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Abstract. Motivated by the understanding of shape effects in granular materials, we numerically investigate 
the macroscopic and microstructural properties of anisotropic dense assemblies of frictionless polydisperse 
rigid pentagons in shear flow, and compare them with similar systems of disks. Once subjected to large 
cumulative shear strains their rheology and microstructure are investigated in uniform steady states, de-

pending on inertial number I, which ranges from the quasistatic limit (I ∼ 10−5) to 0.2. In the quasistatic 
limit both systems are devoid of Reynolds dilatancy, i.e., flow at their random close packing density. Both 
macroscopic friction angle ϕ, an increasing function of I, and solid fraction ν, a decreasing function of I, are 
larger with pentagons than with disks at small I, but the differences decline for larger I and, remark-ably, 
nearly vanish for I ∼ 0.2. Under growing I, the depletion of contact networks is considerably slower with 
pentagons, in which increasingly anisotropic, but still well-connected force-transmitting structures are 
maintained throughout the studied range. Whereas contact anisotropy and force anisotropy contribute 
nearly equally to the shear strength in disk assemblies, the latter effect dominates with pentagons at small I, 
while the former takes over for I of the order of 10−2. The size of clusters of grains in side-to-side contact, 
typically comprising more than 10 pentagons in the quasistatic limit, very gradually decreases for growing I.

1 Introduction

Disordered assemblies of frictionless particles are the
arche-typal representation of some amorphous materials
made of athermal particles with very short-range interac-
tions, such as suspensions and colloidal glasses. They have
often been regarded as “reference systems” that highlight
generic features of granular materials. In the absence of
friction, the particles are allowed to reach their lowest con-
figurational energy without being trapped in metastable
states as a consequence of frictional frustration. If sub-
jected to isotropic confining forces (under hydrostatic
pressure) their volume should be minimized. Such isotrop-
ically confined configurations therefore coincide with the
so-called “random close packing” (RCP) states —densest
possible disordered arrangements of rigid, impenetrable
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grains. The interest in this classical concept [1, 2], was
thus recently revived, and, over the past 20 years RCP
states have been quite intensively investigated and dis-
cussed, primarily for identical spherical grains [3–5], then
for various grain shapes: ellipsoids with different aspect
ratios [6–10], monodisperse Platonic or Archimedian poly-
hedra [11–13], “superballs” [14] (i.e., smooth objects with
varying shapes interpolating continuously from cubes to
octahedra) . . . RCP configurations, prepared without fric-
tion, were also used as maximally dense initial states
in the simulation of shear tests with frictional irregular
polyhedra with increasing angularity [15], or with non-
convex grains [16]. Among the issues repeatedly addressed
in studies of isotropically assembled packs of friction-
less objects are the uniqueness, or lack thereof, of “the
RCP state” [5,17,18]; and the absence of force indetermi-
nacy [3,5], which may or not, according to the stability of
“floppy modes” [19,20], imply the isostaticity of the force-
carrying structure, and which entails a singular distribu-
tion of the (anomalously soft) eigenmodes of the stiffness
matrix [21].

The rheology of assemblies of frictionless, rigid ob-
jects of different shapes has, in comparison, elicited



considerably fewer works. Studies of quasistatically de-
formed assemblies of grains of varying shapes [10, 22–27], 
or of their flow in the inertial regime [28–30] usually in-
troduce intergranular friction, which, in addition to ge-
ometric features, essentially determines the material be-
haviour, outside a small strain regime [31]— the limited 
effects of restitution coefficients in collisions (or viscous 
dissipation), which vanish in the quasistatic limit, are of-
ten negligible in the dense inertial flow regime [28, 31]. 
The material ability to resist shear stems from friction and 
from geometric effects associated to steric exclusion [32]. 
In the absence of friction, the material behaviour essen-
tially results from the geometry of solid grain packs. The 
contact networks, due to the lack of force indeterminacy of 
frictionless rigid grain assemblies, are fragile and tend to 
become exquisitely sensitive to variations in the applied 
load [33, 34]. Their ability to adapt to stress variations 
and their rearrangement patterns are at the microscopic 
origin of some basic and mysterious properties of rigid, 
frictionless grains, as recently documented for spherical 
beads [34,35], as well as for disks and pentagons [36–39] in 
two dimensions (2D): granular materials made of such par-
ticles possess some macroscopic (internal) friction coeffi-
cient, but are devoid of dilatancy. These properties are re-
markable in several respects. The absence of dilatancy, in 
particular, contradicts ideas dating back to Reynolds [40], 
who coined the word “dilatancy” and attributed the phe-
nomenon to steric exclusion effects. While the behaviour 
of frictionless grains is entirely dominated by steric ex-
clusion, there is no dilatancy in that case. Furthermore, 
the qualitative similarity between rounded and angular 
particles (which could be naively be expected to behave 
like frictional ones) also seems counter-intuitive, given the 
observed rheological influence of side-to-side contacts be-
tween polygons [15, 41, 42].

The objective of the present paper is to further in-
vestigate the connections between macroscopic rheological 
properties, in quasistatic or inertial shear flow, of assem-
blies of rigid frictionless 2D objects, with systematic com-
parisons between disks and pentagons. It is an extension 
of ref. [36], (a short paper published as a “rapid commu-
nication”) which focussed on internal friction and solid 
fraction in the quasistatic limit. Compared to this previ-
ous publication, a wider range of inertial numbers (the re-
duced shear rate that characterizes the state of the flowing 
material) is explored, away from the quasistatic limit, and 
inertial effects on disks and on pentagons are compared. 
Contact networks are characterized in greater detail, dis-
tinguishing the peculiar role of side-side contacts in the 
case of pentagons, with some observations on their spatial 
organization in the shear flow. Unlike previous studies of 
shape effects [42–44], the present one, by dealing with fric-
tionless objects, focusses on geometry alone.

The model system and the simulation procedures are 
presented in sect. 2. Section 3 focusses on shear strength, 
macroscopic stresses and solid fraction for different values 
of the inertial number. The microstructure is analyzed in 
sect. 4 in terms of particle connectivity, fabric and force 
anisotropies, and role of side-side contacts. We conclude 
with a summary of the main findings of this work.

2 Model description

2.1 Numerical procedures

The simulations are carried out by means of the contact
dynamics (CD) method, which, as described in a num-
ber of publications [45–49], is based on an implicit time
integration of the equations of motion and on a non-
smooth formulation of mutual exclusion between parti-
cles (as well as a non-smooth formulation of the Coulomb
condition, if the grains are frictional). Up to small numer-
ical errors, thresholds are sharply defined in the method,
which assumes the grains to be perfectly rigid. As a re-
sult, the simulations can be carried out with large time
steps compared to the more usual molecular dynamics
(MD) approach, also referred to as a discrete element
method (DEM) with deformable grains, which considers
elastic contacts [49, 50]. The contacts are identified from
the tiny overlaps of neighboring grains, which are calcu-
lated, for each pair, through the so-called shadow overlap
method [51]. In the case of pentagons, contacts are of two
types: side-vertex contacts (1), and side-side (2) ones (the
approach to vertex-vertex ones, of little statistical rele-
vance, is dealt with as in ref. [42]). Side-vertex contacts are
“simple” contacts, similar to the contacts between disks.
They introduce one unilateral constraint between two ob-
jects, and the normal vector, which carries the repulsive
force or momentum transfer in the absence of friction, is
perpendicular to the side. Side-side contact are “double”
contacts in the sense that they can be represented by two
unilateral constraints. A double contact is equivalent to a
pair of simple contacts between the same pentagons, and
the normal direction is the normal to their common side.
In practice, two forces are calculated at each side-side con-
tact, but only the resulting net force and torque are phys-
ically meaningful. The CD method has been extensively
employed in two and three dimensions for the simulation
of granular materials with various shapes: disks of vary-
ing polydispersity [22, 52, 53], elongated [10, 54] or non-
convex [55] 2D objects, various 3D polyhedra subjected
to compression [15, 56] or in dense flow [57], non-convex
3D objects [16].

2.2 Simple shear test

The system simulated is actually the same as in ref. [36].
We generate numerical samples composed of 15000 grains,
pentagons or disks. Particle sizes are randomly chosen ac-
cording to a uniform distribution in surface area, the di-
ameter d of the circumscribed circle varying between Dmin

and Dmax = 2Dmin = 〈d〉/ ln(2), 〈d〉 denoting the average
value of d.

The particles are initially placed in a cell of width
200〈d〉 along the x-axis, using a geometrical procedure [58,
59]. The grains belonging to the bottom (lowest y co-
ordinates) and top (highest y) layers, of thickness 3〈d〉
are glued together, forming parallel rough walls. The cell
height H is defined as the distance between the y coor-
dinate of the centers of mass of both walls. While the



Fig. 1. (Colour online) Plane shear simulation. Yellow (light
gray) particles constitute the rough walls. A zoom is shown in
the inset.

bottom wall (small y) is maintained fixed, a shear flow
is imposed by ascribing a constant lateral velocity vx to
the upper wall. Its y coordinate might fluctuate, in order
to maintain a constant confining stress σyy in the velocity
gradient direction, as shown in fig. 1. To avoid strain local-
ization near the walls, the grains in contact with the upper
and lower plane walls are “glued” to them. The resulting
wall roughness insures a nearly uniform distribution of
strain rate in the sample. The system is free of gravity.
Grain interactions are characterized by three parameters:
the coefficient of friction (maintained at zero here), and
the coefficients of normal and tangential restitution, which
control the rate of dissipation in collisions. Those coeffi-
cients are set to zero here. The quasistatic behaviour (see
below) of sheared granular systems is independent of the
coefficient of restitution unless this parameter is set to
very large values (above 0.8) [60].

The samples are sheared up to a large cumulative shear
strain γ = ∆x/H, defined as the ratio of upper wall dis-
placement ∆x is the flow direction x to the (average) sam-
ple height H. Assuming homogeneous steady states are
observed with shear rate γ̇ = vx

H
and normal stress σyy,

dimensional analysis requires that dimensionless forms of
macroscopic constitutive equations and of internal state
parameters only depend on the inertial parameter I, de-
fined as [28,31,60]

I = γ̇〈d〉

√

ρm

σyy

, (1)

ρm denoting the mass density of the solid material which
the grain are made of. The inertial number characterizes
the importance of inertial effects in dense granular flows
(for which it has played a central role in the design of
successful constitutive laws [61–63]), and the quasistatic
limit is the limit of I → 0. The simulations reported here
are carried out with I values ranging from 4.7 10−4 to
0.25 for pentagons and from 6.2 10−6 to 0.20 for discs. A
total number of 32 shear flow configurations are simulated,
for a total cumulative shear strain ranging from γ = 4
(for I = 3.10−4) to γ = 50 (for I = 0.25). We consider
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Fig. 2. (Colour online) Time-averaged velocity profiles in disk
and pentagon samples for small and large values of I.

that the permanent shear state is reached if the relative
fluctuations of the measured quantities are small enough,
typically from γ > 1 for I = 3.10−4, and γ > 30 for
I = 0.25.

As shown in fig. 2, the sample is homogeneously
sheared throughout the range of inertial numbers. Veloc-
ity profiles exhibit a small systematic wall effect, especially
with pentagons, affecting thin layers adjacent to the walls.
Outside these boundary layers, the shear rate, albeit a lit-
tle different from its nominal value vx/H, remains uniform
through the major part of the sample. Likewise, the solid
fraction and the stress components are constant in the
bulk.

In the following all data are average values over the
steady state with standard deviations used as error bars.
The fluctuations increase with I, and thus the data are to
be sampled more frequently in the steady state in order
to reach meaningful statistics.

3 Macroscopic constitutive relations

3.1 Stresses and friction coefficient

We use the usual formula [64] for stress component σαβ ,
averaged over the sample, of surface area A. σαβ relates
to contact forces (force Fij denotes the force transmitted
by grain i to its contacting neighbor j), to contact branch
vectors rij (vector rij points from the centre of i to the
centre of j —or, rather, the centre of the nearest image of
j by the translations along axis x associated to the bound-
ary conditions), and to grain masses mi and velocities vi,
as

σαβ =
1

A

⎡

⎣

∑

i<j

Fα
ijr

β
ij +

∑

i

miv
α
i vβ

i

⎤

⎦ . (2)

In (2), the second, kinetic term, involving velocity fluctu-
ations1, remains very small compared to the first one (the
sum over all contacts i, j) in all the simulations considered
here.

1 vi in (2) should actually denote the difference between the
grain velocity and the local value of the macroscopic velocity,
if the formula is to give the value of the Cauchy stress tensor.



The macroscopic friction coefficient, µ, is most usually 
defined as the ratio of the shear stress to the normal stress 
inside the material [63], and is associated to the friction 
angle, ϕ, as defined according to the Mohr-Coulomb cri-
terion, as follows:

µ =
|σxy|

σyy

= tanϕ. (3)

An alternative expression of the friction angle involves the
principal stresses (eigenvalues of the stress tensor) σ1 and
σ2 < σ1, combined into the average pressure, p = (σ1 +
σ2)/2 and the deviator stress q = (σ1 − σ2)/2, and reads

sinϕ∗ =
q

p
. (4)

For a material exactly abiding by the Mohr-Coulomb fail-
ure criterion, both definitions of the friction angle would
exactly coincide, ϕ = ϕ∗. However, granular materials in
general [63], and assemblies of frictionless grains in partic-
ular [34], do not exactly satisfy the Mohr-Coulomb con-
ditions, and the apparent angle of friction slightly differs
according to the type of flow (e.g., simple shear compared
to biaxial compression or “pure shear”). A normal stress
difference σxx − σyy in shear flow is observed in general,
although sometimes reported to be negligible [63]. Nor-
malizing it by the controlled stress σyy, and introducing
the notation

∆ =
σxx − σyy

2σyy

, (5)

the values of the principal stresses, σ1 and σ2 are readily
obtained on diagonalising the stress matrix, as

σ1 = σyy

[

1 + ∆ +

√

tan2 ϕ + ∆2

]

σ2 = σyy

[

1 + ∆ −

√

tan2 ϕ + ∆2

]

.

(6)

The corresponding principal directions are respectively
oriented with angles θ1 and θ2 with respect to the flow
direction, with

θ1 = π − arctan

√

tan2 ϕ + ∆2 − ∆

tan ϕ
; θ2 = θ1 −

π

2
.

(7)
From (6) and (4), ϕ and ϕ∗ are related as

sin2 ϕ∗ =
tan2 ϕ + ∆2

(1 + ∆)2
. (8)

As a consequence of (6) and (7), a Mohr-Coulomb material
with ϕ = ϕ∗ would satisfy ∆ = tan2 ϕ and θ1 = 3π

4
+

ϕ
2

[63]. Another remarkable case [63], is the material for
which ∆ might be neglected (very small values are indeed
reported in the literature [28]). Then, even though ϕ and
ϕ∗ are different, the same friction coefficient is identified
from either approach, as relation (8) results in tanϕ =
sin ϕ∗. In such a case the principal stress directions would
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Fig. 3. (Colour online) Relative normal stress difference ∆

(eq. (5)) versus I, for pentagons (black squares) and disks (red
circles).

be inclined at angles θ1 = 3π/4 and θ2 = π/4 with respect
to the flow direction, just like in a Newtonian viscous fluid.

In the present simulations the variations of ∆ with I
are shown in fig. 3. In the quasistatic limit of small I [36],
relations (3) and (4) define about the same friction angle.
One gets the following values for the quasistatic limit µ0 of
the macroscopic friction coefficient defined as µ = tanϕ:

µ0 = 0.100 ± 0.002 (disks),

µ0 = 0.180 ± 0.002 (pentagons),
(9)

while the I → 0 limits of sinϕ∗ are 0.099 ± 0.02 for
disks and 0.183 ± 0.002 for pentagons. This corresponds
to friction angles ϕ ≃ ϕ∗ = 5.7 ± 0.12◦ for disks, while
ϕ = 10.2±0.1◦, differs very slightly from ϕ∗ = 10.5±0.2◦

for pentagons.
Away from the quasistatic limit, ∆ strongly increases

in the range I ∼ 10−2 and reaches values near 0.2 for
pentagons. One should therefore distinguish between both
definitions in the inertial regime, and we adopt the defini-
tion of the friction coefficient and the friction angle used
in relation (3) throughout the following. Angles ϕ, ϕ∗, as
well as θ1 (compared to the Mohr-Coulomb prediction),
are given in table 1 for disks and for pentagons at the
smallest and the largest investigated I values.

Internal friction coefficient µ = tan ϕ is plotted versus

I for disks and pentagons in fig. 4. The increase of µ with
I is a familiar feature of granular rheology [28–30,35,61].
It is somewhat faster for disks than for pentagons, so
that, although initially smaller, the friction coefficient of
disks becomes similar to the one of pentagons as I reaches
0.15–0.2. Variations of µ with I are most often modeled
as power functions [28, 29, 35, 38], although the exponent
might depend on the chosen interval of I over which the
power law function is fitted to the data:

µ = µ0 + aIα. (10)

While µ0 values are given in (9), exponent α = 0.52 (as
already suggested for disks in two dimensions [65] and low
I values) turns out to adequately describe our data with
both types of particles through the entire investigated
range of I, with a ≃ 0.54 for disks and a ≃ 0.39 for pen-
tagons. Our results differ slightly from those of V̊agberg



Table 1. Values of angles ϕ, ϕ∗, θ1 and relative normal stress difference ∆, for the smallest and highest values of I in packings
of disks and pentagons.

Samples I ϕ ϕ∗ ∆ θ1 (eq. (7)) θ1 from Mohr Coulomb

Disks 6.2 10−6 5.7 ± 0.12◦ 5.7 ± 0.12◦ 0.02 140.7◦ 137.9◦

Pentagons 4.7 10−5 10.2 ± 0.10◦ 10.5 ± 0.2◦ 0.025 138.9◦ 140.1◦

Disks 0.19 17.1 ± 0.10◦ 17.7 ± 0.10◦ 0.095 143.3◦ 143.9◦

Pentagons 0.21 19.7 ± 0.13◦ 20.1 ± 0.13◦ 0.20 149.5◦ 144.9◦
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Fig. 4. (Colour online) Internal friction coefficient, as defined
in (5), versus I, for pentagons (black squares) and disks (red
circles). Inset: log-linear plot. Fits through data points with
eq. (10) are shown as dotted lines.

Fig. 5. (Colour online) Solid fraction ν versus I for pentagons
(black squares) and disks (red circles), on a log-linear plot.
Inset: linear plot. Hashed zones about horizontal lines indicate
RCP values of ν, with their error bar.

et al., who carried out extensive and accurate simulations
of bidisperse assemblies of disks under shear flow [38, 66]
and found µ0 ≃ 0.093 and α ≃ 0.4 (see footnote2).

3.2 Solid fraction

The solid fraction, ν, defined as usual as the fraction of the
system area occupied by the particles, varies with inertial
number as shown in fig. 5. As often observed too [28, 35,

2 It should be noted that these authors warned that the
“true” exponents, which they relate to the criticality of the
jamming transition, are very likely hard to capture in two-
dimensional systems. We do not claim to track accurate critical
exponents in the present study, which focusses on the differ-
ences between pentagons and disks.

36], ν is a decreasing function of I, which may also be
fitted by a power law

ν = ν0 − bIβ , (11)

al least within some interval of I.
In the quasistatic limit of I → 0, ν0 was observed [36]

to coincide with the RCP value, meaning that assemblies
of frictionless disks or pentagons are devoid of dilatancy.
They do not change in surface area while deforming as
the applied stress evolves from an isotropic pressure to
a deviatoric state large enough to fulfill the yield condi-
tion. This quasistatic value is larger for pentagons, with
ν0 = 0.854 ± 0.003 than for disks, for which we find
ν0 = 0.8425 ± 0.0008 (compatible with the value given
in ref. [38], despite the different diameter distribution).
For growing I the decrease in ν is slower in assemblies of
disks, so that for larger I values (I ≥ 10−2) both mate-
rials have very similar densities. Our data are correctly
adjusted over the whole I range with b = 0.19 and an ex-
ponent that could be slightly larger for disks (β = 0.71)
than for pentagons (β = 0.65), although the difference is
probably not meaningful. (The fit proposed in ref. [65] for
disks, with a different polydispersity, with β = 0.69 and
b = 0.213 is adequate for I ≤ 10−2.)

In the following we analyze the I-dependent mi-
crostructural properties of our packings and their possible
connections with macroscopic stresses and density.

4 Microstructural and micromechanical

aspects

The internal structure of the flowing material, which is
basically controlled by steric exclusions and force trans-
mission conditions [32], can be described in terms of var-
ious statistical descriptors pertaining to the force-bearing
network of particles, as investigated in this section: par-
ticle connectivity (sect. 4.1) force and fabric anisotropies
(sect. 4.2), specific role of “double” contacts between pen-
tagon sides (sect. 4.3). Correlations are pointed out with
the macroscopic behaviour and its I-dependence.

4.1 Particle connectivity

Figures 6 shows snapshots of the networks of force-
carrying contacts in the steady state for the disc (a) and
pentagons (b) packing at large values of I. As observed in



Fig. 6. (Colour online) Contact networks in disk (a) and pen-
tagons (b) samples for I ≃ 0.1 and I ≃ 0.25, respectively. Rat-
tlers (i.e., particles with no contact) are drawn in light gray.
Red lines join grain centres of mass to contact points. A zoom
is shown in the inset.

a number of earlier studies [28,30,35] the contact network
topology strongly varies with I, with quite a fast decrease
of its density (and of the coordination number) between
the quasistatic limit and the strongly inertial regime at
I ∼ 0.1. Floating particles, carrying no load (often referred
to as the rattlers), are rare and isolated in quasistatic flow,
while they tend to form large “fluidized zones” [30] for the
highest I values. However, the depletion of the contact
network for growing I is significantly faster and stronger
for disks than for pentagons.

Quantitatively, the particle connectivity can be
analyzed by the set of proportions Pc of non-rattler
grains having exactly c contacting neighbors. Pc values
are plotted as functions of I in fig. 7. For pentagons P0

increases with I from nearly 0.1, and tends to saturates at
0.25 at larger values. This contrasts with the increase of
P0 in disk assemblies, for which the fluidized zones tend
to coalesce and form larger and larger regions, spanning
the entire sample (fig. 6), as observed with frictional
beads in 3D [30]. For I < 10−3, due to inertia effects, the
fraction of highly connected pentagons (c ≥ 4) is reduced,
as low-connected ones (c ≤ 3) become more numerous,
and P4 remains nearly constant. For larger I values,
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Fig. 7. (Colour online) Connectivity Pc of the particles as
a function of I in log-linear scale: (a) for discs and (b) for
pentagons.

P4 declines whereas P3 increases to a maximum value
near I ≃ 10−2 before beyond which P3 declines also.
This trend is similar to that of frictional spheres [30]. In
contrast, P1 and P2 increase with I but tend to saturate
to 0.2 and 0.3, respectively, meaning that the flows
is not dominate by binary shocks as it is the case for
rapid flows of frictional beads [30]. Nevertheless, the loss
of particles having 3 contacts is a dramatic change in
the microstructure as multiple contacts may thereafter
occur in the form of linear chains without branching,
as observed in fig. 6(b). The general evolution of the
contact network for growing I in the pentagon assembly
is a gradual transition towards depleted networks, which
remain connected over large length scales at I = 0.25,
and in which filamentary structures tend to emerge as
the dominant morphological feature. The evolution of
connectivity with I is quite different with pentagons from
the behavior of disk assemblies. Disks tend to lose more
contacts at lower I values, and the fast increase of the
rattler fraction P0 is quite a striking phenomenon, with
only a small fraction of non-rattler grains remaining for
I ≥ 0.1. The maximum of P3 is shifted to I ≃ 0.003, and
there is no range of I in which P0, P1 and P2 simulta-
neously increase to significant values while P3 decreases.
The dilution of the contact network in disk systems for
growing I does not involve the filamentary morphology
appearing for I of order 0.1 in pentagon assemblies.

From Pc, we define the coordination number by
z =

∑

c≥0
cPc. One may also define the coordination num-

ber of non-rattler grains, as z∗ = z/(1− P0). For disks z∗

approaches the isostatic value of 4 in the quasistatic limit,



(a)

(b)

Fig. 8. (Colour online) Snapshots of the force network for two
samples composed of pentagons, at I ≃ 4.10−5 (a) and I ≃ 0.25
(b). The floating particles (i.e., particles with no contact) are
drawn in light gray and the forces are represented by red line
segments joining the centers of mass of the particles with the
contact points. Line thickness is proportional to the contact
force.

and decreases for growing I, as inertial effects disrupt the
force-carrying network in shear flow. One thus observes
z∗ = 3.993 with I = 6.10−6, decreasing to low values, near
0.05 at I = 0.2. For pentagons, one should distinguish
simple and double contacts, for which rattler-corrected
coordination numbers, denoted respectively as z∗

1
and z∗

2
,

should satisfy z∗
1

+ 2z∗
2

= 6 in an isostatic network. We
obtain z∗

1
≃ 2.97 and z∗

2
≃ 1.50 for the lowest value of

I, showing that this relation is indeed approached in the
quasistatic limit. It should be noted, however, that the
model for pentagons has one non-generic feature enabling
some force indeterminacy: pentagons are regular and
angles between edges take well define values, adding up to
multiples of π. Loops of side-to-side contacts are possible,
and any such independent loop adds one to the degree
of force indeterminacy3. Such loops occur rarely (see
sect. 4.3) and do not appear to be statistically significant4.

This study of the evolution of the topology of the con-
tact network should be supplemented with investigations
into their orientations and forces, and information should
also be supplied on their persistance and reorganization.

3 A set of self-balanced forces is obtained if a doublet of
equal and opposite normal forces is transmitted in each contact
around the loop in such a way that torques balance on each
grain.

4 It is possible that the finite accuracy with which the kine-
matics of rigid pentagons is dealt with in the time-discretized
Contact Dynamics approach contributes to eliminate some of
these loops. They would not occur, anyway, in a generic system
of pentagons with random angles.

Fig. 9. (Colour online) Polar diagrams of Pθ(θ) (a), and
〈fn〉(θ) (b) for pentagons (black squares) and disks (red cir-
cles) together with their fits (dashed line) at large I.

4.2 Force and fabric anisotropies

The origins of macroscopic friction, which characterizes
stress anisotropy, are to be found in anisotropic features
of the force network. Figure 8 shows a typical map of
forces in the steady shear flow of a pentagon sample for
the lowest (a) and highest (b) values of I. Force chains
are stronger but shorter for large I values, and the large
forces seem to be preferentially oriented near the compres-
sion direction, inclined at 45 degrees with respect to the
flow direction. As in a number of previous studies, one
may characterize the force network anisotropy in terms of
parameters of the distribution of the angle θ between the
flow direction and the contact normal vector n; and of
the θ-dependent average intensity of the forces carried by
contacts with orientation θ, 〈fn〉(θ). Let us recall that for
“double” (side-side) contacts, the physically relevant force
is the sum of the two forces used in the simulation. The
(π-periodic) probability density function P (θ) of contact
normal orientations, and the (π-periodic) function 〈fn〉(θ)
are statistical descriptors of the anisotropies of the contact
network and of the force intensities. In a sheared granular
material, these functions tend to take a simple unimodal
shape, which can be well approximated by the lowest-order
Fourier expansion [10,15,67]:

⎧

⎪

⎨

⎪

⎩

P (θ) =
1

2π
{1 + ac cos 2(θ − θc)},

〈fn〉(θ) = 〈fn〉{1 + an cos 2(θ − θn)},

(12)

where ac is the contact orientation anisotropy, an is the
normal force anisotropy and 〈fn〉 the mean normal force.
Angles θc and θn, with respect to the flow direction, indi-
cate the directions that respectively maximise the density
of contacts and the average force. These directions nearly
coincide with the major principal stress direction θ1 in
the sheared material, as illustrated in fig. 9. Specifically,
θc ≃ θn is near 136◦ and 145.2◦ for disks at small, respec-
tively large, values of I, and θc ∼ θn = 136.3◦ and 146.3◦

for pentagons at small, respectively large, values of I.

Parameters ac and an can be estimated by fitting the
measured values of Pθ(θ) and 〈fn〉(θ), respectively, but are
more conveniently obtained from the following fabric and



Fig. 10. (Colour online) Macroscopic friction coefficient µ

(black squares for pentagons and red circles for discs) together
with its harmonic approximation (eq. (15)) (dashed lines), ver-

sus I.

normal force tensors [10,15]:

Fij =
1

Nc

∑

c∈V

nc
in

c
j , (13)

χn
ij =

1

Nc

∑

c∈V

fnnc
in

c
j , (14)

where Nc is the total number of contact in the sample
surface V . Note that F1+F2 = 1 and χn

1
+χn

2
=〈fn〉, where

the indices 1 and 2 refer to the eigenvalues of each tensor.
The contact anisotropy is then given by ac = 2(F1 − F2)
and the force chain anisotropy by afn = 2(χ1 −χ2)/(χ1 +
χ2) − ac. Those anisotropy parameters directly lead to
an evaluation of the stress tensor. From (2), through an
approach repeatedly used in previous studies [10, 15, 30,
67,68], one may deduce:

µ =
1

2
(ac| sin 2θc| + an| sin 2θn|) . (15)

Relation (15) neglects quadratic terms in the anisotropy
parameters, assumed sufficiently small, and also ignores
a possible anisotropic angular distribution of the branch
vector length. In a first approximation, as θc and θn are
both close to 135◦, except for disks at large I values, one
may replace | sin 2θc| and | sin 2θn| by 1. Relation (15) is
compared to measured values of µ in fig. 10, showing good
agreement throughout the range of I. Thus eq. (15), a
good approximation of µ for all values of I, reveals the
distinct origins of the macroscopic friction.

Figure 11(b) plots ac and an as functions of I. The
force anisotropy parameter an declines and tends to a
constant value, whereas the contact anisotropy ac is an
increasing function of I. Thus, by virtue of eq. (15), µ
increases mainly due to the increase of ac. The increase of
ac is due to the loss of particle connectivity, in particular
in the extension direction [69]. Normal force anisotropy
an reflects how force chains, in the absence of friction,
are increasingly destabilized by particle inertia. It is also
remarkable that at low I values an prevails, whereas
ac dominates above I > 10−3, highlighting the distinct
mechanical or geometrical origins of µ with respect to

Fig. 11. (Colour online) Evolution of contact (a) and force (b)
anisotropy parameters with I. Both insets are log-linear plots.

Fig. 12. (Colour online) Proportion of ss and sv contacts
versus I on linear (main plot) or logarithmic (inset) scale.

I. The higher value of an when I → 0 is attributed
to side-side contacts which capture the strong force
chains [15,41,42,68].

4.3 Clusters of side-side contacts

In this section we investigate the role of side-vertex
(sv) and side-side (ss) contacts and their respective I-
dependent contributions to the overall texture and force
transmission. Figure 12 shows the proportions ksv and kss

of ss and sv contacts as functions of I.
Regardless of I, sv contacts prevail in the contact

network. In particular, kss, constant as I < 10−3, and
declines to a constant value kss = 0.1 at I = 10−2,
which correspond also to the point where the normal force
anisotropy ceases to decline and remains constant. Now,
considering the contact part of eq. (2), and restricting the



Fig. 13. (Colour online) Total and partial macroscopic friction
coefficient µ for side-vertex (sv) and side-side (ss) contacts as
functions of I.

summation to each contact type, one may partition the
stress tensor as a sum of partial stress tensors as follows:

σ = σss + σsv, (16)

where σss and σsv represent the stresses carried by each
contact types. Figure 13 shows the variation of corre-
sponding contributions µα = qα/p to the macroscopic fric-
tion, where α denoting contact type ss and sv. Interest-
ingly, below I = 10−3, µ ≃ µss whereas µsv ≃ 0 showing
that, in this range of I, a small number of ss-contact is
at the origin of µ. Such variations of kss and µss raise
the issue of how those contacts are organized within our
samples of frictionless pentagons.

We define clusters of particles joined by ss contacts.
All particles having at least one ss-contact belong to one
such cluster. Two clusters are disjoint if they have no com-
mon ss contact, i.e. when the boundary particles of one
cluster are not connected or connected only by side-vertex
contacts with the other cluster. Figure 14 shows the clus-
ters at four values of I, with adjacent clusters represented
with different colors. At low I values most particles be-
long to a cluster and they seem to be all interconnected
through sv-contacts. Note that no cluster spans the whole
packing, showing that the side-side contacts do not per-
colate. The size of clusters declines for growing I, and at
the largest values of I they are mainly composed of only
two or three particles.

These observations are presented in quantitative form
in fig. 15, showing the variations with I of the number
of clusters, Nc, and of 〈Np〉n and 〈Np〉w, their number
or mass-averaged size, respectively. The proportion Xc of

Fig. 14. (Colour online) Clusters of particles at I = 4.10−5 (a),
I = 10−3 (b), I = 10−2 (c) and I = 0.25 (d) Disjoint clusters
are represented in different colors (green, orange, purple and
cardinal red). The side-side contacts are marked by a red line
joining the centers of their partner particles. Others particles
are in gray.

particles belonging to a cluster is

Xc =
Nc

N
〈Np〉n, (17)

Xc reaches about 77% in the quasistatic limit, and declines
under growing I. Correlatively, both average cluster sizes
decline under growing I. For I > 10−2 most clusters are
composed of only two particles. The very moderate value
of 〈Np〉w in the quasistatic limit signals the absence of
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Fig. 15. (Color online) Total number Nc of clusters (a) and
number- and mass-averaged cluster sizes 〈Np〉n,w (b) versus I.
Both insets show a log-linear representation.

a percolation tendency as I → 0. Interestingly, the co-
ordination number of side-side contacts within clusters,
z2/Xc ≃ 1.81, with z2 = z∗

2
(1−P0), is near 2, which char-

acterizes loopless connected structures. More precisely, the
number Nss of grains within clusters of ss contacts is re-
lated to the number of loops Lss, the number Nc of clusters
and the number Nb of ss bonds as

Nss + Lss = Nb + Nc, (18)

a general identity for arbitrary graphs, which directly en-
tails

1 +
Lss

Nss
=

z2

2Xc

+
1

〈Np〉n
. (19)

Relation (19) would reduce to the statement that the co-
ordination number of ss contacts in clusters, z2

Xc

would be
equal to 2, if there existed only one, very large and loopless
cluster. In the actual pentagon assembly sheared at low I,
eq. (19) shows that loops of ss contacts are quite scarce,
with Lss/Nss ≃ 0.005. Only a few such loops appear in
fig. 14, and comparable observations could be made in
the static packings of ref. [25]. The essentially loopless
structure of the clusters and their size explains their rheo-
logical importance, commented above in connection with
eq. (16), despite the relatively small number of ss contacts.
The clusters are capable of transmitting mechanical con-
straints on the orientation of the pentagons over distances
of 5–10 diameters.

5 Conclusions, remarks and perspectives

The numerical investigation of macroscopic and mi-
crostructural properties of assemblies of frictionless pen-

tagon or disks in normal stress controlled shear flow, car-
ried out over the range of inertial numbers 6.10−6 ≤ I ≤
0.2 confirms the results of ref. [36] and extends them to
the inertial flow regime at larger values of I. The macro-
scopic friction coefficient does not vanish and is sensitive
to the grain shape in the quasistatic limit. For both parti-
cle shapes, the solid fraction is as large in quasistatic shear
flow as in equilibrated solid packs under isotropic pres-
sure, i.e., equal to the random close packing (RCP) value,
as previously noted for assemblies of identical spheres in
3D [34,35], and different types of frictionless disk polydis-
persities in 2D [37]. This absence of dilatancy contrasts
with the properties of frictional grains, for which the crit-
ical state —in the sense of soil mechanics— of the slowly
sheared material is systematically less dense than in the
RCP state. This absence of dilatancy for frictionless par-
ticles, whereas frictional ones need to dilate in shear flow,
is, according to a number of recent theoretical [70], nu-
merical [71, 72], and experimental [73] studies at the ori-
gin of the discontinuous shear thickening behavior of some
dense suspensions. Our observation that assemblies of fric-
tionless angular grains should not dilate under quasistatic
shear therefore supports the plausibility of such a micro-
scopic origin of discontinuous shear thickening in suspen-
sions of non-spherical particles.

For growing I, as the friction coefficient µ increases
and the solid fraction ν decreases, both I dependences
might be described by power laws, with possibly identi-
cal exponents for disks and pentagons (near 0.5 for µ,
and near 0.7 for ν). The difference between circular and
angular grains seems to fade out for growing I, but this
apparent similarity hides significant micromechanical dif-
ferences. The contact network depletion, as I increases, is
much slower for angular particles. µ can be expressed as
a simple formula adding fabric and force anisotropies pa-
rameters. While both contributions are similar through-
out the I interval for disks, in pentagon assemblies the
fabric anisotropy dominates at large I, and it is almost
entirely responsible for the increase of µ with I; the force
anisotropy dominates at small I. Gathering in clusters the
particles sharing side-side contacts, we observe those clus-
ters, which are typically loopless, filamentary structures,
to carry the major part of the shear stress at low I val-
ues, and to transmit orientational constraints over limited,
but significant distances in the quasistatic limit —a fea-
ture that could be responsible for the difference of internal
friction between pentagons and disks.

More detailed kinematic studies investigating the rear-
rangements of such structures would be needed. The be-
havior of frictionless granular assemblies under arbitrary
load directions will be the subject of future work in order
to gain a better knowledge of the mechanical properties
of such granular systems under a small enough stress de-
viator (before yielding).
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48. F. Radjäı, V. Richefeu, Mech. Mater. 41, 715 (2009).
49. Farhang Radjai, Frédéric Dubois (Editors), Discrete Nu-

merical Modeling of Granular Materials (Wiley-ISTE,
New-York, March 2011) ISBN: 978-1-84821-260-2.

50. F. Radjai, Physics of Dry Granular Media (Kluwer
Academic Publishers, Dordrecht/Boston/London, 1997)
Chapt. “Multicontacts dynamics”, p. 305.

51. G. Saussine, C. Cholet, P.E. Gautier, F. Dubois, C. Bo-
hatier, J.J. Moreau, Comput. Methods Appl. Mech. Eng.
195, 2841 (2006).

52. L. Staron, F. Radjai, Phys. Rev. E 72, 041308 (2005).
53. S. Deboeuf, O. Dauchot, L. Staron, A. Mangeney, J.-P.

Vilotte, Phys. Rev. E 72, 051305 (2005).
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68. E. Azéma, F. Radjai, G. Saussine, Mech. Mater. 41, 721
(2009).

69. F. Radjai, J.-Y. Delenne, E. Azéma, S. Roux, Granular
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