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Figure 1: Our method recognizes the expression of a human 3D skeleton animation.

ABSTRACT
We present a novel framework for the recognition of body expres-
sions using human postures. Proposed system is based on analyzing
the spectral difference between an expressive and a neutral ani-
mation. Second problem that has been addressed in this paper is
formalization of neutral animation. Formalization of neutral ani-
mation has not been tackled before and it can be very useful for
the domain of synthesis of animation, recognition of expressions,
etc. In this article, we proposed a cost function to synthesize a neu-
tral motion from expressive motion. The cost function formalizes
a neutral motion by computing the distance and by combining it
with acceleration of each body joints during a motion. We have
evaluated our approach on several databases with heterogeneous
movements and body expressions. Our body expression recognition
results exceeds state of the art on evaluated databases.
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• Computing methodologies→Activity recognition and un-
derstanding; Motion capture;
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1 INTRODUCTION
Many applications would benefit from the ability to understand
human emotional state in order to provide more natural interaction,
e.g. video games, video surveillance, human-computer interaction,
artistic creation, etc. Emotion is a complex phenomena that is diffi-
cult to formalize. Expression of an emotion could be personal and
subjective as two persons could perceive and interpret differently
the same expression. Its perception changes from one culture to
another [18]. Furthermore, human expresses emotional information
through several channels, like facial expression, body movement
and sound. Several studies from various domains have shown that
body expressions are as powerful as those of the face to express emo-
tion [17]. Whereas facial expression recognition was widely studied
[7, 13, 15, 16], body expression recognition is more an emerging
area. Early proposed methods for body movement analysis [14, 19]
were limited to specific movements or expressions. Nevertheless,
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with the growth and ease of accessibility of devices that track 3-
dimensional body like the Kinect [4, 22] or accelerometer [26] based
motion capture system,many applications will benefit from analysis
of body movements.

This paper presents a method to detect and classify expression
through a sequence of 3D skeleton-based poses. The challenge is
to have a system that recognize the expression invariant to body
movement. For example, expression of happiness could be shown
while running, jumping, kicking, etc.

In the rest of the paper, depending on the case involved we use
the term "Body Expressions" to refer to emotion expressed by body
posture while term of style refers to the domain of synthesis of
animation. Style is an important component of character animation,
as that includes aesthetic, original, and emotional characteristics.
For instance, an old walking, a depressed kicking, a character with
a wooden leg, etc. are different way to express how a motion differs
from the neutral movement.

Inspired by style transfer in animation synthesis [33], we have
used the difference between an expressive and corresponding neu-
tral animation for classification. The difference efficiently makes
the purpose system independent of the movement. Computing this
residue requires a neutral motion. Since real applications capture
the whole movement including the expression, we proposed to
retrieve a neutral motion from an expressive motion. We compute
the residue in the frequency domain between the neutral motion
produced by our method and the input motion containing the ex-
pression. This residue is used by classifier in order to recognize the
body expression. We have evaluated our work on four databases
that contains heterogeneous movements and expressions.

The paper is organized as follows. Section 2 presents the state
of the art on emotion analysis. Section 3 details our method. In
Section 4 we present the results obtained on different databases.
We compared our method with state-of-the-art approaches. Finally,
Section 5 concludes the paper and presents future work.

2 RELATEDWORK
In recent years, researchers have mainly focused on automatic facial
expression recognition (FER) [7, 13, 16]. However, the automatic
detection of expression based on human posture is an emerging
topic motivated by the recent ease to capture human motions; with-
out marker and with low price devices. Furthermore, psychological
studies show that the human posture is as powerful as facial expres-
sions in conveying emotions [21]. First, we present the classical
approaches based on features extraction, then we continue with
the different representation of motions in order to motivate our
approach.

Many existing approaches focus on very specific actions, as of-
ten done in psychology studies. Many papers have focused on the
locomotion [5, 14, 23, 24, 24], some on knocking actions [6, 11], on
artistic performance [25], or on talking persons [29]. Body move-
ments are characterized by a high dimensional configuration space
with many interrelated degrees of freedom. Psychologists’ stud-
ies have sought to understand body expression according to body
movements, i.e. form and movement. Two main levels of body
descriptors have emerged: high- and low-level descriptors. The

low-level descriptors provide features that quantifies the move-
ments (joint angles, 3D positions, distance between joints, velocity,
acceleration, etc.). We note a lack of common vocabulary in dif-
ferent papers whereas they use similar descriptors. The high-level
descriptors are very context-dependent and thus, are difficult to
compare in a general point of views. The most popular formalism
is certainly the one used to analyze dance movements proposed by
Laban and Ullmann [30]. The Laban analysis provides a consistent
representation of gestures expressibility. This model consists of
characterizing the body motion in terms of a fixed number of quali-
ties. The Laban model analysis includes five major qualities: body,
relationship, space, effort, and shape which allows summarizing
and interpreting movements with a small set of parameters.

Few state of the art papers tackle the analysis of heterogeneous
bodymovement. Kleinsmith et al. [18] proposed the UCLIC database
featuring 13 participants from different cultural regions, portray-
ing four emotions (anger, fear, happiness and sadness). Wang et al.
[31] proposed a real-time system that recognizes emotions from
body movements. They used a combination of low-level 3D pos-
tural features and high level kinematic and geometrical features.
They obtained a classification rate of 78% with a Random Forest
classifier on the UCLIC database, we will compare our method with
their results in the Section 4 for comparison. Truong et al. [27] pro-
posed a new set of 3D gesture descriptors based on a generalization
of the Laban descriptor model for gestures expressiveness. They
obtained a recognition rate for action recognition of 97% on the
Microsoft Research Cambridge-12 dataset [10]. They also tested
their classification approach on their own database which contains
882 gestures and achieved best F-Score of 56.9%. The F-score is a
measure of a test accuracy. Finally, Crenn et al. [9] proposed a new
set of two-levels 3D descriptors based on psychological studies.
They proposed low-level features which are based on visual cues,
and the high-level features are statistic operator in order to reduce
the feature vector size and compact the information. They have
evaluated their approach on different databases with heterogeneous
movements and body expression. They obtained a classification
rate of 93% on a synthetic database and results at par with state of
the art for another database.

We have presented different methods based on features extrac-
tion in order to recognize body expression. The main issue with that
kind of approaches is that they are not invariant to the movement
performed whereas it is very important given the high degrees
of freedom of the body. Indeed, most of the features used by the
different methods mentioned above are highly dependent on the
movement realized (speed, form, distance, etc.). From this conclu-
sion, we have modelized a style as an enrichment of a gesture. We
argue that separating the gesture from the expression is probably
an important point in the analysis of expressions in an movement.
Our method is inspired by the domain of the Computer Graphics
which used different representations of body movement and ges-
ture expressiveness to edit and generate new animations. These
editions of an animation can be done by time warping, editing speed
and spatial amplitude of the motions of body part joints [1, 12, 32].
Early in Computer Graphics, researchers [8, 28] proposed to edit an
animation as a signal using Fourier transform. Recently, with the
goal of transferring expressions between two animations, Yumer
and Mitra [33] proposed an approach which succeeds to transfer a
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style based on the residue obtains from the difference on the spec-
tral intensity representations of reference and source styles for an
arbitrary action. They showed that the difference in the frequency
domain between an expressive motion and neutral one is highly
correlated even though the actions are different. Our approach is
inspired by their method as we believe that the spectral residue is
more invariant to the movement than methods based on feature
extraction.

3 PROPOSED METHOD
Our main focus in this work is to recognize body expressions in-
dependently of the movement performed. Our method is based on
a neutral movement synthesis from a given expressive one. Our
framework consists of two steps, the synthesis of the neutral motion
and the classification based on the residue. As pointed out above, we
assume that spectral difference between two movements contains
the information for the extraction of body expression. The first
problem consists to obtain a neutral animation from an expressive
movement. The overview of our approach is given in Figure 2.

3.1 Neutral Animation Synthesis
The notion of neutral versus expressive movement is always linked
to a context. Often understood as a sequence of actions without an
emotional mark, a neutral movement may eventually be confused
with a robotic movement. Our approach is based on a filtering of
the trajectories of each articulation in order to reduce the oscilla-
tions in the expressive movement. The second step used inverse
kinematics to produce a robotic motion without expression. Finally,
we introduce a cost function that will compromise between joint
filtering and inverse kinematics.

3.1.1 Body Joint Trajectory Smoothing. The input motion data
are temporal samples of joint angles that represent the skeleton
expressive animation. Our first step is to compute the joint trajec-
tories in 3D and convert them in a cubic B-spline formalism 1. The
B-spline curves are well-adapted for the operations of simplification
we will apply on the trajectories to derive a neutral motion. The
Equation of a B-splines is:

S(t) =
m−n−1∑
i=0

bi,n (t).Pi , t ∈ [0, 1] (1)

where n is the order of our B-spline. In our case, we use the Cubic
B-spline so we have n = 2.m is the number of control points. The
points Pi form a polygon called the control polygon: the number
of points making up this polygon ism − n. Thesem − n functions
B-spline of degree n are defined by recurrence on the lower degree:

bj,0(t) =
{
1, if tj ≤ t ≤ tj+1
0, otherwise

bj,n (t) =
t − tj

tj+n − tj
bj,n−1(t) +

tj+n+1
tj+n+1 − t j + 1

bj+1,n−1(t)
(2)

As a first step, we smooth the original trajectories of each body
joints represented by B-spline.We decimate each B-spline by remov-
ing one control point from each curve. We reconstruct the B-spline
with the remaining control points. Our method for smoothing the

trajectory of body joint is presented is the Figure 3. As one can
see from Figure 3, we remove one control point per curve, i.e. on
eachm − n) functions. The position of the new control points is
interpolated on eachm − n functions with a parameter t . On the
Figure 3, we used t = 0.5.

Our iterative method has two parameters that control the num-
ber of iterations and the position of the new points by a cubic
interpolation. The different levels of details which can be generated
from the input trajectory are presented on the Figure 4. This sim-
plification reduced the variation of the motion for each body joint
trajectory. By analyzing lots of expressive movements in different
databases, we have categorized two types of expressive trajectories:
energetic (happy, proud, anger, etc.) and moderate (depressed, old,
etc.) movements. A neutral trajectory is more "flatten" that an ener-
getic trajectory, i.e. joint has less variations during the motion and
can be clearly produced by this smoothing step. For the moderate
movements the smoothing step does not change much the trajec-
tory but the IK step during the optimization process presented in
the two next Sections will edit the movement toward a neutral one.

Our method to smooth an input motion is presented on a the
Figure 5. The input motion is represented by the black curve, the
B-spline obtained by our method is represented by the green curve
and the ground truth B-spline is represented by the red curve. The
ground truth curve is the neutral trajectory of the joint as pro-
vided in the databases including neutral movement. These curves
show the right foot during a kicking action. With a simple pass
of smoothing, we synthesize a new motion similar to the neutral
motion. To obtain this neutral trajectory from the input expressive
one, we have manually tweaked the simplifications parameters of
the B-spline. Finding efficient parameters working on any kind
of movements is manually unreachable. In the Section 3.1.3 we
propose an optimization process based on a function which charac-
terize a neutral motion. In addition to these parameters setting, the
trajectories generated individually by this method do not guaranty
that the constraints of the animation are respected like the constant
length of the bones or the feet that do not slide on the ground.

3.1.2 Inverse Kinematics. Smoothing the B-spline of the joint
trajectories is not sufficient to produce a neutral movement. First,
the motion generated from the smoothing step does not respect the
constant length of the bones and suffer from artifacts as feet sliding
on the ground. To solve these issues, we apply an Inverse Kinematics
(IK) technique. IK is defined as the problem of determining a set
of appropriate joint configurations for which the end effectors
move to the desired position as smoothly, rapidly, and as accurately
as possible. We use the Fabrik algorithm proposed by Aristidou
and Lasenby in [3]. Fabrik has the advantages to converge in few
iterations, produces visually realistic poses and other constraints
like non-foot-sliding can easily be included. In our method, we used
Fabrik with Model Constraints [2] in order to represent a human-
like model. The Model Constraints is an extension of the Fabrik
method that proposed a human-like model using Fabrik.

The Algorithm 1 describes the different steps to synthesize a
neutral motion from an expressive one and the different parameters
used during the computation. This algorithm with an efficient set of
parameters allows to synthesize a neutral motion from any kind of
expressive motion. Even if it may produce a neutral motion which
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Figure 2: Overview of our framework.
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Figure 3: Our method for smoothing a body joint trajectory
based on a decimation of B-spline control points. Blue B-
spline represents the original motion. Red B-spline shows
the smoothed curve after one iteration, green B-spine after
two iterations.

could be a bit "robotic", it is nevertheless efficient for the classifi-
cation part, as confirmed by the recognition rate in Section 4. The
algorithm has a set of 16 parameters in order to produce a neutral
motion. Finding efficient values for these different parameters is
not manually tractable for different motions on different databases.

a ) Original B-spline

b ) Smoothed B-spline: iteration 1

c ) Smoothed B-spline: iteration 2

d ) Smoothed B-spline: iteration 3

e ) Smoothed B-spline: iteration 4

Figure 4: Different level of detail of an input trajectory gen-
erated by our smoothing tool.

We have proposed an energy-based term which describes a neutral
motion in the next Section and an optimization process provide
parameters to generate a neutral animation.

3.1.3 Cost Function for generating a neutral motion. The several
parameters of the trajectories simplification and the IK step are de-
termined by a minimization process. For this purpose, we propose
a function that characterizes a coarse neutral animation. For the
purpose of an intuitive formalism we have designed the function
as more the value returned by this function is small, more "neutral"
the animation is. A neutral motion costs little. The minimization
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Figure 5: Comparison of different trajectories for a kicking
action. The input motion is in black (angry expression). The
"neutral" trajectory generated by ourmethod from the input
one is in green. And in red, the neutral trajectory provided
by the database may serve as a comparison.

process seeks to find the best parameters of the trajectories sim-
plifications and the IK step that produce the lowest value by the
cost function as possible for any kind of input action as jump, run,
walk, etc. This cost function that characterizes the neutrality of a
motion is relatively simple and produce coarse neutral animations
but these coarse animations are good enough for our purpose of
classification. We based our criteria on the distance covered by each
joints and their acceleration during an action. We assume that a
neutral movement is related to the muscular energy produced by
the person. The person aims to rest his body while reaching the
gesture he wants to do. Thus, we minimize the distance and the
acceleration done by the joints. Denoting Ds (j) (respectively Do (j))
the distance covered by the joint j during an action computed on the
synthesized movement (respectively the original movement). Given
As(j) (respectively Ao(j)) the acceleration of the joint j during an
action computed on the synthesized movement (respectively on
the original movement). The cost function is defined as the sum of
the difference between original distance and acceleration for each
joint and computed one. The minimization of the cost function pro-
vides a coarse neutral animation used in Section 3.2 to compute the
residue between the original motion and the synthesized neutral
one.

Cost =
∑
j ∈θ
|(1 − λ)(Ds (j) − Do (j)) + λ(As(j) − Ao(j))|2 (3)

with j represent a body joint, θ is the set of body joints of the
input skeleton and λ ∈ [0, 1] is a weight parameter. The influence
of the factor λ, for the classification rate on the Siggraph database,
is shown in Figure 6. With λ = 0, we are only using the distance
term: and with λ = 1, we are only using the acceleration term.

Algorithm 1: Algorithm for neutral movement synthesis
Input:Mi i: Input Motion
Data: joints: a table of all body joints

trajectories: a table of all trajectories for each joint
trajectoriesSmooth: a table of all trajectories smooth for
each joint

Result:Mn : Neutral Motion
Parameters : samplingValue: temporal parameter determining

anchoring postures for the IK step
weightTargets: a table of weight that balance the
IK goal (1 = at the goal and 0 = idle pose of our
skeleton) for the rotation and position.
weightHints: a table of weight that balance the
IK hint (1 = at the goal and 0 = idle pose of our
skeleton) for the rotation and position.

1 foreach joint, ji , in joints do
2 trajectoriesi ← computeTrajectory(ji );
3 trajectoriesSmoothi ← smoothTrajectory(trajectoriesi );
4 end
5 foreach EndEffector, endi , in joints do
6 indiceHint← endi .getParent();
7 for i =0; i < endTime; i += samplingValue do
8 tarдetendi ← trajectoriesSmoothi ;
9 hintendi ← trajectoriesSmoothindiceHint ;

10 IK_Step( tarдetendi , hintendi , weightTargets,
weightHints);

11 end
12 end

The distances Do (j) and Ds (j) covered by a joint j during an
action are given by the length of our B-spline. These distances
are approximating by sampling multiple points on our spline and
then calculate the distance between these points. The accelerations
Eo (j) and Es (j) of a joint j gives us information about the energy
spend by joint during the action. To find these accelerations, we
are calculating the second derivative of each B-spline per joint.

Implementation Details The cost function is minimized it-
eratively using Particle Swarm Optimization (PSO). PSO has the
advantage to require few or no assumptions about the function
being optimized and can search in very large spaces of candidate
solutions. The main issue with PSO is that the solution founded
is not guaranteed to be the optimal solution. Based on our tests,
finding a good solution instead of the optimal one is sufficient, since
the coarse neutral animation is used for the differentiation with
the expressive one before the classification. We have experimented
different value of λ (see Figure 6) and we have empirically found
that λ = 0.2 is a good default setting for all databases.

3.2 Residue Between Neutral and Expressive
Motion

At this stage, we have the original expressive motion and a coarse
neutral motion obtained by optimizing the cost function. In order
to extract the expression from the original input motion, our idea
is to analyze the difference between the neutral and the expressive
motion. This difference extracts the body expression invariant to
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Figure 6: Comparison of the classification ratewith different
values of λ and sampling on the SIGGRAPH Database.

body movement. We argue that a spectral representation of a mo-
tion is well adapted to separate the expression from the gesture.
This assumption is supported by the work of Yumer and Mitra [33]
that manages to transfer a style between animations in the spectral
domain. We calculate the spectral representation of the input mo-
tion and the synthesized neutral motion. Then, we subtract both
magnitudes for each body joints and obtain values that include
mainly the expression of animation.

We recall the formulation of the Discrete Fourier Transform
(DFT). Let xn be a discrete time domain signal of one of the degrees
of freedom (DOF) of a human motion data. The Discrete Fourier
Transform Xk of xn is given by:

Xk =
N−1∑
n=0

xn · e−i2πkn/N (4)

where N is the length of the signal and i2 = −1. The single-sided
spectrum Xω is given by:

Xω =
2
N
Xk k = 0, ...,N /2 (5)

where ω = (xs/N )k is the frequency transformed from the sam-
ples k in the spectral space. We only use the single-sided spectrum
in the positive frequency range (ω = 0 : xs/2). Here, xs is the sam-
pling frequency of the original time domain signal xn . From this
spectral representation, we can extract the magnitude and phase of
the spectra. The magnitude defines the existence and intensity of a
motion whereas the phase describes the relative timing.

The residue between the neutral animation and the expressive
animation is calculated for each degree of freedom (DOF) of each
joint in the skeleton independently from the others. It consists
as a subtraction between the neutral spectral magnitude and the
expressive spectral magnitude. In formal manner, we describe it
by the Equation 6 whereMs (ω, j, l) (respectivelyMo (ω, j, l)) is the
spectral magnitude for the joint j and for the DOF l at the frequency
ω during an action computed on the synthesized neutral movement
(respectively on the original movement).

Residue =(|Mo (ω, j, l) −Ms (ω, j, l)|)
j ∈ θ
l ∈ DOF
ω ∈ 1..N where N is the signal length

(6)

The magnitude contains the information about the motion and
the expression of an animation, it provides enough information.
The residue forms the feature vector we use as input data of the
classifiers in order to get the expression type. The classification
rate given in the Section 4 is the ratio between the number of good
classification divided by the number of tested animation. In our
approach, we have to define the number of sampling of the input
signal N . The Figure 6 illustrates the variation of the classification
rate (in %) with different sampling value. The classification rate
decreases when the sampling value is increased, this is due to the
fact that it increases the size of the feature vector which generate
noise for the classifier. The size of our feature vector is given by the
number of DOF in the skeleton multiplied by this sampling value
of the input signal. We have set the sampling value to 8 for the
Section 4.

4 RESULTS AND ANALYSIS
We have tested our method on four databases where characteristics
are detailed in the Table 1. Three of them are acted databases,
while the last one consists of synthetic animations generated by
the method of Xia et al. [32]. We will refer the last database as the
SIGGRAPH database in the rest of this paper.

(1) Biological Motion [20]. This database contains 4080 motions
(walking, knocking, lifting and throwing) with 4 expressions
(angry, neutral, happy, sad). Unfortunately, we used only
a subset of 1356 motions, especially knocking as it is the
set of motions available on the web. The state of the art
presented in Table 2 uses the same set of motions we used.
This database contains 15 male and 15 female amateur actors
with a mean age of 22 years. Motions have been recorded
using a motion capture system leading to a set of 35 body
joints.

(2) UCLIC Affective Body Posture and Motion [18]. This acted
database contains 183 animations with 4 expressions (fear,
sad, happy, angry). This database contains 13 human sub-
jects from different cultural regions. Actors were directed to
perform the emotion postures in their own way. They used
a motion capture system to collect 3D affective postures
leading to a set of 32 body joints.

(3) MPI Emotional Body Expressions Database for Narrative
Scenarios [29]. This database consists of 1447 motions of
amateur actors narrating coherent stories. This database
contains 8 actors, 4 females and 4 males with a mean age
of 25 years. Actors were asked to imagine that they were
narrating several stories to children. It contains 11 emotions
(amusement, anger, disgust, fear, joy, neutral, pride, relief,
sadness, shame, surprise). They used a motion capture sys-
tem to collect 3D postures leading to set of 22 joints. This
database is highly imbalanced is terms of expressions. Joy
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is the most represented expression with 227 instances and
shame is the less represented expression with 58 instances.

(4) SIGGRAPH database [32]. The SIGGRAPH database is a data-
base used in synthesis of animation. They recorded 11 min-
utes of motion capture data. It contains 572 animations with
8 expressions or style (angry, childlike, depressed, neutral,
old, proud, sexy, strutting). Notices that the SIGGRAPH data-
base includes the largest range of movements: jump, run,
kick, walk, punching and transitions between these motions.

Table 1: Description of the databases used for the test of our
method.

DataBase Number of movements Number of expressions
UCLIC [18] 183 4
Biological [20] 1356 4
SIGGRAPH [32] 572 4 and 4 styles
MPI [29] 1443 11

Figure 7 shows the influence of the size of the training set on
the performance of the three classifiers used in our method. We
compared the performance of our method with Support Vector
Machine (SVM) with χ2 kernel, Random Forest with 100 trees and
2-Nearest neighbor based on Euclidean distance. Figure 7 has been
produced on the SIGGRAPH database. For all the classifiers, we have
computed the classification rate using different number of folds
(k’s) for the k-fold cross validation technique. The performance of
our framework was evaluated using a conventional Random Forest
with 10 folds and 100 trees as its achieved highest recognition rate.
Results obtain with the Random Forest show how well our feature
space was clustered. Table 2 shows the comparison of the achieved
recognition rate of the proposed framework with the state-of-the-
art methods using the same database. Table 2 illustrated that our
framework exceeds state of the art methods in terms of expression
recognition accuracy. Indeed, we are comparing our method with
specific methods developed for one database containing often only
on type of movement whereas our method is intended to be generic.
We have evaluated our approach on a PC i7-4710MQ with 8GB of
Ram. The neutral animation synthesis take 180ms for a sequence
of 2 seconds with 120 frames, after running the optimization to
find the parameters that satisfy the cost function. The optimization
process takes 8 seconds for the same sequence of 2 seconds in C#.
We believe that an optimized code can be real time.

Table 2: Comparison of our methods using all features men-
tioned in this paper to the state of the art methods. Notice
that the specific method on the Biological database uses a
dedicated algorithm to one kind of movements by comput-
ing an average motion and can not be generalized.

Database Results from state-of-the-art Our results
UCLIC 78% [31] 83%
Biological 50% (general) to 80% (specific) [6] 57%
SIGGRAPH 93% [9] 98%
MPI – 50%
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Figure 7: Evolution of the classification rate for the SIG-
GRAPH Database with the increasing number of folds for
the k-fold cross validation method

Table 2 shows that the proposed framework is comparable to
any other state-of-the-art method in terms of expression recogni-
tion accuracy. We obtain better recognition rate than the state of
the art on the SIGGRAPH database and the UCLIC database. In
the Biological Motion Database, movements are mainly knocking
at a door (≈ 1200 animations out of 1356 animations). The state
of the art approach [6] uses this particularity to compute the av-
erage movement of knocking at a door and then subtracting this
movement before running the recognition in order to emphasize
the expression. Their recognition rate for this unbiased method
is 81%. Nevertheless, this trick is possible for very specific move-
ments, when you assume that all movements are similar. Also, they
proposed a segmentation method to decompose a knocking action
into motion primitives which are analyzed in terms of dynamic
features. Since the purpose of our proposed framework is to be
robust against heterogeneous movements, we cannot apply this
assumption. We believe that to compare the approach [6] and ours,
their biased recognition rate is 50% whereas our approach obtains
recognition rate of 57%. Finally, to the best of our knowledge, no
method in the literature on body expression recognition has tested
the MPI database, our method obtains a recognition rate of 50%.
This database is difficult because of the number of expressions 11
combined with a highly imbalanced database. By using a common
re-sampling filter to deal with imbalanced database, our method
obtains a recognition rate of 67%.

5 DISCUSSIONS AND CONCLUSION
We have presented a novel approach for automatic recognition of
body expressions through 3D skeleton provided by motion capture
data. We argue that body expressions can be robustly recognized
by analyzing the difference between neutral and expressive ani-
mations in the frequency domain. One of the contribution of the
proposed method is the synthesis of plausible neutral motion from
an expressive motion, problem that was never tackle to our knowl-
edge. Proposed method is able to generate a neutral motion from
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an expressive animation even in complex cases: jump, run, kick, etc.
From the synthesized neutral motion, proposed method classifies
expressions of the input motion by computing the spectral differ-
ence in the Fourier domain between the neutral and expression
motion. We have evaluated our approach on four databases that
contain heterogeneous movements and expressions and obtained
results that exceeds state of the art. Thus, our approach opens up
many possibilities for human-computer interaction applications.
One such application that can benefit from proposed approach is
the generation of video games using the Kinect-like device. Com-
puter games can benefit from real time body expression analysis
to adapt its content at run time i.e. dynamic game play based on
expressions exhibited by player’s body .

In future we aim to continue working on method that can gen-
erate more realistic neutral animations by adding a technique to
change the timing of the neutral animation. This can be achieved by
analyzing the phase of the neutral animation produced by proposed
method. Another direction that we are looking forward to explore
is the usage of the Quaternion Fourier Transform in order to have
a more accurate signal information since the joint channels are
processed in a single unit. Finally, an improvement of the validation
will be to test our approach on multi-simultaneous actions during
a real live demonstration with a Kinect for instance.
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