniques, by combining the results in Dal Lago
and Martini’s [15] and [14]. The case of the strong λ-calculus is subtler, and a
more sophisticated form of sharing is necessary, as first shown by Accattoli and
Dal Lago [7]. The topic of this paper is the study of reasonable machines for the
intermediate case of Open CbV.

Fireballs are Reasonable. In [2] Accattoli and Sacerdoti Coen study Open CbV
from the point of view of cost models. Their work provides 3 contributions:

1. Open Size Explosion: they show that Open CbV is subtler than Closed CbV
by exhibiting a form of size explosions that is not possible in Closed CbV,
making Open CbV closer to Strong CbV rather than to Closed CbV;

2. Fireballs are Reasonable: they show that the number of β-steps in the fireball
calculus is nonetheless a reasonable cost model by exhibiting a reasonable
abstract machine, called GLAMOUr, improving over Leroy and Grégoire’s
machine in [20] (see the conclusions for more on their machine);

3. And Even Efficient : they optimize the GLAMOUr into the Unchaining GLA-
MOUr, whose overhead is bilinear (i.e. linear in the number of β-steps and
the size of the initial term), that is the best possible overhead.

This Paper. Here we present two machines, the Easy GLAMOUr and the Fast
GLAMOUr, that are proved to be correct implementations of Open CbV and to
have a polynomial and bilinear overhead, respectively. Their study refines the
results of [2] along three axes:
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1. Simpler Machines: both the GLAMOUr and the Unchaining GLAMOUr of
[2] are sophisticated machines resting on a labeling of terms. The unchaining
optimizations of the second machine is also quite heavy. Both the Easy GLA-
MOUr and the Fast GLAMOUr, instead, do not need labels and the Fast
GLAMOUr is bilinear with no need of the unchaining optimization.

2. Simpler Analyses : the correctness and complexity analyses of the (Unchaining)
GLAMOUr are developed in [2] via an informative but complex decomposition
via explicit substitutions, by means of the distillation methodology [5]. Here,
instead, we decode the Easy and Fast GLAMOUr directly to the fireball
calculus, that turns out to be much simpler. Moreover, the complexity analysis
of the Fast GLAMOUr, surprisingly, turns out to be straightforward.

3. Modular Decomposition of the Overhead : we provide a fine analysis of how
different optimizations impact on the complexity of the overhead of abstract
machines for Open CbV. In particular, it turns out that one of the optimiza-
tions considered essential in [2], namely substituting abstractions on-demand,
is not mandatory for reasonable machines—the Easy GLAMOUr does not
implement it and yet it is reasonable. We show, however, that this is true only
as long as one stays inside Open CbV because the optimization is instead
mandatory for Strong CbV (seen by Grégoire and Leroy as Open CbV by
levels). To our knowledge substituting abstractions on-demand is an opti-
mization introduced in [7] and currently no proof assistant implements it.
Said differently, our work shows that the technology currently in use in proof
assistants is, at least theoretically, unreasonable.

Summing up, this paper does not improve the known bound on the overhead
of abstract machines for Open CbV, as the one obtained in [2] is already optimal.
Its contributions instead are a simplification and a finer understanding of the
subtleties of implementing Open CbV: we introduce simpler abstract machines
whose complexity analyses are elementary and carry a new modular view of how
different optimizations impact on the complexity of the overhead.

In particular, while [2] shows that Open CbV is subtler than Closed CbV,
here we show that Open CbV is simpler than Strong CbV, and that defining
Strong CbV as iterated Open CbV, as done by Grégoire and Leroy in [20], may
introduce an explosion of the overhead, if done naively.

A longer version of this paper is available on Arxiv [9]. It contains two
Appendices, one with a glossary of rewriting theory and one with omitted proofs.

2 The Fireball Calculus λfire & Open Size Explosion

In this section we introduce the fireball calculus, the presentation of Open CbV
we work with in this paper, and show the example of size explosion peculiar to
the open setting. Alternative presentations of Open CbV can be found in [8].

The Fireball Calculus. The fireball calculus λfire is defined in Fig. 1. The idea
is that the values of the call-by-value λ-calculus, given by abstractions and
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Terms t, u, s, r ::= x | λx.t | tu
Fireballs f, f ′, f ′′ ::= λx.t | i

Inert Terms i, i′, i′′ ::= xf1 . . . fn n ≥ 0
Evaluation Contexts E ::= 〈·〉 | tE | Et

Rule at Top Level Contextual closure
(λx.t)(λy.u) 7→βλ t{x�λy.u} E〈t〉 →βλ E〈u〉 if t 7→βλ u

(λx.t)i 7→βi t{x�i} E〈t〉 →βi E〈u〉 if t 7→βi u

Reduction →βf :=→βλ ∪ →βi

Fig. 1. The Fireball Calculus λfire

variables, are generalized to fireballs, by extending variables to more general
inert terms. Actually fireballs and inert terms are defined by mutual induction
(in Fig. 1). For instance, λx.y is a fireball as an abstraction, while x, y(λx.x), xy,
and (z(λx.x))(zz)(λy.(zy)) are fireballs as inert terms.

The main feature of inert terms is that they are open, normal, and that when
plugged in a context they cannot create a redex, hence the name (they are not
so-called neutral terms because they might have β-redexes under abstractions).
In Grégoire and Leroy’s presentation [20], inert terms are called accumulators
and fireballs are simply called values.

Terms are always identified up to α-equivalence and the set of free variables
of a term t is denoted by fv(t). We use t{x�u} for the term obtained by the
capture-avoiding substitution of u for each free occurrence of x in t.

Evaluation is given by call-by-fireball β-reduction →βf : the β-rule can fire,
lighting up the argument, only when it is a fireball (fireball is a catchier version
of fire-able term). We actually distinguish two sub-rules: one that lights up
abstractions, noted →βλ , and one that lights up inert terms, noted →βi (see
Fig. 1). Note that evaluation is weak (i.e. it does not reduce under abstractions).

Properties of the Calculus. A famous key property of Closed CbV (whose evalua-
tion is exactly →βλ) is harmony : given a closed term t, either it diverges or it
evaluates to an abstraction, i.e. t is βλ-normal iff t is an abstraction. The fireball
calculus satisfies an analogous property in the open setting by replacing abstrac-
tions with fireballs (Prop. 1.1). Moreover, the fireball calculus is a conservative
extension of Closed CbV: on closed terms it collapses on Closed CbV (Prop. 1.2).
No other presentation of Open CbV has these properties.

Proposition 1 (Distinctive Properties of λfire). Let t be a term.

1. Open Harmony: t is βf -normal iff t is a fireball.

2. Conservative Open Extension: t→βf u iff t→βλ u whenever t is closed.

The rewriting rules of λfire have also many good operational properties, studied
in [8] and summarized in the following proposition.

Proposition 2 (Operational Properties of λfire, [8]). The reduction →βf

is strongly confluent, and all βf -normalizing derivations d (if any) from a term
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t have the same length |d|βf , the same number |d|βλ of βλ-steps, and the same
number |d|βi of βi-steps.

Right-to-Left Evaluation. As expected from a calculus, the evaluation rule→βf of
λfire is non-deterministic, because in the case of an application there is no fixed
order in the evaluation of the left and right subterms. Abstract machines however
implement deterministic strategies. We then fix a deterministic strategy (which
fires βf -redexes from right to left and is the one implemented by the machines
of the next sections). By Prop. 2, the choice of the strategy does not impact on
existence of a result, nor on the result itself or on the number of steps to reach it.
It does impact however on the design of the machine, which selects βf -redexes
from right to left.

The right-to-left evaluation strategy →rβf is defined by closing the root rules
7→βλ and 7→βi in Fig. 1 by right contexts, a special kind of evaluation contexts
defined by R ::= 〈·〉 | tR | Rf . The next lemma ensures our definition is correct.

Lemma 3 (Properties of →rβf ). Let t be a term.

1. Completeness: t has →βf -redex iff t has a →rβf -redex.

2. Determinism: t has at most one →rβf -redex.

Example 4. Let t := (λz.z(yz))λx.x. Then, t →rβf (λx.x)(y λx.x) →rβf y λx.x,
where the final term y λx.x is a fireball (and βf -normal).

Open Size Explosion. Fireballs are delicate, they easily explode. The simplest
instance of open size explosion (not existing in Closed CbV) is a variation over
the famous looping term Ω := (λx.xx)(λx.xx)→βλ Ω →βλ . . .. In Ω there is an
infinite sequence of duplications. In the size exploding family there is a sequence
of n nested duplications. We define two families, the family {tn}n∈N of size
exploding terms and the family {in}n∈N of results of evaluating {tn}n∈N:

t0 := y tn+1 := (λx.xx)tn i0 := y in+1 := inin

We use |t| for the size of a term, i.e. the number of symbols to write it.

Proposition 5 (Open Size Explosion, [2]). Let n ∈ N. Then tn →n
βi
in,

moreover |tn| = O(n), |in| = Ω(2n), and in is an inert term.

Circumventing Open Size Explosion. Abstract machines implementing the substi-
tution of inert terms, such as the one described by Grégoire and Leroy in [20] are
unreasonable because for the term tn of the size exploding family they compute
the full result in. The machines of the next sections are reasonable because they
avoid the substitution of inert terms, that is justified by the following lemma.

Lemma 6 (Inert Substitutions Can Be Avoided). Let t, u be terms and
i be an inert term. Then, t→βf u iff t{x�i} →βf u{x�i}.

Lemma 6 states that the substitution of an inert term cannot create redexes,
which is why it can be avoided. For general terms, only direction ⇒ holds,
because substitution can create redexes, as in (xy){x�λz.z} = (λz.z)y. Direction
⇐, instead, is distinctive of inert terms, of which it justifies the name.
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3 Preliminaries on Abstract Machines, Implementations,
and Complexity Analyses

– An abstract machine M is given by states, noted s, and transitions between
them, noted  M;

– A state is given by the code under evaluation plus some data-structures;

– The code under evaluation, as well as the other pieces of code scattered in
the data-structures, are λ-terms not considered modulo α-equivalence;

– Codes are over-lined, to stress the different treatment of α-equivalence;

– A code t is well-named if x may occur only in u (if at all) for every sub-code
λx.u of t;

– A state s is initial if its code is well-named and its data-structures are empty;

– Therefore, there is a bijection ·◦ (up to α) between terms and initial states,
called compilation, sending a term t to the initial state t◦ on a well-named
code α-equivalent to t;

– An execution is a (potentially empty) sequence of transitions t◦0  
∗
M s from

an initial state obtained by compiling an (initial) term t0;

– A state s is reachable if it can be obtained as the end state of an execution;

– A state s is final if it is reachable and no transitions apply to s;

– A machine comes with a map · from states to terms, called decoding, that on
initial states is the inverse (up to α) of compilation, i.e. t◦ = t for any term t;

– A machine M has a set of β-transitions, whose union is noted  β , that are
meant to be mapped to β-redexes by the decoding, while the remaining
overhead transitions, denoted by  o, are mapped to equalities;

– We use |ρ| for the length of an execution ρ, and |ρ|β for the number of
β-transitions in ρ.

Implementations. For every machine one has to prove that it correctly implements
the strategy in the λ-calculus it was conceived for. Our notion, tuned towards
complexity analyses, requires a perfect match between the number of β-steps of
the strategy and the number of β-transitions of the machine execution.

Definition 7 (Machine Implementation). A machine M implements a strat-
egy → on λ-terms via a decoding · when given a λ-term t the following holds:

1. Executions to Derivations: for any M-execution ρ : t◦  ∗M s there exists a
→-derivation d : t→∗ s.

2. Derivations to Executions: for every →-derivation d : t→∗ u there exists a
M-execution ρ : t◦  ∗M s such that s = u.

3. β-Matching: in both previous points the number |ρ|β of β-transitions in ρ is
exactly the length |d| of the derivation d, i.e. |d| = |ρ|β.

Sufficient Condition for Implementations. The proofs of implementation theorems
tend to follow always the same structure, based on a few abstract properties
collected here into the notion of implementation system.
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Definition 8 (Implementation System). A machine M, a strategy →, and a
decoding · form an implementation system if the following conditions hold:

1. β-Projection: s β s
′ implies s→ s′;

2. Overhead Transparency: s o s
′ implies s = s′;

3. Overhead Transitions Terminate:  o terminates;

4. Determinism: both M and → are deterministic;

5. Progress: M final states decode to →-normal terms.

Theorem 9 (Sufficient Condition for Implementations). Let (M,→, ·) be
an implementation system. Then, M implements → via ·.

The proof of Thm. 9 is a clean and abstract generalization of the concrete
reasoning already at work in [5,2,3,4].

Parameters for Complexity Analyses. By the derivations-to-executions part of
the implementation (Point 2 in Def. 7), given a derivation d : t0 →n u there is a
shortest execution ρ : t◦0  

∗
M s such that s = u. Determining the complexity of a

machine M amounts to bound the complexity of a concrete implementation of ρ
on a RAM model, as a function of two fundamental parameters:

1. Input : the size |t0| of the initial term t0 of the derivation d;

2. β-Steps/Transitions: the length n = |d| of the derivation d, that coincides
with the number |ρ|β of β-transitions in ρ by the β-matching requirement for
implementations (Point 3 in Def. 7).

A machine is reasonable if its complexity is polynomial in |t0| and |ρ|β , and it is
efficient if it is linear in both parameters. So, a strategy is reasonable (resp. effi-
cient) if there is a reasonable (resp. efficient) machine implementing it. In Sect. 4-5
we study a reasonable machine implementing right-to-left evaluation→rβf in λfire,
thus showing that it is a reasonable strategy. In Sect. 6 we optimize the machine to
make it efficient. By Prop. 2, this implies that every strategy in λfire is efficient.

Recipe for Complexity Analyses. For complexity analyses on a machine M, overhead
transitions  o are further separated into two classes:

1. Substitution Transitions  s: they are in charge of the substitution process;

2. Commutative Transitions  c: they are in charge of searching for the next β
or substitution redex to reduce.

Then, the estimation of the complexity of a machine is done in three steps:

1. Number of Transitions : bounding the length of the execution ρ, by bounding
the number of overhead transitions. This part splits into two subparts:

i. Substitution vs β: bounding the number |ρ|s of substitution transitions in
ρ using the number of β-transitions;

ii. Commutative vs Substitution: bounding the number |ρ|c of substitution
transitions in ρ using the size of the input and |ρ|s; the latter—by the
previous point—induces a bound with respect to β-transitions.

2. Cost of Single Transitions: bounding the cost of concretely implementing a
single transition of M. Here it is usually necessary to go beyond the abstract
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φ ::= λx.u@ε | x@π E ::= ε | [x�φ] :E
π ::= ε | φ : π s ::= (D, t, π, E)
D ::= ε | D : t♦π

ε := 〈·〉 t

→

ε := t t

→

[x�φ]:E := t{x�φ}
→

E

φ : π := 〈〈·〉φ〉π Cs := D〈π〉

→

E

t@π := 〈t〉π s := D〈〈t〉π〉

→

E = Cs〈t
→

E〉
D : t♦π := D〈〈t〈·〉〉π〉 where s = (D, t, π,E)

Dump Code Stack Global Env Dump Code Stack Global Env

D tu π E  c1 D : t♦π u ε E
D : t♦π λx.u ε E  c2 D t λx.u@ε : π E
D : t♦π x π′ E  c3 D t x@π′ : π E

if E(x) = ⊥ or E(x) = y@π′′

D λx.t φ :π E  β D t π [x�φ]E
D x π E1[x�λy.u@ε]E2  s D (λy.u)α π E1[x�λy.u@ε]E2

where (λy.u)α is any well-named code α-equivalent to λy.u such that its
bound names are fresh with respect to those in D, π and E1[x�λy.u@ε]E2.

Fig. 2. Easy GLAMOUr machine: data-structures (stacks π, dumps D, global env. E,
states s), unfolding t↓E , decoding · (stacks are decoded to contexts in postfix notation
for plugging, i.e. we write 〈t〉π rather than π〈t〉), and transitions.

level, making some (high-level) assumption on how codes and data-structure
are concretely represented. Commutative transitions are designed on purpose
to have constant cost. Each substitution transition has a cost linear in the
size of the initial term thanks to an invariant (to be proved) ensuring that
only subterms of the initial term are duplicated and substituted along an
execution. Each β-transition has a cost either constant or linear in the input.

3. Complexity of the Overhead : obtaining the total bound by composing the first
two points, that is, by taking the number of each kind of transition times the
cost of implementing it, and summing over all kinds of transitions.

(Linear) Logical Reading. Let us mention that our partitioning of transitions into
β, substitution, and commutative ones admits a proof-theoretical view, as machine
transitions can be seen as cut-elimination steps [11,5]. Commutative transitions
correspond to commutative cases, while β and substitution are principal cases.
Moreover, in linear logic the β transition corresponds to the multiplicative case
while the substitution transition to the exponential one. See [5] for more details.

4 Easy GLAMOUr

In this section we introduce the Easy GLAMOUr, a simplified version of the
GLAMOUr machine from [2]: unlike the latter, the Easy GLAMOUr does not
need any labeling of codes to provide a reasonable implementation.

With respect to the literature on abstract machines for CbV, our machines
are unusual in two respects. First, and more importantly, they use a single global
environment instead of closures and local environments. Global environments are
used in a minority of works [17,24,16,5,2,6,3] and induce simpler, more abstract
machines where α-equivalence is pushed to the meta-level (in the operation t

α
in
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 s in Fig. 2-3). This on-the-fly α-renaming is harmless with respect to complexity
analyses, see also discussions in [5,4]. Second, argument stacks contain pairs of a
code and a stack, to implement some of the machine transitions in constant time.

Background. GLAMOUr stands for Useful (i.e. optimized to be reasonable) Open
(reducing open terms) Global (using a single global environment) LAM, and LAM
stands for Leroy Abstract Machine, an ordinary machine implementing right-
to-left Closed CbV, defined in [5]. In [2] the study of the GLAMOUr was done
according to the distillation approach of [5], i.e. by decoding the machine towards
a λ-calculus with explicit substitutions. Here we do not follow the distillation
approach, we decode directly to λfire, which is simpler.

Machine Components. The Easy GLAMOUr is defined in Fig. 2. A machine
state s is a quadruple (D, t, π,E) given by:

– Code t: a term not considered up to α-equivalence, which is why it is over-lined;

– Argument Stack π: it contains the arguments of the current code. Note that
stacks items φ are pairs x@π and λx.u@ε. These pairs allow to implement
some of the transitions in constant time. The pair x@π codes the term 〈x〉π
(defined in Fig. 2—the decoding is explained below) that would be obtained
by putting x in the context obtained by decoding the argument stack π. The
pair λx.u@ε is used to inject abstractions into pairs, so that items φ can be
uniformly seen as pairs t@π of a code t and a stack π.

– Dump D: a second stack, that together with the argument stack π is used to
walk through the code and search for the next redex to reduce. The dump is
extended with an entry t♦π every time evaluation enters in the right subterm
u of an application tu. The entry saves the left part t of the application and
the current stack π, to restore them when the evaluation of the right subterm
u is over. The dump D and the stack π decode to an evaluation context.

– Global Environment E: a list of explicit (i.e. delayed) substitutions storing
substitutions generated by the redexes encountered so far. It is used to imple-
ment micro-step evaluation (i.e. the substitution for one variable occurrence
at a time). We write E(x) = ⊥ if in E there are no entries of the form [x�φ].
Often [x�φ]E stands for [x�φ] :E.

Transitions. In the Easy GLAMOUr there is one β-transition whereas overhead
transitions are divided up into substitution and commutative transitions.

– β-Transition  β : it morally fires a →rβf -redex, the one corresponding to
(λx.t)φ, except that it puts a new delayed substitution [x�φ] in the environ-
ment instead of doing the meta-level substitution t{x�φ} of the argument in
the body of the abstraction;

– Substitution Transition  s: it substitutes the variable occurrence under evalu-
ation with a (properly α-renamed copy of a) code from the environment. It is a
micro-step variant of meta-level substitution. It is invisible on λfire because the
decoding produces the term obtained by meta-level substitution, and so the
micro work done by  s cannot be observed at the coarser granularity of λfire.
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– Commutative Transitions c: they locate and expose the next redex according
to the right-to-left strategy, by rearranging the data-structures. They are
invisible on the calculus. The commutative rule  c1 forces evaluation to be
right-to-left on applications: the machine processes first the right subterm u,
saving the left sub-term t on the dump together with its current stack π. The
role of  c2 and  c3 is to backtrack to the entry on top of the dump. When
the right subterm, i.e. the pair t@π of current code and stack, is finally in
normal form, it is pushed on the stack and the machine backtracks.

O for Open: note condition E(x) = ⊥ in  c3—that is how the Easy GLAMOUr
handles open terms. U for Useful : note condition E(x) = y@π′′ in  c3—inert
terms are never substituted, according to Lemma 6. Removing the useful side-
condition one recovers Grégoire and Leroy’s machine [20]. Note that terms
substituted by  s are always abstractions and never variables—this fact will
play a role in Sect. 6. Garbage Collection: it is here simply ignored, or, more
precisely, it is encapsulated at the meta-level, in the decoding function. It is
well-known that this is harmless for the study of time complexity.

Compiling, Decoding and Invariants. A term t is compiled to the machine initial
state t◦ = (ε, t, ε, ε), where t is a well-named term α-equivalent to t. Conversely,
every machine state s decodes to a term s (see the top right part of Fig. 2),
having the shape Cs〈t

→
E〉, where t

→

E is a λ-term, obtained by applying to the
code the meta-level substitution

→

E induced by the global environment E, and
Cs is an evaluation context, obtained by decoding the stack π and the dump
D and then applying

→

E . Note that, to improve readability, stacks are decoded
to contexts in postfix notation for plugging, i.e. we write 〈t〉π rather than π〈t〉
because π is a context that puts arguments in front of t.

Example 10. To have a glimpse of how the Easy GLAMOUr works, let us show
how it implements the derivation t := (λz.z(yz))λx.x→2

rβf
y λx.x of Ex. 4:

Dump Code Stack Global Environment
ε (λz.z(yz))λx.x ε ε  c1

λz.z(yz)♦ε λx.x ε ε  c2

ε λz.z(yz) λx.x@ε ε  β

ε z(yz) ε [z�λx.x@ε]  c1

z♦ε yz ε [z�λx.x@ε]  c1

z♦ε : y♦ε z ε [z�λx.x@ε]  s

z♦ε : y♦ε λx′.x′ ε [z�λx.x@ε]  c2

z♦ε y λx′.x′@ε [z�λx.x@ε]  c3

ε z y@(λx′.x′@ε) [z�λx.x@ε]  s

ε λx′′.x′′ y@(λx′.x′@ε) [z�λx.x@ε]  β

ε x′′ ε [x′′�y@(λx′.x′@ε)] : [z�λx.x@ε]

Note that the initial state is the compilation of the term t, the final state decodes
to the term y λx.x, and the two β-transitions in the execution correspond to the
two →rβf -steps in the derivation considered in Ex. 4.

The study of the Easy GLAMOUr machine relies on the following invariants.
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Lemma 11 (Easy GLAMOUr Qualitative Invariants). Let s = (D, t, π,E)
be a reachable state. Then:

1. Name:

1. Explicit Substitution: if E = E′[x�u]E′′ then x is fresh wrt u and E′′;

2. Abstraction: if λx.u is a subterm of D, t, π, or E, x may occur only in u;

3. Fireball Item: φ and φ

→

E are inert terms if φ = x@π′, and abstractions
otherwise, for every item φ in π, in E, and in every stack in D;

4. Contextual Decoding: Cs = D〈π〉

→

E is a right context.

Implementation Theorem. The invariants are used to prove the implementation
theorem by proving that the hypotheses of Thm. 9 hold, that is, that the Easy
GLAMOUr, →rβf and · form an implementation system.

Theorem 12 (Easy GLAMOUr Implementation). The Easy GLAMOUr
implements right-to-left evaluation →rβf in λfire (via the decoding ·).

5 Complexity Analysis of the Easy GLAMOUr

The analysis of the Easy GLAMOUr is done according to the recipe given at the
end of Sect. 3. The result (see Thm. 17 below) is that the Easy GLAMOUr is
linear in the number |ρ|β of β-steps/transitions and quadratic in the size |t0| of

the initial term t0, i.e. its overhead has complexity O((1 + |ρ|β) · |t0|2).

The analysis relies on a quantitative invariant, the crucial subterm invariant,
ensuring that  s duplicates only subterms of the initial term, so that the cost of
duplications is connected to one of the two parameters for complexity analyses.

Lemma 13 (Subterm Invariant). Let ρ : t◦0  
∗ (D, t, π,E) be an Easy GLA-

MOUr execution. Every subterm λx.u of D, t, π, or E is a subterm of t0.

Intuition About Complexity Bounds. The number |ρ|s of substitution transitions
 s depends on both parameters for complexity analyses, the number |ρ|β of
β-transitions and the size |t0| of the initial term. Dependency on |ρ|β is standard,
and appears in every machine [12,24,5,2,6,3]—sometimes it is quadratic, here
it is linear, in Sect. 6 we come back to this point. Dependency on |t0| is also
always present, but usually only for the cost of a single  s transition, since only
subterms of t0 are duplicated, as ensured by the subterm invariant. For the Easy
GLAMOUr, instead, also the number of  s transitions depends—linearly—on
|t0|: this is a side-effect of dealing with open terms. Since both the cost and the
number of  s transitions depend on |t0|, the dependency is quadratic.

The following family of terms shows the dependency on |t0| in isolation (i.e.,
with no dependency on |ρ|β). Let rn := λx.(. . . ((y x)x) . . .)x︸ ︷︷ ︸

n

and consider:

un := rnrn = (λx.(. . . ((y

n︷ ︸︸ ︷
x)x) . . .)x)rn →βλ (. . . ((y

n︷ ︸︸ ︷
rn)rn) . . .)rn . (1)
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Forgetting about commutative transitions, the Easy GLAMOUr would evaluate un
with one β-transition β and n substitution transitions s, each one duplicating
rn, whose size (as well as the size of the initial term un) is linear in n.

The number |ρ|c of commutative transitions  c, roughly, is linear in the
amount of code involved in the evaluation process. This amount is given by
the initial code plus the code produced by duplications, that is bounded by the
number of substitution transitions times the size of the initial term. The number
of commutative transitions is then O((1+ |ρ|β) · |t0|2). Since each one has constant
cost, this is also a bound to their cost.

Number of Transitions 1: Substitution vs β Transitions. The number |ρ|s of
substitution transitions is proven (see Cor. 15 below) to be bilinear, i.e. linear in
|t0| and |ρ|β , by means of a measure.

The free size | · |free of a code counts the number of free variable occurrences
that are not under abstractions. It is defined and extended to states as follows:

|x|free := 1 |ε|free := 0

|λy.u|free := 0 |φ : π|free := |φ|free + |π|free

|tu|free := |t|free + |u|free |D : (t, π)|free := |t|free + |π|free + |D|free

|(D, t, π,E)|free := |D|free + |t|free + |π|free.

Lemma 14 (Free Occurrences Invariant). Let ρ : t◦0  
∗ s be an Easy GLA-

MOUr execution. Then, |s|free ≤ |t0|free + |t0| · |ρ|β − |ρ|s.

Corollary 15 (Bilinear Number of Substitution Transitions). Let ρ :
t◦0  

∗ s be an Easy GLAMOUr execution. Then, |ρ|s ≤ (1 + |ρ|β) · |t0|.

Number of Transitions 2: Commutative vs Substitution Transitions. The bound
on the number |ρ|c of commutative transitions is found by means of a (different)
measure on states. The bound is linear in |t0| and in |ρ|s, which means—by
applying the result just obtained in Cor. 15—quadratic in |t0| and linear in |ρ|β .

The commutative size of a state is defined as |(D, t, π,E)|c := |t|+Σu♦π′∈D|u|,
where |t| is the usual size of codes.

Lemma 16 (Number of Commutative Transitions). Let ρ : t◦0  
∗ s be

an Easy GLAMOUr execution. Then |ρ|c ≤ |ρ|c + |s|c ≤ (1 + |ρ|s) · |t0| ∈
O((1 + |ρ|β) · |t0|2).

Cost of Single Transitions. We need to make some hypotheses on how the Easy
GLAMOUr is going to be itself implemented on RAM:

1. Variable (Occurrences) and Environment Entries: a variable is a memory
location, a variable occurrence is a reference to it, and an environment entry
[x�φ] is the fact that the location associated to x contains φ.

2. Random Access to Global Environments : the environment E can be accessed in
O(1) (in  s) by just following the reference given by the variable occurrence
under evaluation, with no need to access E sequentially, thus ignoring its list
structure (used only to ease the definition of the decoding).
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Dump Code Stack Global Env Dump Code Stack Global Env

D tu π E  c1 D : t♦π u ε E
D : t♦π λx.u ε E  c2 D t λx.u@ε : π E
D : t♦π x π′ E  c3 D t x@π′ : π E

if E(x) = ⊥ or E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε)
D λx.t y@ε :π E  β1 D t{x�y} π E
D λx.t φ : π E  β2 D t π [x�φ]E

if φ 6= y@ε
D x φ : π E1[x�λy.u@ε]E2  s D (λy.u)α φ : π E1[x�λy.u@ε]E2

Fig. 3. Fast GLAMOUr (data-structures, decoding, and (λy.u)α defined as in Fig. 2).

With these hypotheses it is clear that β and overhead transitions can be
implemented in O(1). The substitution transition  s needs to copy a code from
the environment (the renaming t

α
) and can be implemented in O(|t0|), as the

subterm to copy is a subterm of t0 by the subterm invariant (Lemma 13) and
the environment can be accessed in O(1).

Summing Up. By putting together the bounds on the number of transitions with
the cost of single transitions we obtain the overhead of the machine.

Theorem 17 (Easy GLAMOUr Overhead Bound). Let ρ : t◦0  
∗ s be an

Easy GLAMOUr execution. Then ρ is implementable on RAM in O((1 + |ρ|β) ·
|t0|2), i.e. linear in the number of β-transitions (aka the length of the derivation
d : t0 →∗rβf s implemented by ρ) and quadratic in the size of the initial term t0.

6 Fast GLAMOUr

In this section we optimize the Easy GLAMOUr, obtaining a machine, the Fast
GLAMOUr, whose dependency from the size of the initial term is linear, instead
of quadratic, providing a bilinear—thus optimal—overhead (see Thm. 21 below
and compare it with Thm. 17 on the Easy GLAMOUr). We invite the reader to go
back to equation (1) at page 12, where the quadratic dependency was explained.
Note that in that example the substitutions of rn do not create βf -redexes, and
so they are useless. The Fast GLAMOUr avoids these useless substitutions and
it implements the example with no substitutions at all.

Optimization: Abstractions On-Demand. The difference between the Easy GLA-
MOUr and the machines in [2] is that, whenever the former encounters a variable
occurrence x bound to an abstraction λy.t in the environment, it replaces x with
λy.t, while the latter are more parsimonious. They implement an optimization
that we call substituting abstractions on-demand : x is replaced by λy.t only if
this is useful to obtain a β-redex, that is, only if the argument stack is non-empty.
The Fast GLAMOUr, defined in Fig. 3, upgrades the Easy GLAMOUr with
substitutions of abstractions on-demand—note the new side-condition for  c3

and the non-empty stack in  s.
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Abstractions On-Demand and the Substitution of Variables. The new optimization
however has a consequence. To explain it, let us recall the role of another
optimization, no substitution of variables. In the Easy GLAMOUr, abstractions
are at depth 1 in the environment: there cannot be chains of renamings, i.e. of
substitutions of variables for variable, ending in abstractions (so, there cannot be
chains like [x�y@ε][y�z@ε][z�λz′.t@ε]). This property implies that the overhead
is linear in |ρ|β and it is induced by the fact that variables cannot be substituted.
If variables can be substituted then the overhead becomes quadratic in |ρ|β—this
is what happens in the GLAMOUr machine in [2]. The relationship between
substituting variables and a linear/quadratic overhead is studied in-depth in [10].

Now, because the Fast GLAMOUr substitutes abstractions on-demand, vari-
able occurrences that are not applied are not substituted by abstractions. The
question becomes what to do when the code is an abstraction λx.t and the top of
the stack argument φ is a simple variable occurrence φ = y@ε (potentially bound
to an abstraction in the environment E) because if one admits that [x�y@ε] is
added to E then the depth of abstractions in the environment may be arbitrary
and so the dependency on |ρ|β may be quadratic, as in the GLAMOUr. There are
two possible solutions to this issue. The complex one, given by the Unchaining
GLAMOUr in [2], is to add labels and a further unchaining optimization. The
simple one is to split the β-transition in two, handling this situation with a new
rule that renames x as y in the code t without touching the environment—this
exactly what the Fast GLAMOUr does with  β1

and  β2
. The consequence is

that abstractions stay at depth 1 in E, and so the overhead is indeed bilinear.
The simple solution is taken from Sands, Gustavsson, and Moran’s [24], where

they use it on a call-by-name machine. Actually, it repeatedly appears in the
literature on abstract machines often with reference to space consumption and
space leaks, for instance in Wand’s [26], Friedman et al.’s [18], and Sestoft’s [25].

Fast GLAMOUr. The machine is in Fig. 3. Its data-structures, compiling and
decoding are exactly as for the Easy GLAMOUr.

Example 18. Let us now show how the derivation t := (λz.z(yz))λx.x →2
rβf

y λx.x of Ex. 4 is implemented by the Fast GLAMOUr. The execution is similar
to that of the Easy GLAMOUr in Ex. 10, since they implement the same derivation
and hence have the same initial state. In particular, the first five transitions in
the Fast GLAMOUr (omitted here) are the same as in the Easy GLAMOUr (see
Ex. 10 and replace  β with  β2). Then, the Fast GLAMOUr executes:

Dump Code Stack Global Environment
z♦ε : y♦ε z ε [z�λx.x@ε]  c3

z♦ε y z@ε [z�λx.x@ε]  c3

ε z y@(z@ε) [z�λx.x@ε]  s

ε λx′′.x′′ y@(z@ε) [z�λx.x@ε]  β2

ε x′′ ε [x′′�y@(z@ε)] : [z�λx.x@ε]

The Fast GLAMOUr executes only one substitution transition (the Easy GLA-
MOUr takes two) since the replacement of z with λx.x from the environment is on-
demand (i.e. useful to obtain a β-redex) only for the first occurrence of z in z(yz).
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The Fast GLAMOUr satisfies the same invariants (the qualitative ones—the
fireball item is slightly different—as well as the subterm one, see [9]) and also
forms an implementation system with respect to →rβf and ·. Therefore,

Theorem 19 (Fast GLAMOUr Implementation). The Fast GLAMOUr
implements right-to-left evaluation →rβf in λfire (via the decoding ·).

Complexity Analysis. What changes is the complexity analysis, that, surprisingly,
is simpler. First, we focus on the number of overhead transitions. The substitution
vs β transitions part is simply trivial. Note that a substitution transition  s

is always immediately followed by a β-transition, because substitutions are
done only on-demand—therefore, |ρ|s ≤ |ρ|β + 1. It is easy to remove the +1:
executions must have a  β2 transition before any substitution one, otherwise
the environment is empty and no substitutions are possible—thus |ρ|s ≤ |ρ|β .

For the commutative vs substitution transitions the exact same measure and
the same reasoning of the Easy GLAMOUr provide the same bound, namely
|ρ|c ≤ (1 + |ρ|s) · |t0|. What improves is the dependency of the commutatives from
β-transitions (obtained by substituting the bound for substitution transitions),
that is now linear because so is that of substitutions—so, |ρ|c ≤ (1 + |ρ|β) · |t0|.

Lemma 20 (Number of Overhead Transitions). Let ρ : t◦0  
∗ s be a Fast

GLAMOUr execution. Then,

1. Substitution vs β Transitions: |ρ|s ≤ |ρ|β.

2. Commutative vs Substitution Transitions: |ρ|c ≤ (1+|ρ|s)·|t0| ≤ (1+|ρ|β)·|t0|.

Cost of Single Transitions and Global Overhead. For the cost of single transitions,
note that  c and  β2

have (evidently) cost O(1) while  s and  β1
have cost

O(|t0|) by the subterm invariant. Then we can conclude with

Theorem 21 (Fast GLAMOUr Bilinear Overhead). Let ρ : t◦0  
∗ s be a

Fast GLAMOUr execution. Then ρ is implementable on RAM in O((1 + |ρ|β) ·
|t0|), i.e. linear in the number of β-transitions (aka the length of the derivation
d : t0 →∗rβf s implemented by ρ) and the size of the initial term.

7 Conclusions

Modular Overhead. The overhead of implementing Open CbV is measured with
respect to the size |t0| of the initial term and the number n of β-steps. We showed
that its complexity depends crucially on three choices about substitution.

The first is whether to substitute inert terms that are not variables. If they
are substituted, as in Grégoire and Leroy’s machine [20], then the overhead is
exponential in |t0| because of open size explosion (Prop. 5) and the implementation
is then unreasonable. If they are not substituted, as in the machines studied here
and in [2], then the overhead is polynomial.

The other two parameters are whether to substitute variables, and whether
abstractions are substituted whenever or only on-demand, and they give rise to
the following table of machines and reasonable overheads:
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Sub of Abs Whenever Sub of Abs On-Demand

Sub of Variables Slow GLAMOUr GLAMOUr
O((1 + n2) · |t0|2) O((1 + n2) · |t0|)

No Sub of Variables Easy GLAMOUr Fast / Unchaining GLAMOUr
O((1 + n) · |t0|2) O((1 + n) · |t0|)

The Slow GLAMOUr has been omitted for lack of space, because it is slow and
involved, as it requires the labeling mechanism of the (Unchaining) GLAMOUr
developed in [2]. It is somewhat surprising that the Fast GLAMOUr presented
here has the best overhead and it is also the easiest to analyze.

Abstractions On-Demand: Open CbV is simpler than Strong CbV. We explained
that Grégoire and Leroy’s machine for Coq as described in [20] is unreasonable.
Its actual implementation, on the contrary, does not substitute non-variable inert
terms, so it is reasonable for Open CbV. None of the versions, however, substitutes
abstractions on-demand (nor, to our knowledge, does any other implementation),
despite the fact that it is a necessary optimization in order to have a reasonable
implementation of Strong CbV, as we now show. Consider the following size
exploding family (obtained by applying sn to the identity I := λx.x), from [4]:

s1 := λx.λy.(yxx) sn+1 := λx.(sn(λy.(yxx))) r0 := I rn+1 := λy.(yrnrn)

Proposition 22 (Abstraction Size Explosion). Let n>0. Then snI →n
βλ
rn.

Moreover, |snI| = O(n), |rn| = Ω(2n), snI is closed, and rn is normal.

The evaluation of snI produces 2n non-applied copies of I (in rn), so a strong
evaluator not substituting abstractions on-demand must have an exponential
overhead. Note that evaluation is weak but the 2n copies of I are substituted under
abstraction: this is why machines for Closed and Open CbV can be reasonable
without substituting abstractions on-demand.

The Danger of Iterating Open CbV Naively. The size exploding example in
Prop. 22 also shows that iterating reasonable machines for Open CbV is subtle,
as it may induce unreasonable machines for Strong CbV, if done naively. Evalu-
ating Strong CbV by iterating the Easy GLAMOUr (that does not substitute
abstractions on-demand), indeed, induces an exponential overhead, while iterating
the Fast GLAMOUr provides an efficient implementation.
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