N

HAL

open science

Environments and the Complexity of Abstract Machines.

Beniamino Accattoli, Bruno Barras

» To cite this version:

Beniamino Accattoli, Bruno Barras. Environments and the Complexity of Abstract Machines.. The
19th International Symposium on Principles and Practice of Declarative Programming, Oct 2017,

Namur, Belgium. 10.1145/3131851.3131855 .

hal-01675358

HAL Id: hal-01675358
https://hal.science/hal-01675358

Submitted on 4 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01675358
https://hal.archives-ouvertes.fr

Environments and the Complexity of Abstract Machines

Beniamino Accattoli
INRIA, UMR 7161, LIX, Ecole Polytechnique
beniamino.accattoli@inria.fr

ABSTRACT

Abstract machines for functional languages rely on the notion of
environment, a data structure storing the previously encountered
and delayed beta-redexes. This paper provides a close analysis of
the different approaches to define and implement environments.
There are two main styles. The most common one is to have many
local environments, one for every piece of code in the data struc-
tures of the machine. A minority of works instead uses a single
global environment. Up to now, the two approaches have been
considered equivalent, in particular at the level of the complexity of
the overhead: they have both been used to obtain bilinear bounds,
that is, linear in the number of beta steps and in the size of the
initial term.

We start by having a close look on global environments and
how to implement them. Then we show that local environments
admit implementations that are asymptotically faster than global
environments, lowering the dependency from the size of the initial
term from linear to logarithmic, thus improving the bounds in the
literature. We then focus on a third style, split environments, that
are in between local and global ones, and have the benefits of both.
Finally, we provide a call-by-need machine with split environments
for which we prove the new improved bounds on the overhead.

CCS CONCEPTS

» Theory of computation — Lambda calculus; Abstract ma-
chines; Operational semantics; « Software and its engineering
— Functional languages;

KEYWORDS

A-calculus, abstract machines, complexity, implementations, cost
models, call-by-need, Coq

ACM Reference Format:

Beniamino Accattoli and Bruno Barras. 2017. Environments and the Com-
plexity of Abstract Machines. In Proceedings of PPDP’17, Namur, Belgium,
October 9-11, 2017, 13 pages.

https://doi.org/10.1145/3131851.3131855

This work is part of a wider research effort, the COCA HOLA
project [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPDP’17, October 9-11, 2017, Namur, Belgium

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5291-8/17/10...$15.00
https://doi.org/10.1145/3131851.3131855

Bruno Barras
INRIA, UMR 7161, LIX, Ecole Polytechnique
bruno.barras@inria.fr

1 INTRODUCTION

Functional programming languages and proof assistants are based
on the A-calculus, that in turn rests on a powerful computational
rule, f-reduction. Its power is well expressed by a degeneracy
known as size explosion: there are programs whose size can grow
exponentially with the number of f-steps. In practice, then, -
reduction is never implemented as it is specified in the A-calculus.
The rule is decomposed, and the process of substitution on which
it is based is delayed and performed in micro steps and on-demand:
implementations replace only one variable occurrence at the time
(micro steps) and only when the value of such an occurrence is
needed for the evaluation to continue (on-demand).

Environments. Implementation schemas are called abstract ma-
chines, and they usually rely on a data structure called environment,
storing the previously encountered and delayed f-redexes. Most
of the literature on abstract machines relies on a style of environ-
ments that we like to call local, in which every piece of code in the
machine is paired with its own environment, forming a closure—as
in Krivine Abstract Machine [30], for instance. Other styles exist,
however. A minority of works [3-5, 7, 9, 22, 24, 29, 38, 39] rather
employs a single global environment, and the literature contains
also an example of a mixed style due to Sestoft [39], that we like to
call split environment. In this paper we study the features and the
issues of these notions of environment with respect to their com-
putation complexity, also discussing how they can be concretely
implemented.

Roughly, local environments allow to avoid @-renaming, while
global environments require @-renaming but allow for more shar-
ing, and are essential to implement call-by-need evaluation. Split
environments are a technique combining the two. To the best of
our knowledge, these approaches are considered equivalently effi-
cient. Here we show that in fact local environments admit a faster
implementation, that can also be employed with split environments.

The complexity of abstract machines. There is a huge literature
on abstract machines, but, apart from two key but isolated works
by Blelloch and Greiner [17] and by Sands, Gustavsson, and Moran
[38], complexity analyses of abstract machines have mostly been
neglected. Motivated by recent advances on reasonable cost mod-
els for the A-calculus by Accattoli and Dal Lago [10], in the last
few years Accattoli and coauthors (Barenbaum, Guerrieri, Mazza,
Sacerdoti Coen) [3-5, 7, 9, 11] have been developing a complexity-
based theory of abstract machines, in which different techniques,
approaches, and optimizations are classified depending on the com-
plexity of their overhead. This paper belongs to this line of research,
and at the same time it is the first step in a new direction.

PPDP’17, October 9-11, 2017, Namur, Belgium

Coq. The abstract machine at work in the kernel of Coq! [19] has
been designed and partially studied by Barras in his PhD thesis [16],
and provides a lightweight approach compared to the compilation
scheme by Grégoire and Leroy described in [27]. It is used to decide
the convertibility of terms, which is the bottleneck of the type-
checking (and thus proof-checking) algorithm. It is at the same
time one of the most sophisticated and one of the most used ab-
stract machines for the A-calculus. With this paper the authors
initiate a research program aimed at developing the complexity
analysis of the Coq main abstract machine. The goal is to prove
it reasonable, that is, to show that the overhead of the machine is
polynomial in the number of -steps and in the size of the initial
term, and eventually design a new machine along the way, if the
existing one turns out to be unreasonable. Such a goal is challenging
for various reason. For instance, the machine implements strong
(i.e. under abstraction) call-by-need evaluation, whose formal op-
erational semantics, due to Balabonski, Barenbaum, Bonelli, and
Kesner, is finding its way into a published form just now [15]. An-
other reason is that it implements a language that is richer than
the A-calculus, see also the companion paper [6].

This paper. In this first step of our program, the aim is to provide
a foundation for the unusual split environments at work in Barras’
implementation. They were already used by Sestoft in [39] to de-
scribe a call-by-need abstract machine—our study can in fact be
seen as a rational reconstruction and analysis of Sestoft’s machine.
The understanding of split environments for call-by-need is here
built incrementally, by providing a fine analysis of the difference
between local and global environments, of their implementations,
and of their complexities. In particular, while the best implementa-
tion of call-by-need requires split environments, the properties of
the different notions of environment do not depend on the evalua-
tion strategy, and so we first present them in the simpler and more
widely known setting of call-by-name evaluation. At the end of the
paper, however, we apply the developed analysis to call-by-need
evaluation, that is the case we are actually interested in. Our results
also smoothly apply to call-by-value machines—we omit their study
because it is modular and thus not particularly informative.

Contributions. The contributions of this paper are:

o Implementation of global environments: we provide the sketch
of an OCaml implementation of global environments and
of the Milner Abstract Machine (MAM, whose first appear-
ance without a name is, we believe, in Sands, Gustavsson,
and Moran’s [38], and it has then been named MAM by Ac-
cattoli, Barenbaum, and Mazza in [4]), the simplest machine
employing them. Not only we are not aware of any published
implementation, but in our experience it is an implementa-
tion schema that is mostly unknown, even by experienced
implementors. In particular, we implement the essential copy
function in linear time.

! The kernel of Coq is the subset of the codebase which ensures that only valid proofs
are accepted. Hence the use of an abstract machine, which has a better ratio efficien-
cy/complexity than the use of a compiler or a naive interpreter.

B. Accattoli and B. Barras

o Local environments are faster: we analyze local environments
in their most well-known incarnation, Krivine Abstract Ma-
chine (KAM), pointing out simple and yet unusual implemen-
tations, that—in the special case of terminating executions
on closed terms—provide a better complexity than what is
achievable with a global environment. Such an improvement
is, to the best of our knowledge, new.

o de Bruijn indices are slightly faster: our fastest implementa-
tion scheme for local environments makes crucial use of de
Bruijn indices. While the indices do not improve the overall
complexity, they provide better bounds on some transitions.
To our knowledge, this is the first theoretical evidence that
de Bruijn indices provide a gain in efficiency.

o Split environments: we present a new machine with split envi-
ronments, the SPAM, having the advantages of both the KAM
and the MAM. In particular, the improved bound on local
environments carries over to the split ones. We also provide
an implementation in OCaml of the SPAM.

o Call-by-need: we recall a simple abstract machine for call-by-
need from the literature, Accattoli, Barenbaum, and Mazza’s
Pointing MAD [4], and we reformulate it with split environ-
ments, obtaining the Split MAD, the backbone of the machine
at work in Coq and very close to Sestoft’s Mark 3 machine in
[39]. For the Split MAD we show that our improved bound
still holds, and we also provide an OCaml implementation.

Let us stress that the speed-up provided by local / split environments
applies only to terminating weak evaluations of closed terms, that
is the case of interest for functional programming languages such
as Ocaml (call-by-value) or Haskell (call-by-need). The speed-up
instead vanishes with open terms or strong evaluation (see the last
paragraph of Sect. 9), that is, it does not apply to proof assistants,
and in particular it does not apply to the Coq abstract machine.

The value of this paper. From a certain point of view the paper
does not provide much original content. Essentially, most machines,
analyses, and data structures at work in the paper already appeared
in the literature. The value of the paper, then, is in connecting the
dots, drawing a theory out of isolated results or techniques, putting
them in perspective, providing a comprehensive study of environ-
ments, and surrounding it with a number of precious observations.
The relevance of such an effort is witnessed by the fact that we
obtain new bounds essentially for free.

For these reasons, and to stress the synthetic rather than the
technical contribution of this work, most proofs are omitted (de-
tailed proofs can be found in the literature, or can be obtained by
minimal variations) and we provide OCaml code only for those
cases that are not standard.

Related work. To our knowledge, there are no papers in the liter-
ature comparing the different styles of environments. The literature
on abstract machines is however huge, let us just cite a few repre-
sentative papers beyond those already mentioned [12, 13, 20, 21, 23,
25, 28, 31, 33, 37]. The literature on complexity analyses of abstract
machines as already been cited. Call-by-need evaluation was intro-
duced by Wadsworth [40] in the seventies. In the nineties, it was
first reformulated as an operational semantics by Launchbury [32],
Maraist, Odersky, and Wadler [34], and Ariola and Felleisen [14],

Environments and the Complexity of Abstract Machines

and then implemented by Sestoft [39]. For more recent work, see
Chang and Felleisen’s [18], Danvy and Zerny’s [22], Garcia, Lums-
daine, and Sabry’s [26], Pédrot and Saurin’s [36], or the already
cited work on strong call-by-need [15]. As already pointed out, our
treatment of call-by-need is based on Accattoli, Barenbaum, and
Mazza’s [4], plus Accattoli and Sacerdoti Coen’s [11].

2 PRELIMINARIES

A-Calculus. The syntax of the ordinary A-calculus is given by the
following grammar for terms:

A-TERMS tp,u,q =x | Ax.t | tp.

We use t{x«<p} for the usual (meta-level) notion of substitution
(of p for x in t). An abstraction Ax.t binds x in ¢, and we silently
work modulo a-renaming of bound variables, e.g. (1y.(xy)){x<y} =
Az.(yz). We use fv(t) for the set of free variables of t. A term t is
closed if it has no free variables (i.e. fv(t) = 0).

Call-by-name evaluation. The notion of evaluation we consider
in this first part of the paper is the simplest one, that is, Plotkin’s call-
by-name strategy, also known as weak head f-reduction. Evaluation
contexts are simply given by:

CBN EvAaLUATION CONTEXTS Caz=()|Ct
Then the strategy is defined by:

CONTEXTUAL CLOSURE
C(t) —con C(py if t cpn p

RULE AT TOP LEVEL
(Ax.1)p —cpn tHxep)

A term t is a normal form, or simply normal, if there is no p such
that t —cpy p, and it is neutral if it is normal and it is not of the
form Ax.p, i.e. it is not an abstraction. A derivationd : t —k pis
a finite, possibly empty, sequence of evaluation steps (also called
reduction or rewriting steps). We write |¢| for the size of ¢ and |d|
for the length of d.

Machines. We introduce general notions about abstract machines,
given with respect to a generic machine M and a generic strategy
— on A-terms.

e An abstract machine M is given by states, noted s, and transi-
tions between them, noted ~»y;

o A state is given by the code under evaluation plus some data-
structures;

o The code under evaluation, as well as the other pieces of code
scattered in the data-structures, are A-terms not considered
modulo a-equivalence;

e Codes are over-lined, to stress the different treatment of a-
equivalence;

e A code t is well-named if x may occur only in p (if at all) for
every sub-code Ax.p of t;

e A state s is initial if its code is well-named and its data-
structures are empty;

e Therefore, there is a bijection -° (up to) between terms and
initial states, called compilation, sending a term t to the initial
state t° on a well-named code a-equivalent to ¢;

e An execution is a (potentially empty) sequence of transitions
t; ~4 § from an initial state obtained by compiling an (initial)
term tp;

PPDP’17, October 9-11, 2017, Namur, Belgium

A state s is reachable if it can be obtained as the end state of

an execution;

o A state s is final if it is reachable and no transitions apply to s;

e A machine comes with a map - from states to terms, called
decoding, that on initial states is the inverse (up to) of com-
pilation, i.e. t° = ¢ for any term £;

e A machine M has a set of -transitions, whose union is noted
~ g, that are meant to be mapped to ff-redexes by the decod-
ing, while the remaining overhead transitions, denoted by ~»,,
are mapped to equalities;

e We use |p| for the length of an execution p, and |p|g for the

number of f-transitions in p.

Implementations. Every abstract machine implements the strat-
egy in the A-calculus it was conceived for—this is usually expressed
by an implementation theorem. Our notion of implementation,
tuned towards complexity analyses, requires a perfect match be-
tween the number of S-steps of the strategy and the number of
P-transitions of the machine.

Definition 2.1 (Machine implementation). A machine M imple-
ments a strategy — on A-terms via a decoding - when given a A-term

t the following holds:

(1) Executions to derivations: for any M-execution p: t° ~»y s
there exists a —-derivationd: t —»* s.

(2) Derivations to executions: for every —-derivation d: t —* p
there exists a M-execution p: t° ~»y s such that s = p.

(3) B-Matching: in both previous points the number |p|g of f-
transitions in p is exactly the length |d| of the derivation d,

that is |d| = |p|/3.

Sufficient condition for implementations. The proofs of implemen-
tation theorems tend to follow always the same structure, based on
a few abstract properties collected here into the notion of imple-
mentation system.

Definition 2.2 (Implementation system). A machine M, a strategy
—, and a decoding - form an implementation system if the following
conditions hold:

(1) B-Projection: s ~»p s” implies s — s”;

(2) Overhead transparency: s ~», s’ implies s = s’;

(3) Owverhead transitions terminate: ~», terminates;

(4) Determinism: both M and — are deterministic;

(5) Progress: M final states decode to —-normal terms.

THEOREM 2.3 (SUFFICIENT CONDITION FOR IMPLEMENTATIONS,
[9]). Let (M, >, -) be an implementation system. Then, M implements
— via -.

3 GLOBAL CALL-BY-NAME: MILNER
ABSTRACT MACHINE

Here we introduce the Milner Abstract Machine (MAM) [4, 38], a
machine with a single global environment for call-by-name evalua-
tion.

Machine components. The MAM is defined in Fig. 1. A machine
state s is a triple (t, 7, E) given by:
e Codet: a term not considered up to a-equivalence, which is
why it is over-lined;

PPDP’17, October 9-11, 2017, Namur, Belgium

B. Accattoli and B. Barras

Environments E := €| [x«t]=E Decoding B (t,e) M =t
Stacks 7 = el|tum (t.p = m, E)M = (tp, H’E)M
Compilation t° := (L ¢€,¢€) (t, e, [xep] = E)M = (t{x<pl, e, E)M
L Code | Stack Global Env Trans || Code | Stack Global Env ‘
tp P2 E ~c t |punm E
Ax.t | punm E_ ~p jx T [xeﬁ]_:: E
x T E:[x«t] = E ~g t T E: [x<t] = E

where t* denotes 7 where bound names have been freshly renamed.

Figure 1: Milner Abstract Machine (MAM).

o Argument stack m: it contains the arguments of the current
code.

o Global environment E: a list of explicit (i.e. delayed) substitu-
tions storing substitutions generated by the redexes encoun-
tered so far. It is used to implement micro-step substitution,
i.e. substitution on one variable occurrence at a time.

Transitions. In the MAM there is one f-transition whereas over-
head transitions are divided up into substitution and commutative
transitions.

o f-Transition ~ g: it morally fires a —cpy-redex, the one corre-
sponding to (Ax.t)p, except that it puts a new delayed substitu-
tion [x«<p] in the environment instead of doing the meta-level
substitution t{x«+p} of the argument in the body of the ab-
straction;

e Substitution transition ~»g: it substitutes the variable occur-
rence under evaluation with a (properly a-renamed copy of
a) code from the environment. It is a micro-step variant of
meta-level substitution. It is invisible on the calculus because
the decoding produces the term obtained by meta-level substi-
tution, and so the micro work done by ~»s cannot be observed
at the coarser granularity of the calculus.

o Commutative transition ~>: it locates and exposes the next
redex according to the call-by-name strategy. It is invisible on
the calculus.

Garbage collection: it is here simply ignored, or, more precisely, it
is encapsulated at the meta-level, in the decoding function. It is
well-known that this is harmless for the study of time complexity.

Compiling, decoding, and invariants. A term t is compiled to the
machine initial state t° = (i, €, €), where t is a well-named term
a-equivalent to ¢. Conversely, every machine state s decodes to a
term s, (see the top right part of Fig. 1), obtained by first applying
the code to the arguments in the stack 7, and then applying the
meta-level substitutions corresponding to the entries in the global
environment E.

Implementation theorem. By means of omitted but essential in-
variants of the MAM (see [2] for details), one can prove that the
hypotheses of Theorem 2.3 hold with respect to the call-by-name
strategy, obtaining the following implementation theorem.

THEOREM 3.1 (MAM IMPLEMENTATION, [2, 4]). The MAM imple-
ments call-by-name evaluation —cpy (via the decoding -).

4 INTRODUCING COMPLEXITY ANALYSES

In this section we introduce the fundamental principles and a recipe
for complexity analyses of abstract machines. As in Sect. 2, we refer
to a generic machine M implementing a strategy — according to
Def. 2.2, because in the next sections the recipe will be applied to
various machines for various strategies.

Parameters for complexity analyses. By the derivations-to-execu-
tions part of the implementation (Point 2 in Def. 2.1), given a deriva-
tiond: to —" p there is a shortest execution p: t; ~»y s such that
s = p. Determining the complexity of a machine M amounts to bound
the complexity of a concrete implementation of p on a RAM model,
as a function of two fundamental parameters:

(1) Input: the size |ty| of the initial term t(of the derivation d;

(2) p-Steps/transitions: the length n = |d| of the derivation d,
that coincides with the number |p|g of S-transitions in p by
the f-matching requirement for implementations (Point 3
in Def. 2.1).

A machine is reasonable if its complexity is polynomial in |ty| and
lplg, and it is efficient if it is linear in both parameters.

Recipe for complexity analyses. For complexity analyses on a
machine M, overhead transitions ~», are further separated into two
classes, as it was the case for the MAM in the previous section:

(1) Substitution transitions ~»s: they are in charge of the substi-
tution process;

(2) Commutative transitions ~>: they are in charge of searching
for the next § or substitution redex to reduce.

Then, the estimation of the complexity of a machine is done in
three steps:

(1) Number of transitions: bounding the length of the execution
p, by bounding the number of overhead transitions. This
part splits into two subparts:

(a) Substitutionvs f: bounding the number |p|s of substitution
transitions in p using the number of S-transitions;

(b) Commutative vs substitution: bounding the number |p|c
of commutative transitions in p using the size of the in-
put and |p|s; the latter—by the previous point—induces a
bound with respect to f-transitions.

Environments and the Complexity of Abstract Machines

(2) Cost of single transitions: bounding the cost of concretely
implementing a single transition of M. Here it is usually nec-
essary to go beyond the abstract level, making some (high-
level) assumption on how codes and data-structure are con-
cretely represented. Commutative transitions are designed
on purpose to have constant cost. Each substitution transi-
tion has a cost linear in the size of the initial term thanks
to an invariant (to be proved) ensuring that only subterms
of the initial term are duplicated and substituted along an
execution. Each f-transition has a cost either constant or
linear in the input.

Complexity of the overhead: obtaining the total bound by
composing the first two points, that is, by taking the number
of each kind of transition times the cost of implementing it,
and summing over all kinds of transitions.

—
w
=

(Linear) logical reading. Let us mention that our partitioning of
transitions into f, substitution, and commutative ones admits a
proof-theoretical view, as machine transitions can be seen as cut-
elimination steps [4, 13]. Commutative transitions correspond to
commutative cases, while and substitution are principal cases.
Moreover, in linear logic the f transition corresponds to the multi-
plicative case while the substitution transition to the exponential
one. See [4] for more details.

5 COMPLEXITY OF THE MAM

The analysis of the MAM is well-known in the literature: it can be
traced back to Sands, Gustavsson, and Moran’s [38], it was then
refined and decomposed in two parts by Accattoli and coauthors in
(4, 8], and finally didactically treated by Accattoli in [2]. We present
it here according to the recipe in three steps given in Sect. 4.

Step 1: number of transitions. Let p : t; ~* s be a MAM execu-
tion. We have (more details in [2]):

(1) Substitution vs f: |pls = O(|p|é);
(2) Commutative vs substitution (vs B): |plc = O(lpls - |tol), and
so |ple = O(Ipl% - Ito]);

The first bound is obtained via a standard reasoning building on
the following easy facts:

(1) Local bound: the length of a maximal sequence of consecutive
substitution transitions (eventually with commutatives in
between, that however are not counted) is bound by the size
|E| of the global environment, because these substitution can
only access E from left to right, for scoping reasons;

(2) Environment size invariant: the size |E| of the global envi-
ronment is bound by the number of preceding f-transitions,
because they are the only ones to extend E.

The second bound is obtained by noting that:

(1) Local bound: the length of a maximal sequence of consecutive
commutative transitions (eventually with f-transitions in
between, that however are not counted) is bound by the size
of the code, because commutatives decrease it;

(2) Subterm invariant: all pieces of code scattered in the data
structures are subterms of the initial term #((forthcoming
Lemma 5.1).

PPDP’17, October 9-11, 2017, Namur, Belgium

(3) Global bound: the size of the code is increased only by sub-
stitution steps, but of at most |o|, by the subterm invariant.

Step 2: cost of single transitions. This is the part of the analysis
on which we focus our attention in this paper. We have to give
some details about the data structures for codes, stacks, and global
environments. In this section we stay high-level, only describing
the abstract properties of the data structures, while the next section
discusses how to concretely realize them.

For stacks 7, there is no special requirement: commutative and
B transitions require to be able to do push and pop. A priori, there
is no useful bound on the size of the stack. Therefore, it is natural
to use a linked list implementation of stacks, for which push and
pop are O(1) operations, that in turn implies that ~» is O(1).

For the global environment E, things are subtler. It is extended
only on top by ~ g, but it has to be accessed randomly (that is, not
necessarily on top) by ~»s. There is a bound on its size (namely
|E| < |plg, obtained simply observing that E is extended only
by ~>), but going through E sequentially is expensive. Efficient
implementations of E access its nth element directly, i.e. in constant
time, by implementing E as a store, thus ignoring its list structure.
In turn, this choice impacts on the data structure for codes, because
it forces variables to be implemented as memory locations.

With these hypotheses ~» 4 can be implemented in O(1). For
~>s, we need to take care of another important point, that is the
implementation of a-renaming. There are two aspects: we need
both a bound on the size of the code f to rename and a bound on
the renaming operation t*. The former is given by the following
fundamental subterm invariant, a property of most implementations
of the A-calculus:

LEmMMA 5.1 (MAM SUBTERM INVARIANT). Let p: ty ~»* (2,7, E)
be a MAM execution. Then the size of every subcode p of t, m, or E is
bound by the size of ty.

For the bound on the renaming operation %, that essentially
is a copy operation for which renaming means reallocation of all
the memory locations used for variables, we assume here that it
can be done in linear time (i.e. O(|Z]), and so O(|to|) by the subterm
invariant). A linear algorithm is indeed possible, but it requires
some care—this point is discussed in detail in the next section.

To sum up, we have the following quantitative assumptions:

o Global environment: implemented as a store, with extension
and access in O(1);
e Renaming operation: linear in the input, i.e. O(|to]).

implying that ~»s can be implemented in O(|to]).
Step 3: complexity of the overhead. Composing the previous two
points, it follows that in an execution p the cost of each group of

transitions is (note that substitution and commutative transitions
have the same bound, but it is obtained in different ways):

e B:O(lplp);
o Substitution: O(|P|;; - tol);

o Commutative: O(Ipl% - tol);

Therefore, the MAM is reasonable and its complexity is O(|p| 2 ‘Itol).

PPDP’17, October 9-11, 2017, Namur, Belgium

6 IMPLEMENTING GLOBAL ENVIRONMENTS

We propose an Objective Caml implementation? of the MAM. As dis-
cussed in Section 5, the global environment is better implemented
by a store, and variables are represented by pointers to cells of the
store, to ensure that access is done in constant time.

The data stored in a variable cell needs to express that variables
are either substituted (i.e. have an entry in the global environment),
or bound by a A-abstraction. Hence, in our implementation, vari-
ables carry an optional substitution. For reasons explained later,
variable may also have a copy status.

The type of term is mutually recursively defined with the type
of variables and that of substitutions:

type term =
Var of var (* Variable occurrences*)
| App of term x term (x Applications x)
| Lam of var x term (x Abstractions x)

and var = { name:string; mutable subs:subs }
and subs = NotSub | Subs of term | Copy of var

Variables are intended to be compared up to pointer equality. The
carried name is actually just for printing convenience. Fresh names
can be generated by a gensym function (of type string->string,
the input string serves as a hint for the fresh name) each time a
new variable is allocated.

let mkvar x = {name=gensym x; subs=NotSub}

To ensure the soundness of the term representation, the follow-
ing invariant needs to be enforced:
e the variable attached to a A-abstraction must be in the NotSub
status.
The mutable part of the variable is used to perform substitutions
in a term. There are two kinds of substitutions:

Subs are regular substitutions, generated by f-reduction;
Copy are substitutions used to perform the copy/renaming of a
term.

In order to ensure that a side-effect on the variable carried by
an abstraction only affects variables it binds, we need to establish
another invariant, that applies only to the code component of the
state:

o all variables carried by a binder should appear nowhere else

in the state, but in a subterm of that binder.>

Implementation of the MAM. The state of the machine is just a
pair of a code and a stack. The implicit global environment is made
of all substituted variables reachable from the terms of the state.
Unreachable variables can be garbage-collected by the runtime.

type state = term * term list

let rec mam (st:state) : state =
match st with
| App(u,Vv), stk -> mam (u,v::stk)
| Var{subs=Subs t@}, stk -> mam (copy t@,stk)

2The implementations proposed in this article can be found in the git repository
http://github.com/barras/abstract-machines.

3We may restrict this invariant to the binders not appearing in the right subterm of an
application, as the call-by-name strategy does not perform reduction in those contexts.

B. Accattoli and B. Barras

| Lam(x, u), (v::stk) —>
X.subs <- Subs v;
mam (u,stk)

| (tam _, [1 | Var _, _) > st

The first case corresponds to the commutative transition, the
second case to the substitution transition, the third case to the
f-transition, and the last case to final states. The copy operation
performs a renaming of bound variables, in order to maintain the
invariant on the code component.

Let us remark that the above implementation (as well as all
implementations in this paper) is tail-recursive, thanks to the use of
a stack (the second component of the state). Since Objective Caml
optimizes tail-recursion, the machine only consumes constant space
on the process execution stack.

The complexity of each case is O(1), but the exponentiation rule
which requires a renaming of bound variables (copy). It remains to
see how this operation can be implemented with linear complexity.

Renaming bound variables of a term. We give two implementa-
tions of the term copy operation. Both traverse the term, they differ
on how they deal with variable occurrences.

The first one is purely functional, and uses a renaming map,
noted renMap, carrying the renamings generated so far.

let rec rename renMap t =
match t with
| App(u,v) -> App(rename renMap u, rename renMap V)
| Lam(x,u) ->
let y = mkvar x.name in
Lam(y,rename ((x,y)::renMap) u)
| Var x ->
(try Var (List.assq x renMap)
with Not_found -> t)
let copy = rename []

Since the search in r is linear, and the number of entries may be
linear in the size of the term, the global complexity of the renaming
operation is quadratic.

For term representations that do not rely on pointer equality,
or if we ensure that all variables carry distinct names (so x==y iff
X.name=y.name), we may improve this complexity by using bal-
anced trees for the renaming map. Access complexity is logarithmic,
so the renaming complexity is O(|t| - log |¢]) where ¢ is the term to
copy (bound by the size of the initial term because of the subterm
invariant of Lemma 5.1).

Improving the renaming function. An implementation with better
complexity can be given, inspired by graph copy algorithms. It
consists in using the substitution field of variables to perform the
renaming. Bound variables (in the NotSub status) are temporarily
put in the Copy status with a link to the new name for the variable.
This step breaks the invariant that bound variable shall always be in
the NotSub status, but it is restored by the end of the copy process.

This new status should not be conflated with Subs (created by f-
reductions) as the term we rename may already contain substituted
variables, and the renaming operation should not interfere with
these substitutions.

Environments and the Complexity of Abstract Machines

PPDP’17, October 9-11, 2017, Namur, Belgium

Local Env. e := €| [xec]e Closure Decoding (t, € =t
Closures ¢ (t,e) @, [xec] = e) = (Hxecg)e)
Stacks 7 = e€lcunm S Decodi —X I
States s (c,m) tate Decoding ,@K T Lk ,
Compilation t° := ((t,€),€) c=m = (g €) ”)K

L Code | Local Env | Stack || Trans || Code | Local Env Stack ‘

tp e T ~c t e (p,e) = m

Ax.t e cam || ~p t [x+c] e P

x e 2 ~s t e’ p with e(x) = (t,¢)

Figure 2: Krivine Abstract Machine (KAM).

let rec copy t =
match t with

| App(u,v) -> App(copy u, copy V)
| Lam(x,u) ->
let y = mkvar x.name in

x.subs <- Copy y;
let uWithXRenamedY = copy u in
x.subs <- NotSub;
Lam(y,uWithXRenamedY)

| Var{subs=Copy y} -> Var y

| var _ > t

Applications are copied by copying recursively their subterms.*

In the case of A-abstractions we first create a fresh variable y, which
is then substituted for x. Then we copy recursively the body and
get a term uWithXRenamedY. Once this is done, we need to restore
the state of variable x, and we can return the new A-abstraction.
Variables in the copy status are simply replaced (without any further
copy, unlike in the exponential rule). Other kinds of variable are
not affected.

The complexity of this algorithm is linear. Therefore, we have
given an implementation of the MAM with the complexity estab-
lished in the previous section.

7 LOCAL CALL-BY-NAME: KRIVINE
ABSTRACT MACHINE

Accounting for names. The analysis of the MAM requires a care-
ful treatment of names through a dedicated invariant (here omitted,
see [2]), but the process of a-renaming is kept at the meta-level
and used as a black-box, on-the-fly operation (the rename / copy
functions of the previous section).

The majority of the literature on abstract machines, instead,
adopts another mechanism. The idea is to use different data struc-
tures, to circumvent a-renaming altogether—the machine never
renames nor introduce new names (but it does extend the data-
structures). To be precise, there are two levels (often confused):

(1) Removal of on-the-fly a-renaming: in these cases the machine
works on terms with variable names but it is designed in

4We may follow-up on the remark that the invariant only applies to binders on the
left branch of the code component, by only renaming binders on that leftmost branch,
although the others branches need to be copied in any case. We thereby avoid many
useless renamings.

10

order to implement evaluation without ever a-renaming.
Technically, the global environment of the MAM is replaced
by many local environments, each one for every piece of
code in the machine. The machine becomes more complex, in
particular the non-trivial concept of closure (to be introduced
shortly) is necessary.

Removal of names: terms are represented using de Bruijn
indexes (or de Bruijn levels), removing the problem of a-
renaming altogether but sacrificing the readability of the
machine and reducing its abstract character. Usually this
level is built on top of the previous one.

@)

We are now going to introduce Krivine Abstract Machine (keeping
names, so at the first level), that also implements the weak head
strategy. Essentially, it is a version of the MAM without on-the-fly
a-renaming. The complexity analysis is slightly different. To our
knowledge, moreover, the complexities of the MAM and the KAM
were considered to be the same, while Sect. 9 shows that the KAM
can be implemented more efficiently.

Krivine abstract machine. The machine is in Fig. 2. It relies on
the mutually inductively defined concepts of local environment, that
is a list of closures, and closure, that is a pair of a code and a local
environment. A state is a pair of a closure and a stack, but in the
description of the transitions we write it as a triple, by spelling out
the two components of the closure. Let us explain the name closure:
usually, machines are executed on closed terms, and then a closure
decodes indeed to a closed term. In the next section, we add the
closed hypothesis to obtain our improved bounds, but for now it is
superfluous (but closures keep their name, even without the closed
hypothesis).

Garbage collection. Transition ~»s, beyond implementing micro-
substitution, also accounts for some garbage collection, as it throws
away the local environment e associated to the replaced variable
x. The MAM simply ignores garbage collection. For time analyses
garbage collection can indeed be safely ignored, while it is clearly
essential for space. Both the KAM and the MAM are however des-
perately inefficient with respect to space.

Implementation. The proof that the KAM implements the weak
head strategy is a classic result that can be proved by following the
recipe for these proofs that we provided in Sect. 2, and it is omitted
(see [2, 4], for instance).

PPDP’17, October 9-11, 2017, Namur, Belgium

THEOREM 7.1 (KAM IMPLEMENTATION). The KAM implements
call-by-name evaluation —cpN (via the decoding -).

8 COMPLEXITY OF THE KAM

Here we follow the recipe in three steps given in Sect. 4, but we
somewhat do the second and the thirds steps at the same time.

Number of transitions. The bound of the number of transitions
can be shown to be exactly as for the MAM. It is interesting to
point out that the bound on ~»s transitions requires a slightly
different reasoning, because it is not possible to exploit the size of
the global environment. It is enough to use a similar but slightly
trickier invariant: the depth (i.e. the maximum nesting) of local
environments is bound by the number of -transitions. The proof
is straightforward and omitted.

Cost of single transitions and complexity of the overhead. This
is the interesting part of the analysis. It is based on the following
invariant, that provides a bound on the length |e| of local environ-
ments (defined as the number of items in e, seen as a list), and that
is proved by a straightforward induction on executions.

LEmMMA 8.1 (LOCAL ENVIRONMENT SIZE INVARIANT). Letp : t; ~»*
s be a KAM execution and (p, e) a closure ins. Then |p| + |e| < |to]
(and so le| < |tol).

The bound can be slightly refined, because |e| is actually bounded
by the maximum number of abstractions on a branch of ty (seen as
a tree)—in the worst case however this is no better than |z|.

From an abstract point of view, local environments are maps
indexed by variables, with only two operations:

e Push: adding an item for a given variable, required by the
p-transition;

o Lookup: retrieving the item associated to a given variable,
required by the substitution transition.

Complexity analyses of abstract machines are a new topic, almost
exclusively carried out by the first author and his coauthors. In
their work they have generally assumed local environments to be
implemented as lists, as it is the case in all implementations we
are aware of. With these hypotheses, push is constant-time, and
lookup takes O(|tg]) by Lemma 8.1, and the complexity of single
transitions is exactly as for the MAM, giving also the same O(| pI% .

[to|) complexity for the overhead of the KAM.

This paper stems from the observation that, despite common
practice, local environments admit better implementations than
lists. Now, we outline two implementations that lower the com-
plexity of substitution transitions. In the general case, however,
the overall complexity of the machine does not improve, because
the cost of commutative transitions dominates over the substitu-
tion ones. The gain is nonetheless useful: in the specific case of
terminating executions of closed terms—that is the relevant case for
programming languages, actually—commutative transitions admit
a better bound and the complexity of the KAM does improve.

Better implementation 1: balanced trees. First of all, local envi-
ronments can be implemented in a purely functional way using
balanced trees, obtaining push and lookup in O(log |to|). This choice
improves the bound on the cost of substitution transitions, lowering

11

B. Accattoli and B. Barras

it from O(IpI% - |to]) to O(IpIZ, -log |tol), but it worsens the bound
on B-transitions, raising it from O(|plg) to O(IpIﬁ -log|tyl). The
overall complexity stays the same, however, because the cost of
commutative transitions does not change—they are still bound by
O(IpIZ - |to])—and dominates.

Better implementation 2: de Bruijn indices and random-access lists.
Two ingredients are needed in order to improve further. First, en-
vironments can be implemented using Okasaki’s random-access
lists [35], that implement all list operations (push and pop) in con-
stants time, and random-access (i.e. lookup) or update in logarithmic
time (O(log |#])). This data structure represents lists as a list of
perfect binary trees of growing size, and has very little overhead.
Moreover, it is based on a beautifully simple idea—random-access
lists are a pearl everyone should know about, we strongly suggest to
read Okasaki’s paper. Second, to take advantage of random-access
lists, variable occurrences need to carry the index of their associ-
ated substitution in the local environment. The natural solution is
to use de Bruijn indices to represent terms. In this way one obtains
that the global cost of substitution transitions is O(| p|2 -log|tol)

(as for balanced trees) and that of f-transitions is O(|plg) (lower
than balanced trees). Commutatives still dominate.

Worse implementation: arrays. For the sake of completeness, let
us just mention that if local environments are implemented with
arrays then push is O(|tg|) and lookup is constant time (if terms
are represented using de Bruijn indices), but then the overhead
becomes O(Ipr; - [to|?) (because a single commutative transition

now costs O(|fp])), that is worse than for the MAM.

9 IMPROVING THE BOUND

Closed terms and terminating executions. Our recipe for com-
plexity analyses of abstract machines is very general, it works for
every execution, in particular for diverging executions and for any
prefix of a terminating execution, and it does not make hypotheses
on terms. The main case of interest in the study of programming
languages, however, is the one of successful (i.e. terminating) ex-
ecutions for closed terms. With these hypotheses a better bound
on the commutative transitions is possible: they depend only on,
and actually coincide with, the number of f-transitions, that is
lplc = |plg—the dependency from the size of the initial term sur-
prisingly disappears.

First of all, we have the following correlation between commuta-
tive and S-transitions, that is just the fact that commutatives push
entries on the stack, while f-transitions pop them.

PROPOSITION 9.1. Letp:s=t|e|nm~*ple’ | n' =s" bea
KAM execution. Then |p|c = Iplﬁ + |7’ = |x|.

Proor. By induction on p. If p is empty then 7 = #’ and the
statement trivially holds. Otherwise pist:s~*u|e” | " =s"
followed by a transition s’ ~» s”. Cases of the last transition:

o Commutative: |plc = |7lc +1 =p |zlg + || = |7 + 1
Iplg + 17| = |2l + 1= Iplg + 2’| - |,

o filple = Itle =in Izl + 12"’ = |m| = |plg = 1+ |n"'| = |x| =
lplg =1+ 17|+ 1= |zl = Iplg — 1+ ' + 1= |,
o Substitution: nothing changes. O

Environments and the Complexity of Abstract Machines

Note that Proposition 9.1 is not specific to the KAM, the same
equality holds also for the MAM. Let us explain the connection
between the bound of Proposition 9.1 and the O(|plz - [to]) bound

of Sect. 5: it is the size of 7’ that is bound by O(|,D|f; - tol).

Now, it is well-known that if one considers a closed initial term
then the normal form, when it exists, is an abstraction. Therefore,
the final state of the machine has the form Ax.p | e | €. Since initial
states also have an empty stack, we obtain:

COROLLARY 9.2. Let to be a closed term and p : tj ~™ s’ bea
KAM execution ending on a final state. Then |plc = |plg.

This fact is already used used by Sands, Gustavsson, and Moran
in [38], even if less consciously, and it can even be traced back to
the balanced traces of Sestoft [39], even if he did not make any
quantitative analyses.

The improved bound. If we reconsider now the results of the
previous section we obtain that, for terminating executions on
closed terms, the complexity of the KAM is O(lplz -log |to1), if local

environments are implemented with balanced trees or random-
access lists, because the commutatives no longer dominate. Then

THEOREM 9.3. The complexity of terminating executions on closed
terms on the KAM is bound by O(|p|f; -log |tol).

Removing the quadratic dependency from |p|g. It is natural to
wonder if the quadratic dependency from |p|g is optimal. This
point has been studied at length, and the answer is both yes and
no. Yes, because there are families of terms reaching that bound
for both the KAM and the MAM. No, because both machines can
be optimized as to have a linear dependency from |p|g. The qua-
dratic overhead is due to growing chains of renamings of the form
[x1¢x2][x2¢x3] - - - [xn—14xp] in the environment (in the case of
the MAM, and similarly for the KAM). The easiest way to avoid
these chains is by employing compacting -transitions, that is, by
replacing ~ g with the following two f-transitions:

[x<e'(y)] e | =
[x<c] e T

Axt|e| (ye)um
Ax.t | e cur

~> ,Bl
~> ,BZ
where in ~ g, it is assumed that c is not of the form (y, e’). The cost
of ~ g is O(log|to|), because it both pushes and lookups environ-
ments. This optimization appears at least in Wand’s [41] (section
2), Friedman et al’s [25] (section 4), the second author’s PhD disser-
tation [16] (section 3.3.3), and Sestoft’s [39] (section 4) motivated
as an optimization about space. In Sands, Gustavsson, and Moran’s
[38], however, it is shown for the first time to lower the overhead
for time from quadratic to linear (on the MAM). This observation
on the time complexity was also made in the second author’s disser-
tation [16] on examples, but with no proof. Accattoli and Sacerdoti
Coen’s [11] provides a detailed study of this issue.

Let us call Compacting KAM the machine obtained from the
KAM by replacing ~ g with the compacting f-transitions. Then,

|| |

THEOREM 9.4. The complexity of terminating executions on closed
terms on the Compacting KAM is bound by O(lplg - log |to]).

Let us point out that the hypothesis on closed terms is essential.
Morally, the dependency from the initial term disappears because

12

PPDP’17, October 9-11, 2017, Namur, Belgium

normal forms, that are necessarily abstractions, can be recognized
in constant time. With open terms (essential in the implementation
of proof assistants) normal forms are not necessarily abstractions.
Their size depends linearly on the size of the initial term and it is
mandatory to explore a term to be sure that it is normal—therefore,
the improvement showed here is not possible. Consider for instance
the family of open terms defined by x! := x and x™*! := x"x. The
term x" is normal but the (Compacting) KAM executes however n
commutative transitions and no S-transitions.

10 SPLIT CALL-BY-NAME: THE SPAM

Local environments admit faster implementations than global envi-
ronments. Global environments however allow forms of sharing
that are not possible with local environments. The typical example
is the memoization used in call-by-need evaluation, where evalua-
tion enters the environment and the computed result has to affect
all environments with that entry—this is not possible with local
environments.

Is it possible to combine the best of both techniques? Yes, with
what we like to call split environments. The idea, roughly, is to have:

o simpler local environments e, that only carry renamings of the

form [x1<a1] - - - [xg«<ay] where ay, . . ., aj are taken from a
distinguished set of variables;

e and a global environment E of the form [a;«c1] - - [ag<ci],

where a closure ¢ has the form (z, e).

The SPlit environments Abstract Machine (SPAM), a new call-by-
name machine in between the MAM and the KAM, is defined in
Fig. 3. Note that ~ g requires a to be a fresh name. The fact that
ai,...,ay are a distinguished set of variables is not required, but it
is easily seen that this is an independent space of names—they can
be thought as pointers to the global environment / store.

There is an easy decoding - of SPAM states to MAM states
(in Fig. 3), obtained by turning all closures into codes by applying
local environments as substitutions. Such a decoding induces a
strong bisimulation between the two machines (whose proof is
straightforward), from which the implementation theorem for the
SPAM immediately follows.

ProrosiTION 10.1.
(1) SPAM / MAM Strong Bisimulation: let s be a SPAM reachable
state and |l € {c, B, s}. Then sg isa MAM reachable state and
(@) s~ s" impliessg ~> 5" g;
(b) ifsg ~»; s’ then there is s’ such that s ~»; s” ands” =s’.
(2) Implementation: the SPAM implements call-by-name evalua-
tion —cpN (via the decoding ;SM).

Clearly, the same properties could be obtained by decoding SPAM
states to KAM states, by substituting the global environment on
the local ones.

SPAM implementation. The idea is that the local environment
is implemented as a balanced tree or a random-access list, and the
global environment as a store. We assume that generating a fresh
name, that in fact is a fresh store location, is constant-time. On the
one hand, this is reasonable because so it is on the RAM model. On
the other hand, this is also implicit in the MAM (in the renaming
operation) and in the KAM (the push on e creates a new entry in
the data structure for e), and so it is not a feature of the SPAM.

PPDP’17, October 9-11, 2017, Namur, Belgium

B. Accattoli and B. Barras

Closures e = (Ie) Closure Decoding (t,€) s =t
LocalEnv. e := €|[x<a]:e (, [x<a] = 3)5 = (f{xea},e)s
Stacks 7 €lcum Stack / Gl Env Decoding € = €
GlobalEnv. E := €| [a+c]=E Cumg = CgIg
States s (c,m,E) [acc] = Es = [accg] = Eg
Compilation t° := ((t,€),¢€,€) State Decoding (c, 7, E)s = (cq 7. Eg)
LCode Local Env | Stack | Global Env || Trans || Code | Local Env Stack Global Env ‘
tp e P E ~c t e (p.e) = E
Ax.t e cum E ~p t [x+a] e P [a<c] :: E | with a fresh
x e p E ~s t e’ s E with E(e(x)) = (z,¢’)
Figure 3: SPlit Abstract Machine (SPAM).
Stacks eltum States s = (i.r.D.E)
Dumps B = €| (x7): D Compilation t° := (%,¢€,¢,€)
Global Env. E €| [x<t] = E|[x<O] : E P - »T
L Code | Stack Dump Global Env Trans || Code | Stack Dump Globla Env J
tp P2 D E ~oe t |punm D E
Axt | purm D E ~p t P D [x<p] = E
x 2 D Ex[xet] = E || ~oq, t € (x,7m) =D | E: [x<0O] = E/
) € (x,m) =D | E: [x<0O] = E/ ~g % D E: [x<v] : F
Figure 4: Pointing Milner Abstract machine by-neeD (Pointing MAD).
The bisimulation property implies that the SPAM and the MAM sig
have the same number of transitions. Therefore, the complexity of type 'a t
the SPAM on closed terms and terminating executions is O(| P|/23 . val empty : 'a t
log |to]). Exactly as for the KAM, one can define a Compacting val push : 'a -> 'at->"'at
SPAM of complexity O(|p|g - log |to]). Actually, with a global envi- val access : int -> 'a t -> 'a
ronment there is a lazier way of removing renamings chains (see end

Accattoli and Sacerdoti Coen’s [7]) giving the Unchaining SPAM,
that does not raise the complexity of S-transitions (but the overall
complexity does not change).

We remark that, as for local environments, split environments
are less sensitive to the representation of terms, yet allowing shar-
ing: for the MAM we had to devise a clever term representation
(involving subtle invariants about pointer sharing), to efficiently
perform substitution. Machines with split environments can have a
good complexity with many term representations: de Bruijn indices,
name-carrying, etc. There is a slight gain in using de Bruijn indices,
as we pointed out in Sect. 8, but the asymptotic complexity is the
same.

11 IMPLEMENTING SPLIT ENVIRONMENTS

Split environment machines feature both a global and a local en-
vironment, the latter being a mapping from variables to pointers.
As before, global environments are implemented by a store. We
assume we have a module Env implementing local environments
efficiently. The signature LocalEnv of the expected operations is:

module type LocalEnv

13

where the type 'a t represents the type of local environments as-
sociating data of type 'a to each variable. Hence the type 'a Env.t
is the type of local environments, and Env.empty, Env.push and
Env.access are the operations associated to this type. We use the
well-known type of A-terms with de Bruijn indices. A-abstractions
carry a name only for printing convenience. Other term representa-
tions may be used with an impact on the efficiency of the machine,
as already discussed, but the global complexity remains the same.

type term =
Var of int (* de Bruijn indices x*)
| App of term * term

| Lam of string x term

The store contains mutable cells holding an optional value. A cell
contains the special value Box when the reference is being evaluated.
This will be used for the Call-by-Need strategy in Sect. 14.

type env = ptr Env.t
and ptr = value ref
and value = Box | Clos of (term * env)

Environments and the Complexity of Abstract Machines

The call-by-name SPAM can be implemented straightforwardly,
following the rules of the KAM, see Fig. 2:

type stack = (term * env) list

type state = term * env * stack
let rec spam (st:state) : value =
match st with
| App(u,v), e, stk -> spam(u,e, (v,e)::stk)
| Lam(_, u), e, (v::stk) ->
spam(u, Env.push (ref (Clos v)) e, stk)
| Var n, e, stk ->
(match !(Env.access n e) with
| Clos(t,e') -> spam(t,e',stk)
| Box -> assert false)
| (Lam _ as t, e, []1) -> Clos(t,e)

The only difference with the KAM is the use of mutable refer-
ences to encode the global environment. But the mutability is not
exploited by the call-by-name strategy.

12 GLOBAL CALL-BY-NEED: THE POINTING
MAD

Call-by-need evaluation is an enhancement of call-by-name eval-
uation with both a flavor of call-by-value and a form of sharing
sometimes called memoization. The idea is that the first time that
a piece of code in the environment is needed (because it has to
replace a variable occurrence) it is evaluated before being used
(call-by-value flavor), and moreover the value is stored to avoid its
re-computation when it will be needed again (memoization).

The Pointing Milner Abstract machine by-neeD (Pointing MAD), a
simple call-by-need machine with a global environment, is defined
inFig. 4, and it is taken from [4], where the interested reader can find
an implementation theorem with respect to a call-by-need calculus.
Memoization is naturally realized using a global environment, by
updating its entries. The call-by-value flavor is instead realized by
adding a further data structure, the dump, storing the sequence
of environment entries traversed by evaluation to arrive at the
code under evaluation, and by introducing the syntactic category
of value, that are simply defined as abstractions. Let us explain the
transitions of the Pointing MAD (except for ~»¢,, that is simply
transition ~>¢ of the MAM):

® ~>¢,: when the code T substituting a variable x is needed, the
machine jumps into the entry [x«1] associated to x in the
environment and starts to evaluate 7. It also saves on the dump
the current stack 7 and the variable x in which it entered, to
backtrack when the evaluation of ¢ will be over. Last, it marks
the entry [x«t] with a special symbol O, meaning that the
entry is being evaluated.

e ~:if evaluation entered in a substitution (and so the dump is
non-empty) and evaluation is over (an abstraction v has been
obtained, and the stack is empty) then it is time to backtrack
out of the substitution. Concretely, the machine removes the
first entry (x,) from the dump, and it uses it to restore the
old stack 7 and update the suspended substitution [x«<0O] to
[x+®0]. Crucially, the transition also replaces the occurrence

14

PPDP’17, October 9-11, 2017, Namur, Belgium

of x that made the machine jump inside the substitution in
the first place with a renamed copy 0% of the obtained value
v—this is where the substitution process takes place.

e ~pg: it is the usual S-transition. Note that the Pointing MAD
in [4] has two variants of ~ g, but only to ease the correspon-
dence with the calculus and the proof of the implementation
theorem. The variants differ in how they treat the list structure
of the global environment E. Since such a structure disappears
in the implementation—because E is implemented as a store—
here we use a simpler machine with just one f-transition.

Complexity analysis. Accattoli and coauthors have provided a
detailed complexity analysis of the Pointing MAD. Let p : tg ~*s
be a Pointing MAD execution. Then

e Substitution vs f-transitions [11]: |p|s = O(lplg)s

o Commutative vs substitution (vs) [4]: |plc, = O(lpls + |p|/3),

and so |ple, = O(Iplg) while |ple, = O(Ipls - ltol), and so
Iple, = O(|p|ﬁ - |to]) as for the MAM / KAM. Then in general
lple = O(lplg - Itol).
The same reasoning for terminating executions on closed terms
done in Sect. 9 applies here to ~>¢,, and so in such a case we obtain
Iplc = O(lplp), that implies |p| = O(lplp).

The Pointing MAD can be implemented like the MAM using
the approach outlined in Sect. 6. A subterm invariant holds, and so
the cost of a single substitution transition is O(|ty|), because the
substituted value has to be renamed. All other transitions can be
implemented in constant time. Then the complexity of the Pointing
MAD is O(|p| g [to]), also if terminating executions and closed
terms are considered, because in that case commutative transitions
become faster but here substitution transitions still dominate.

13 SPLIT CALL-BY-NEED: THE SPLIT MAD

The next and final step is to apply the technology of split environ-
ments developed in Sect. 10 to the Pointing MAD of the previous
section, obtaining the Split MAD in Fig. 5. Analogously to how the
SPAM decodes to the MAM, the Split MAD decodes to the Pointing
MAD via the decoding function - ; in Fig. 5, and such a decoding
induces a strong bisimulation, whose proof is straightforward.

ProposITION 13.1 (SPLIT MAD / POINTING MAD STRONG BISIM-
ULATION). Lets be Split MAD reachable state and | € {c1, f, c2,s}.
Then s is a Pointing MAD reachable state and

(1) s~ s" implies sy, ~p s’ 5

(2) ifsyy ~>1 s’ then there iss” such thats ~»; s” ands" =s’.

From the bisimulation immediately follows that the Split MAD
implements call-by-need evaluation, but, since for the sake of con-
ciseness we did not introduce a call-by-need calculus, we do not
state such a theorem.

Complexity analysis. From the strong bisimulation property it fol-
lows that in terms of number of transitions the Split MAD behaves
exactly as the Pointing MAD, i.e. |p| = O(IpIﬁ - |to) in the general
case (where |t| is due to ~>¢,) and |p| = O(Iplﬁ) for terminating
executions on closed terms.

Single ~»¢, and ~» 3 transitions are constant-time, while ~
transitions are O(log |ty|) because of split environments, that is an
improvement over the Pointing MAD. Note that instead ~»¢, now

PPDP’17, October 9-11, 2017, Namur, Belgium

B. Accattoli and B. Barras

Closures e = (ie) Closure Decoding) @N =1
LocalEnv. e := €| [x<a]ue (t, [x<a] = e)N (t{x«a}, E)N
Stacks 7 = el|cum Stack / Gl Env / Dump Decoding ey = €
Dumps E := ¢€|(a,m)=D CumyN = CNEAN
GlobalEnv. E := ¢€|[a<c]=E|[a<O] = E [acc] = E = [accyl = En
States s = (C:ﬂ, D,E) (a,) = DN (a,) = Dy
Compilation t° = ((t€),¢,¢,€) State Decoding (c,m,D, E)N = (cn>Zn-Dn-EN)
L Code | LocEnv | Stack Dump Global Env Trans || Code | LocEnv Stack Dump Global Env
tp e P D E ~e, t e (p.e) = D E
Ax.t e cum D E ~p t [x<a] e p s D [a+c] = E
x e P D Exle(x)«(t,e”)] = E || ~oc, t e’ € (e(x),m) =D | E = [e(x)<DO] =
) e € (a,7) =D E:[a<O] = E ~g v e b D E : [a<(v,€)] =
Figure 5: Split Milner Abstract machine by-neeD (Split MAD).
costs more than for the Pointing MAD, because to jump in the global slet rec smad (st:dstate) : value =

environment (that before was constant-time) now the machine has
to first access the local environment, that requires O(log |¢y]). Such
a slowdown however does not impact on the overall complexity.
To sum up, our main result is that

THEOREM 13.2. The complexity of terminating executions on closed
terms on the Split MAD is bound by O(IpIﬁ -log |to1).

Sestoft’s Mark 3 machine in [39] is essentially the Split MAD
plus the compacting f-transitions at the end of Sect. 9 (to be precise:
Sestoft has only ~ g, because he preprocesses terms in a administra-
tive normal form to which only ~ g, applies). Here the compacting
transitions have no impact on the complexity, that is already linear
in |plg, which is why we did not include them in the Split MAD.
They do, however, make the environment more compact.

14 IMPLEMENTING THE SPLIT MAD

A naive way of implementing a call-by-need (or lazy) machine is
to patch a call-by-name machine: it suffices, in the variable case,
to first launch the machine on the computation associated to the
variable and, upon return, update the value of the variable. However,
this implementation is not tail-recursive and the interpreter may
consume a lot of space on the process stack.

The implementation can be kept tail-recursive by adding a new
component to the state (the dump). The dump collects pointers
to shared computations that are being performed, and also the
stack in which the result of the computation is to be placed. To
reduce the space requirements, these pointers are set to a special
value Box while the referenced computation is performed. This
allows for early garbage-collection of unused temporary steps of
the computation.

The Split MAD can be implemented straightforwardly, following
the definition of Fig. 4. We reuse the definitions of terms, local
environments and stacks of Sect. 11.

1type dump = (ptr * stack) list
2type dstate = term * env * stack x dump

3

5
6
7
8

9

15

match st with
| App(u,v), e, stk, d -> smad(u,e, (v,e)::stk,d)
| Lam(_,u), e, (v::stk), d ->
smad(u,Env.push(ref(Clos v)) e,stk,d)
| Var n, e, stk, d ->
let p = Env.access n e in
(match !p with
| Clos(t,e') -> p:=Box; smad(t,e',[],(p,stk)::d)
| Box -> assert false)
| Lam _ as t, e, [J1, (p,stk)::d —>
p := Clos(t,e); smad(t,e,stk,d)
| (Lam _ as t, e, [1, [1) -> Clos(t,e)

Each recursive call correspond to one of the rule of the Split
MAD: in order ~»¢,, ~ g, ey and ~»s. The last case correspond
to the final state of the machine. All steps are in constant time but
~>¢, which is logarithmic in the size of the initial term.

In a practical implementation, it would make sense to detect (in
line 12) when the global environment yields a A-abstraction, and
avoid multiple useless side-effects and dump operations. Another
valuable improvement would be to avoid (in line 6) closures which
code is a variable and eagerly perform the local environment access,
as in Sestoft [39]. This would require to change the type of stacks
(now a list of pointers) and move the store allocation from the
P-transition to the commutative one.

15 CONCLUSIONS

The paper provides a thorough study of local, global, and split
environments, from both complexity and implementative point of
views. In particular, it shows how the local ones admit a faster
implementation in the special case of terminating executions on
closed terms, which is the main case of interest for functional
languages. Moreover, such an improvement carries over to split
environments, and it is thus applicable to call-by-need evaluation,
the strategy on which the Coq abstract machine is actually based.

Environments and the Complexity of Abstract Machines

Companion paper and future work. The next step in our pro-
gram is to extend the complexity analysis to a richer call-by-need
A-calculus, closer to the one actually used by Coq abstract ma-
chine. The companion paper [6] studies the extension with pattern
matching—which is similar to the algebraic datatype extensions
studied by Sestoft in [39]—showing that its complexity analysis is
trickier than expected. In future work, we will address fixpoints,
open terms, and strong evaluation.

Acknowledgements. This work has been partially funded by the
ANR JCJC grant COCA HOLA (ANR-16-CE40-004-01).

REFERENCES

[1] Beniamino Accattoli. 2016. COCA HOLA.
beniaminoaccattoli/coca-hola. (2016).

[2] Beniamino Accattoli. 2016. The Complexity of Abstract Machines. In
WPTE@FSCD 2016. 1-15.

[3] Beniamino Accattoli. 2016. The Useful MAM, a Reasonable Implementation of
the Strong A-Calculus. In WoLLIC 2016. Springer, 1-21.

[4] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2014. Distilling
Abstract Machines. In ICFP 2014. ACM, 363-376.

[5] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2015. A Strong
Distillery. In APLAS 2015. Springer, 231-250.

[6] Beniamino Accattoli and Bruno Barras. 2017. The Negligible and Yet Subtle Cost
of Pattern Matching. Accepted to APLAS 2017. (2017).

[7] Beniamino Accattoli and Claudio Sacerdoti Coen. 2015. On the Relative Useful-
ness of Fireballs. In LICS 2015. IEEE Computer Society, 141-155.

[8] Beniamino Accattoli and Ugo Dal Lago. 2012. On the Invariance of the Unitary

Cost Model for Head Reduction. In RTA 2012. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 22-37.

Beniamino Accattoli and Giulio Guerrieri. 2017. Implementing Open Call-by-

Value. Accepted at FSEN 2017. (2017).

Beniamino Accattoli and Ugo Dal Lago. 2016. (Leftmost-Outermost) Beta Re-

duction is Invariant, Indeed. Logical Methods in Computer Science 12, 1 (2016).

https://doi.org/10.2168/LMCS-12(1:4)2016

[11] Beniamino Accattoli and Claudio Sacerdoti Coen. 2014. On the Value of Variables.

In WoLLIC 2014. Springer, 36-50.

Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. 2004. A functional correspon-

dence between call-by-need evaluators and lazy abstract machines. Inf. Process.

Lett. 90, 5 (2004), 223-232.

Zena M. Ariola, Aaron Bohannon, and Amr Sabry. 2009. Sequent calculi and

abstract machines. ACM Trans. Program. Lang. Syst. 31, 4 (2009), 13:1-13:48.

https://doi.org/10.1145/1516507.1516508

Zena M. Ariola and Matthias Felleisen. 1997. The Call-By-Need lambda Calculus.

J. Funct. Program. 7, 3 (1997), 265-301.

Thibaut Balabonski, Pablo Barenbaum, Eduardo Bonelli, and Delia Kesner. 2017.

Foundations of Strong Call by Need. Accepted at ICFP 2017. (2017).

Bruno Barras. 1999. Auto-validation d’un systéme de preuves avec familles induc-

tives. Ph.D. Dissertation. Université Paris 7.

Guy E. Blelloch and John Greiner. 1995. Parallelism in Sequential Functional

Languages. In FPCA 1995. ACM, 226-237.

Stephen Chang and Matthias Felleisen. 2012. The Call-by-Need Lambda Calculus,

Revisited. In ESOP 2012. Springer, 128-147.

Coq Development Team. 2016. The Coq Proof-Assistant Reference Manual,

version 8.6. (2016). http://coq.inria.fr

Pierre Crégut. 2007. Strongly reducing variants of the Krivine abstract machine.

Higher-Order and Symbolic Computation 20, 3 (2007), 209-230.

Olivier Danvy and Lasse R. Nielsen. 2004. Refocusing in Reduction Semantics.

Technical Report RS-04-26. BRICS.

Olivier Danvy and Ian Zerny. 2013. A synthetic operational account of call-by-

need evaluation. In PPDP 2013. ACM, 97-108.

Matthias Felleisen and Daniel P. Friedman. 1986. Control operators, the SECD-

machine, and the lambda-calculus. In 3rd Working Conference on the Formal

Description of Programming Concepts.

Maribel Fernandez and Nikolaos Siafakas. 2009. New Developments in Environ-

ment Machines. Electr. Notes Theor. Comput. Sci. 237 (2009), 57-73.

Daniel P. Friedman, Abdulaziz Ghuloum, Jeremy G. Siek, and Onnie Lynn

Winebarger. 2007. Improving the lazy Krivine machine. Higher-Order and Sym-

bolic Computation 20, 3 (2007), 271-293.

Ronald Garcia, Andrew Lumsdaine, and Amr Sabry. 2009. Lazy evaluation and

delimited control. In POPL 2009. ACM, 153-164.

Benjamin Grégoire and Xavier Leroy. 2002. A compiled implementation of strong

reduction. In ICFP 2002). ACM, 235-246.

https://sites.google.com/site/

—
)

=
A

(13]

(14]

[15

(16]

=
=

(18

[19]

[20

[21

[22

[23

[24

[25

[26

[27

16

PPDP’17, October 9-11, 2017, Namur, Belgium

[28] Thérése Hardin and Luc Maranget. 1998. Functional Runtime Systems Within
the Lambda-Sigma Calculus. . Funct. Program. 8, 2 (1998), 131-176.

[29] Jean-Baptiste Jeannin and Dexter Kozen. 2012. Computing with Capsules. Journal
of Automata, Languages and Combinatorics 17, 2-4 (2012), 185-204.

[30] Jean-Louis Krivine. 2007. A call-by-name lambda-calculus machine. Higher-Order

and Symbolic Computation 20, 3 (2007), 199-207.

Peter John Landin. 1964. The Mechanical Evaluation of Expressions. Comput. 3.

6, 4 (Jan. 1964), 308-320. https://doi.org/10.1093/comjnl/6.4.308

[32] John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In POPL 1993.

ACM Press, 144-154.

Xavier Leroy. 1990. The ZINC experiment: an economical implementation of the

ML language. Technical report 117. INRIA. http://gallium.inria.fr/~xleroy/publi/

ZINC.pdf

[34] John Maraist, Martin Odersky, and Philip Wadler. 1998. The Call-by-Need Lambda

Calculus. . Funct. Program. 8, 3 (1998), 275-317.

Chris Okasaki. 1995. Purely Functional Random-Access Lists. In FPCA 1995. ACM,

86-95.

Pierre-Marie Pédrot and Alexis Saurin. 2016. Classical By-Need. In ESOP 2016.

Springer, 616-643. https://doi.org/10.1007/978-3-662-49498-1_24

Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-Calculus.

Theor. Comput. Sci. 1, 2 (1975), 125-159.

David Sands, Jorgen Gustavsson, and Andrew Moran. 2002. Lambda Calculi and

Linear Speedups. In The Essence of Computation, Complexity, Analysis, Transfor-

mation. Essays Dedicated to Neil D. Jones. Springer, 60-84.

Peter Sestoft. 1997. Deriving a Lazy Abstract Machine. J. Funct. Program.7, 3

(1997), 231-264.

Christopher P. Wadsworth. 1971. Semantics and pragmatics of the lambda-calculus.

PhD Thesis. Oxford. Chapter 4.

Mitchell Wand. 2007. On the correctness of the Krivine machine. Higher-Order

and Symbolic Computation 20, 3 (2007), 231-235.

(31]

[33]

(35]
[36]
(37]

(38]

(39]
[40]

[41]

