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The orientation of small anisotropic particles settling in a turbulent fluid determines some essential
properties of the suspension. We show that the orientation distribution of small heavy spheroids settling
through turbulence can be accurately predicted by a simple Gaussian statistical model that takes into
account particle inertia and provides a quantitative understanding of the orientation distribution on the
problem parameters when fluid inertia is negligible. Our results open the way to a parametrization of the
distribution of ice crystals in clouds, and potentially lead to an improved understanding of radiation
reflection or particle aggregation through collisions in clouds.

DOI: 10.1103/PhysRevLett.119.254501

How nonspherical objects settle in a turbulent environ-
ment is a question highly relevant to several domains. An
example is provided by very small ice crystals in clouds (size
∼100 μm), which grow through aggregation to form pre-
cipitation-size particles (size ∼1 mm) [1–4]. The settling of
plankton in the ocean [5–7] can induce patchiness of the
population, thereby affecting mating, feeding, and predation
[8]. In these problems, the orientational degrees of freedom
clearly affect not only settling and collision properties, but
also light reflection [9]. As a prerequisite to a description of
these effects, this Letter provides an understanding of the
orientation statistics of small spheroids settling in a turbulent
environment based on a statistical model, under the
assumption that fluid inertia can be neglected.
The interaction between turbulence and settling leads to

intriguing phenomena, even in the simpler case of spherical
particles. Maxey found that turbulence increases the set-
tling speed of a single small particle [10,11]. Substantial
progress was recently achieved in understanding how two
spherical particles settling together move relative to each
other and collide [12–16].
In a fluid at rest the orientation of slowly settling

nonspherical particles is determined by weak torques
induced by the inertia of the fluid set in motion by the
moving particles. For a single, isolated particle in a quiescent
fluid this effect is well understood [17–21]. Particle-particle
interactions give rise to intricate rotational dynamics [21].
Turbulence affects the orientation of a settling particle

through turbulent vorticity and strain. In the absence of

settling the dynamics is well understood [7,22–30].
Neglecting fluid inertia, the direct numerical simulations
(DNS) of turbulence by Siewert et al. [31] demonstrated that
settling induces a bias in the orientation distribution of the
particles. The physical origin of this bias is not known, and it
is not understood how it depends on the parameters of the
problem: the turbulent Reynolds number, Reλ, the Stokes
number (particle inertia), the gravitational acceleration, and
the particle shape. Also, how significant are non-Gaussian,
intermittent small-scale features of the turbulent flow [32],
such as intense vortex tubes [2], in aligning the particles?
To answer these questions we analyze a statistical model

for the orientation of small heavy spheroids settling in
homogeneous isotropic turbulence, for parameters relevant
to cloud physics, and compare with results based on the
DNS of turbulence. Figure 1 shows the predicted bias in the

(a) (b)

FIG. 1. Orientational bias of spheroids settling in turbulence.
Distribution PðngÞ of ng ≡ jn · ĝj, with particle symmetry vector
n and direction ĝ of gravity. (a) DNS results for PðngÞ for oblate
spheroids [aspect ratios λ ¼ 0.01 (inverted triangle), 0.02 (star),
0.05 (right-pointing triangle)]. Statistical-model simulations:
open symbols. Dashed line: isotropic distribution PðngÞ ¼ 1.
(b) Same, but for prolate spheroids: λ ¼ 5 (circle), 7.5 (left
pointing triangle), 10 (star). Parameters: Reλ ≈ 95, FK ≈ 70, and
StK ≈ 4minðλ; 1=λÞ (see text); these correspond to values relevant
to cloud physics, see the Supplemental Material [33].
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distribution of the vector n pointing along the particle
symmetry axis. The statistical-model predictions agree very
well with the DNS results. This shows that non-Gaussian
turbulent fluctuations are not important. The statistical
model explains the sensitive parameter dependence of
the DNS results. This is important because it allows us
to parametrize the bias, to quantitatively understand the
physical properties of the system. We analyze the model by
an expansion in the “Kubo number” Ku, a dimensionless
correlation time of the flow [36]. Padé-Borel resummation
yields excellent agreement with numerical simulations at
Ku ¼ 0.1, and qualitative agreement with DNS of turbu-
lence. At larger Ku the theory fails to converge, but the
model still qualitatively explains the underlying mecha-
nisms. Finally, we discuss possible effects of fluid inertia.
Formulation of the problem.—The equations of motion

for translation and rotation of a particle read

mẍ¼ f þmg ĝ; _n¼ω∧ n; ðd=dtÞ½JðnÞω� ¼T: ð1Þ
Here g is the gravitational acceleration (direction ĝ), x is the
position of the particle, n its symmetry vector, m its mass,
ω its angular velocity, and JðnÞ its inertia tensor in the lab
frame. In the point-particle approximation, the force f and
torque T on a spheroid are [26,37,38]
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In Eq. (2), v is the particle velocity, uðx; tÞ is the turbulent
velocity field, Ω≡ 1

2
∇ ∧ u is half the turbulent vorticity,

S is the strain-rate matrix, the symmetric part of the
matrix A of fluid-velocity gradients (its antisymmetric part
is called O), MðrÞ and MðtÞ are translational and rotational

resistance tensors, MðtÞ≡CðtÞ
⊥ 1þðCðtÞ

∥ −CðtÞ
⊥ ÞnnT, Mðr1Þ ≡

Kðr1Þ
⊥ 1þðKðr1Þ

∥ −Kðr1Þ
⊥ ÞnnT, andMðr2Þ is a third-rank tensor.

Explicit expressions for the C andK coefficients and for the
third-rank tensor are known for spheroidal particles, as
functions of the particle aspect ratio λ. See Supplemental
Material (SM) [33]. Also crystals with discrete rotational
symmetry have the tensorial structure of Eq. (2) [39], but
the values of the C and K coefficients are not known in
general.
For a fore-aft symmetric particle, the equations of motion

(1) and (2) are invariant under n → −n, so that only the
magnitude ng ≡ jn · ĝj can play a role in the dynamics. The
parameter γ ≡ 9νρf=ð2a∥a⊥ρpÞ is the Stokes damping rate,
ν is the kinematic viscosity of the fluid, ρf and ρp are fluid
and particle mass densities, 2a∥ is the length of the particle
symmetry axis, and 2a⊥ is its diameter.
Our DNS of turbulence use the code described in

Ref. [40] and in the SM [33]. The Kolmogorov scales
uK, ηK, and τK are determined by the dissipation rate ε≡
νhTrAATi (the average is along steady-state Lagrangian

trajectories), and by ν ≈ 1 × 10−5 m2 s−1 (air). The particle
aspect ratio is λ≡ a∥=a⊥. The simulations were done for
spheroids of varying λ and with the largest axis length,
maxða∥; a⊥Þ ¼ 150 μm, much smaller than ηK for values
of ε pertaining to mixed-phase clouds (DNS: ε ≈ 1; 16,
and 256 cm2 s−3). Particle inertia is measured by the
Stokes number StK ≡ ðγτKÞ−1. The mass-density ratio is
R≡ ρp=ρf ≈ 1000 (ice crystals in air), and the dimension-
less gravity parameter is defined as FK ≡ gτK=uK. An
alternative but equivalent parametrization is in terms of
Sv ≡ FKStK [41].
Statistical model.—We represent the undisturbed turbu-

lent flow in the vicinity of a particle (smaller than the
smallest turbulent eddy size, ηK) by an incompressible,
homogeneous, isotropic Gaussian random velocity field
uðx; tÞ with zero mean, correlation length l, correlation
time τ, and rms speed u0. Details are given in the SM [33].
The statistical model has three dimensionless parameters,
St≡ ðγτÞ−1, F≡ gτ=u0, and the Kubo number Ku≡
u0τ=l. Turbulence corresponds to the persistent limit of
this statistical model, the limit of large Kubo numbers.
In this limit, the dimensionless parameters St and F map
to StK and FK as follows: StK ¼ ffiffiffi

5
p

KuSt and FK ¼
½F=ð5 KuÞ�l=ηK. Here l=ηK is the ratio between the size
of the dissipation range and the Kolmogorov length. In
turbulence this ratio depends weakly on the Reynolds
number Reλ [42], l ¼ cηKRe

1=2
λ . For the data shown in

Fig. 1 we have Reλ ¼ 95 (Fig. S1 in the SM [33] shows
results for other values of Reλ). We find good agreement
between the statistical-model results at large Ku and the
DNS for c ≈ 1.3. For Ku > 1, the model predictions depend
on two parameter combinations only [36], KuSt and F=Ku.
In terms of the DNS parameters this means that the
orientation bias depends only on StK and FKRe

−1=2
λ .

Perturbation theory.—Equations (1) and (2) are solved
by expansion in powers of Ku [36,43]. We outline the
essential steps below; details are given in the SM [33]. We
use dimensionless variables t0 ≡ t=τ, r0 ≡ r=l, u0 ≡ u=u0,
and drop the primes. To calculate the steady-state distri-
bution of ng ≡ jn · ĝj we must evaluate the fluctuations of
the fluid-velocity gradients along particle paths. In the

statistical model this is achieved by an expansion in δxt ≡
xt − xðdÞt around the stationary deterministic solution of

Eqs. (1), (2) for u ¼ 0, namely, xðdÞt ¼ x0 þ vsðn0Þt with
settling velocity

vsðn0Þ ¼ FSt

�
1

CðtÞ
⊥

þ n0nT0
CðtÞ
∥

−
n0nT0
CðtÞ
⊥

�
ĝ; ð3Þ

describing a straight but inclined settling path.
Expansions in δxt yield power-series approximations for

physical observables in powers of Ku [36]. To order Ku2

we find for nt (details are given in the SM [33])
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nt ¼ n0 þ Ku
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Here the coefficient Cðr1Þ
⊥ is defined as Cðr1Þ

⊥ ≡
5Kðr1Þ

⊥ =ða2∥ þ a2⊥Þ. In Eq. (4) we have used the short–hand
notations OðtÞ≡ OðxðdÞt ; tÞ and SðtÞ≡ SðxðdÞt ; tÞ.
There are two types of contributions to (4). First, the terms

in Eq. (4) that do not involve δxt [second and third lines of
Eq. (4)] depend only on the history of the fluid-velocity

gradients along the paths xðdÞt . We refer to these terms as the
“history contribution”. The c coefficients contain atmost five
powers of n0, and one must sum over all tensor products
allowed by symmetry (Einstein convention). Details are
given in the SM [33]. Second, the first integral shown in
Eq. (4) depends on δxt. It is therefore sensitive to how
turbulence modifies the settling paths. We conclude that this
contribution is affected by “preferential sampling” [36].
We determine the steady-state moments hðnt · ĝÞpi∞ by

first calculating the moments hðnt · ĝÞpin0 conditional on
the initial orientation n0, using Eq. (4) and the relation

hðnt · ĝÞpin0 ¼ ðn0 · ĝÞp þ pKuðn0 · ĝÞp−1hnð1Þt · ĝin0
þ p

2
Ku2ðn0 · ĝÞp−2h2ðn0 · ĝÞðnð2Þt · ĝÞ

þ ðp − 1Þðnð1Þt · ĝÞ2in0 ð5Þ

where nðiÞt is the coefficient of Kui in Eq. (4). Equation (5)
is valid to order Ku2. We average over the fluid-velocity
fluctuations as described in Ref. [36]. The moments are
independent of the initial position x0 due to homogeneity of
the flow. We expect that effects of the initial velocity v0 and
angular velocityω0 decay exponentially, so that they do not
affect the steady state. We therefore set both to zero. Only
the n0 dependence matters. In this way we obtain expres-
sions for hðnt · ĝÞpin0, which involve secular terms that
increase linearly with time as t → ∞. However, these terms
must vanish since nt is a unit vector. This condition yields a
recursion relation for the steady-state averages hðn · ĝÞpi∞,
independent of n0. This recursion is valid for arbitrary

values of G≡ KuFSt=CðtÞ
⊥ , and to order Ku0. Note that G

can be large even if Ku is small. We solve the recursion by a
series expansion in small G,

hðn · ĝÞ2pi∞¼ 1

2pþ1
þ
X∞
i¼1

G2i
P

i
j¼1p

jAð2iÞ
j ðSt;λÞQiþ1

k¼1ð2pþ2k−1Þ : ð6Þ

The coefficients Að2iÞ
j ðSt; λÞ depend on the shape and inertia

of the particle, but not on G or p. From Eq. (6) we obtain
the Fourier transform of the probability distribution of
ng ¼ jn · ĝj. Inverse Fourier transformation yields the
distribution. To order G4 we find

PðngÞ¼ 1þ1

4
ð3n2g−1ÞAð2Þ

1 G2þ 1

32
½2ð1−n2gÞð5n2g−1ÞAð4Þ

1

þ1−18n2gþ25n4gÞAð4Þ
2 �G4þ��� : ð7Þ

The lowest-order term corresponds to a uniform distribu-

tion of nt. The G2 term, Að2Þ
1 , turns out to be negative for

disks and positive for rods (see Fig. S2 in the SM [33]).
This explains the bias seen in Fig. 1: disks tend to fall edge
on, and rods settle tip first.
Padé-Borel resummation.—Now consider higher orders

in theG expansion. The coefficients increase rapidlywith the
order of the expansion. This indicates that the series (6) is
asymptotically divergent and must be resummed. Figure 2
demonstrates that Padé-Borel resummation [36,44] of the
series yields excellent results. Shown are results from a
resummation of (6) to order G34 (thick solid lines). These
results agree very well with numerical simulations of the
statistical model for Ku ¼ 0.1 and St ¼ 10 (symbols). The
resummed theory works up to G ¼ 10, and in this range
the bias increases with increasing G. The resummed theory
also predicts that the moments increase as St increases, for
fixedG. A more detailed analysis of the recursion leading to
Eq. (6) reveals, however, that the limit G → ∞ is delicate.
Perfect alignment requires λ ¼ ∞ [33].

(a) (b)

FIG. 2. Moments of ng ¼ jn · ĝj, for p ¼ 1 (circle), p ¼ 2
(square), p ¼ 3 (diamond), and p ¼ 4 (triangle). Dashed lines:
moments of isotropic orientation distribution. Thin solid lines:
Eq. (6) to OðG2Þ. Thick solid lines: order 8-by-8 Padé-Borel
resummation of Eq. (6) to OðG32Þ. Parameters: Ku ¼ 0.1,
St ¼ 10, with (a) λ2 ¼ 0.1 or (b) λ2 ¼ 10.
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In summary, perturbation theory in Ku shows that
turbulence gives rise to an orientation bias (Fig. 2), in
excellent agreement with statistical-model simulations at
Ku ¼ 0.1 and in qualitative agreement with numerical
results based on DNS (Fig. 1).
The calculations leading to Eq. (6) reveal that each

moment hðnt · ĝÞ2pi∞ is a sum of two contributions that
stem from the “preferential sampling” and “history” terms,
defined above in connection with Eq. (4). For small Ku the
history effect is dominant; the orientation bias is entirely
determined by the history of fluid-velocity gradients along
straight deterministic paths. Decomposing the leading-order

contribution as Að2Þ
1 ¼Að2Þ

1;prefþAð2Þ
1;hist we find that jAð2Þ

1;pref j ≪
jAð2Þ

1;histj (Fig. S2(b) in the SM [33]). Figure 3(a) leads to the
same conclusion. It shows the distribution PðngÞ from
statistical-model simulations for Ku ¼ 0.1. Also shown is
PðngÞ computed for particles falling with constant velocity
v ¼ vsðn0Þ. In these simulations we choose the initial
condition n0 so that n0nT0 in Eq. (3) equals the steady-state
average hn0nT0 i∞, evaluated using the small-Ku theory. This
corresponds to keeping just the history contribution to
hn2pg i∞. We observe excellent agreement with the full
statistical-model simulations. This shows that the history
effect causes the orientation bias at small Ku.
Persistent limit.—In the persistent limit we use numeri-

cal statistical-model simulations with Ku ¼ 10 to analyze
the orientation bias in the same way as for small Ku. The
result is shown in Fig. 3(b) [data represented by symbols is
identical to the data for the two largest aspect ratios in
Fig. 1(a)]. We plot the full statistical-model distribution and
results for particles with a constant velocity (3) (neglecting
preferential sampling). Here the average hn0nT0 i∞ in Eq. (3)
is computed using statistical-model simulations. We infer
that the history effect makes a substantial contribution to
PðngÞ. But since the distributions do not match, we infer
that preferential sampling also contributes. This contribu-
tion is hatched in Fig. 3(b).
Limit of large settling speeds.—Figure 3(c) shows

statistical-model results for the moments hn2pg i∞ for p≤3
in the persistent limit, as functions of StK. Open symbols
denote full statistical-model simulations, and solid lines

correspond to simulations based on straight deterministic
paths. The difference between the two simulations demon-
strates the importance of preferential sampling at inter-
mediate StK. As the Stokes number grows, however, the
figure demonstrates that preferential sampling ceases to
play a role. In this limit the orientation bias is entirely
caused by the history effect. The bias shown in Fig. 3(c)
increases as StK increases. However, as the perturbation
theory indicates, the limit of large settling speeds is quite
subtle. Statistical-model simulations for Ku ¼ 1 show that
the degree of alignment starts to decrease for very large G.
Conclusions.—We analyzed a statistical model for the

orientational dynamics of small heavy spheroids settling in
turbulence. The predictions of the model agree well with our
own numerical results based on DNS of homogeneous
isotropic turbulence (Fig. 1). Our statistical-model analysis
shows that there are two distinct competing mechanisms
causing the orientation bias: preferential sampling and the
history effect. The latter dominates for large settling speeds,
but it also makes substantial contributions in other parameter
regimes. Preferential sampling dominates only when the bias
is negligibly small. When the bias is significant, the history
effect explains at least about 50%of the bias observed inFig. 1.
We have shown that the orientation alignment depends

on combinations of dimensionless numbers StK and
FKRe

−1=2
λ . Our analysis shows that it is the small-scale

properties of the flow that determine the orientation align-
ment. The Reλ dependence arises only because it deter-
mines the ratio between the smooth scale l to ηK. We note
that FKRe

−1=2
λ equals the ratio of the settling velocity and

the rms turbulent velocity fluctuations.
Our results pertain to small ice crystals settling in

turbulent clouds, and allow us to model the sensitive
dependence of the effect upon particle shape, size, and
the turbulence intensity. This is important since turbulent
dissipation rates vary widely in clouds. Our results predict
strongly varying degrees of alignment. That the statistical
model is in excellent agreement with the DNS opens a way
to parametrize the orientation distribution of ice crystals in
clouds. This potentially leads to an improved understanding
of the radiative properties of clouds, and of particle
aggregation through collisions in clouds.

(a) (b) (c)

FIG. 3. History effect causes orientation bias. (a) Distribution of ng based on full statistical-model simulations (symbols), and based on
straight deterministic paths (solid lines). Parameters: λ ¼ 1=

ffiffiffiffiffi
10

p
, Ku ¼ 0.1, St ¼ 10, F ¼ 1 (circle), F ¼ 10 (square). (b) Same for

parameters corresponding to data in Fig. 1(a), λ ¼ 0.02 (star), λ ¼ 0.05 (right-pointing triangle). Preferential-sampling contribution is
hatched. (c)Moments hn2pg i∞ from statistical-model simulations in the persistent limit (Ku ¼ 10) against StK (p ¼ 1, circle;p ¼ 2, square;
p ¼ 3, diamond). Parameters λ ¼ 1=

ffiffiffiffiffi
10

p
, FK ≈ 2.5. Also shown are simulations based on straight deterministic paths (solid lines).
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The present work is based on the point-particle approxi-
mation of heavy particles, which neglects the effect of
fluid inertia. This requires the particle Reynolds number
Rep ≡ avc=ν to be small, where a ¼ maxða∥; a⊥Þ.
Estimating the slip velocity vc by the Stokes settling speed,
we find that Rep is of order unity for the data shown in
Fig. 1, so the condition is marginally satisfied. The shear
Reynolds number, Res, must also be small. Since Res ≡
a2

ffiffiffiffiffiffiffiffiffiffiffiffi
htrS2i

p
=ν ∼ ða=ηKÞ2 [45], this condition is satisfied for

small particles.
Lopez et al. [46] analyzed the orientational dynamics of

rods settling in a vortical flow. For small Rep they found a
bimodal distribution, with peaks at ng ¼ 0 and 1. They
explain the peak at ng ¼ 0 by the effect of fluid inertia. Our
theory may explain the peak at ng ¼ 1. These results point
to a competition between turbulent and fluid-inertia tor-
ques, which remains to be understood. For small St one
may formulate an ad hocmodel by simply adding turbulent
and fluid-inertia torques, along the lines suggested in
Ref. [46]. But in general it remains a challenge to take
into account effects due to fluid inertia from first principles,
in a turbulent environment. Simulations resolving particle
and fluid motion [47,48] and experiments [49–53] for
micron-sized particles in turbulence are needed to test the
predictions, and to determine the orientational dynamics of
larger particles where fluid inertia must matter [53]. Finally,
how to extend the ideas developed here to particles lighter
than the fluid remains a challenging task.
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