Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeability - Archive ouverte HAL
Journal Articles Journal of the European Ceramic Society Year : 2017

Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeability

Abstract

We demonstrate a facile and scalable technique, rotational freezing, to produce porous tubular ceramic supports with radially aligned porosity. The method is based on a conventional ice-templating process in a rotatory mold and demonstrated here with yttria-stabilized zirconia (YSZ). We investigated the effects of solid loading, freezing temperature, and volume of the slurry on the microstruc-ture, strength (o-ring test and four-point bending), and air permeability. The results show that pore volume and pore size can be controlled by the solid loading and freezing temperature respectively, and overall tube thickness can be adjusted by the volume of slurry initially poured into the mold. Decreasing pore size and pore volume increases the mechanical properties but decreases the air permeability. These tubes could be particularly interesting as tubular membrane supports such as oxygen transport membranes.
Fichier principal
Vignette du fichier
1612.01314.pdf (1.41 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01675123 , version 1 (18-05-2018)

Identifiers

Cite

Jordi Seuba, Jérôme Leloup, Stephane Richaud, Sylvain Deville, Christian Guizard, et al.. Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeability. Journal of the European Ceramic Society, 2017, 37 (6), pp.2423-2429. ⟨10.1016/j.jeurceramsoc.2017.01.014⟩. ⟨hal-01675123⟩
86 View
179 Download

Altmetric

Share

More