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Spatial Competition with Demand Uncertainty: A Laboratory Experiment

Abstract

Motivated by recent research on product differentiation, we conduct laboratory experiments to

study how (aggregate) demand uncertainty influences location choices and price competition in

the original Hotelling (1929)’s model. We provide new predictions on the effect of risk attitudes

on both decisions under demand uncertainty and confront them with the data. Our experimental

results support the predictions that demand uncertainty acts as a differentiation force for risk-

neutral and risk-lover subjects. By contrast, we do not verify that demand uncertainty leads

risk-averse subjects to agglomerate. This is explained primarily by learning effects and hetero-

geneous behaviors within this risk profile. Finally, we observe various price-setting behaviors,

ranging from an attempt to collude to a price war, depending on the level of differentiation.

Keywords: product differentiation, demand uncertainty, price competition, experiment

JEL Classification: C72, C91, D43, L13, R30
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Concurrence spatiale et incertitude de la demande : une expérience en laboratoire

Résumé A la suite de récents travaux sur la différenciation des produits, nous étudions com-

ment l’incertitude sur la demande (au niveau agrégé) peut altérer les choix de localisation et

de concurrence en prix dans le modèle standard de concurrence spatiale à la Hotelling (1929).

La prise en compte de préférences hétérogènes vis-à-vis du risque conduit à l’obtention de

prédictions théoriques nouvelles sur les choix de localisation et de prix. La validité de ces pré-

dictions est ensuite testée empiriquement à partir de données collectées via une expérience en

laboratoire. Les résultats expérimentaux confirment la prédiction selon laquelle une incertitude

sur la demande agit comme une force de différenciation pour des sujets neutres au risque ou

risquophiles. A l’inverse, et contrairement à la prédiction du modèle, il n’est pas observé que

les sujets averses au risque s’agglomèrent plus fortement en présence d’une incertitude sur la

demande. Ceci s’explique principalement par des effets d’apprentissage et des comportements

hétérogènes au sein de cette catégorie de sujets. Enfin, nous observons des comportements de

fixation de prix très variés en fonction du niveau de différenciation, allant de la (tentative de)

collusion à la guerre de prix.

Mots-clés : différenciation des produits, incertitude de la demande, concurrence en prix, expé-

rience.

Classification JEL: C72, C91, D43, L13, R30
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Spatial Competition with Demand Uncertainty: A Laboratory Experiment

1. Introduction

Product success hinges principally on a firm’s ability to meet demand. Although easily stated,

firms face considerable difficulties in practice in envisioning how consumers will appreciate a

brand new product. Recent examples of product failures, such as Google Glass or the Amazon

Fire Phone, illustrate this complexity. Such poor design or unsuitable product features may have

dramatic consequences for the financial health of firms. Firms thus cite addressing demand un-

certainty as one of the key challenges on the road to success (see Capgemini Consulting, 2012,

for instance). Launching a new product is indeed a complicated task because firms are uncer-

tain about consumer tastes and have to choose which bundle of characteristics to offer, while

anticipating rivals’ reactions. In essence, firms could respond to this uncertainty by offering

either innovative and differentiated products, to relax price competition, or basic products, and

thus compete head-to-head with their rivals.

Based on the seminal model of Hotelling (1929), we conduct laboratory experiments to empi-

rically examine to what extent demand uncertainty influences firms’ incentives to differentiate.

Further, by testing Hotelling’s original location-then-price game in the lab, we are able to study

the pricing behavior of firms facing different levels of differentiation. In doing so, we provide

new empirical insights into how demand uncertainty shapes product differentiation strategies

and, thus, the intensity of competition. This is of particular interest because demand uncer-

tainty may lead to market outcomes that are far from the social optimum.

Until recently, product differentiation (in characteristics or in geographical space) was long

analyzed in the Industrial Organization literature through the use of Hotelling-style location

models with the assumption that firms have perfect knowledge about demand. In short, this vast

literature teaches us that under a wide range of assumptions, firms tend to differentiate along

the dominant characteristic to soften price competition (see, e.g., Irmen and Thisse, 1998).1

Surprisingly, this result has found little empirical support. Among the few attempts at empirical

validations, mixed evidence of clustering and dispersion has been found, thus casting doubts on

the validity of the “principle of maximum differentiation”.2

1Nonetheless, it is well established that it is possible to obtain all sorts of equilibrium outcomes in the one-

dimensional case, ranging from minimal to maximal differentiation, depending on the model’s assumptions (see,

e.g., Brenner, 2001 for a survey on Hotelling-style models of product differentiation).
2These studies are typically conducted in markets where the geographical dimension is predominant. For

instance, Schuetz (2015) shows that Big Box retailers prefer to agglomerate in desirable locations rather than cede

market shares to rivals (see also Eckert et al., 2013 for a location study of shopping centers), whereas Netz and

Taylor (2002) find that gasoline stations spatially differentiate more when the intensity of competition increases

(see also Seim, 2006 for a study of the video retail industry). Less extreme results are found by Elizalde (2013),

who observes both location equilibria in the movie theater industry.
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In recent years, few authors have revisited the results of the location-then-price game of Hotel-

ling’s model, assuming firms are uncertain about (aggregate) consumer tastes (see, e.g., Harter,

1996; Casado-Izaga, 2000; Meagher and Zauner, 2004, 2005). Interestingly, this stream of rese-

arch has demonstrated that firms differentiate more when facing demand uncertainty than when

they are perfectly informed.3 Further, these studies have shown that the differentiation force is

increasing in the level of uncertainty, suggesting that in markets with fast-evolving tastes, such

as the apparel industry, one would observe more differentiation among products.4

Empirically testing the effect of demand uncertainty on firm differentiation strategies is, howe-

ver, a non-trivial task. As in the case in which consumer tastes are assumed to be known by

firms, it is difficult to define a relevant proxy for product differentiation while being able to con-

trol for exogenous market constraints that could bias the measure (e.g., geographical boundaries

or demographic factors in the retail industry; see Picone et al., 2009). Furthermore, accounting

for demand uncertainty introduces an additional difficulty: how should one assess the level of

uncertainty encountered by firms? For all these reasons, using laboratory experiments seems the

appropriate solution to study firms’ incentives to differentiate when facing demand uncertainty.

Past experiments have studied endogenous location choices or pricing decisions in spatially

differentiated markets, but they always assume that one or the other of these decisions is exoge-

nous. Brown-Kruse et al. (1993) and Brown-Kruse and Schenk (2000) analyze firms’ location

decisions in repeated spatial duopoly markets with elastic demand and a fixed price environ-

ment. Both studies demonstrate that subjects tend to agglomerate at the center of the market

(i.e., the non-cooperative equilibrium), but subjects succeed to coordinate and achieve the collu-

sive outcome when non-binding communication is introduced (i.e., firms locate at the quartiles

of the market). Huck et al. (2002) confirm the attractiveness of the central location in a qua-

dropoly market with inelastic demand, while Collins and Sherstyuk (2000) emphasized the role

of risk attitudes to explain deviations from the Nash-equilibria in a triopoly market. In another

vein, Orzen and Sefton (2008) empirically analyze a spatial price competition model under the

assumption of exogenous firm locations. They report persistent price dispersion in accordance

with mixed strategy equilibria.

To our knowledge, only two works have tested in the lab a two-stage model of location decisions

and price competition. The earlier paper of Camacho-Cuena et al. (2005) is, however, rather

specific, as it also includes an endogenous consumer location choice stage, which enables the

authors to revisit the issue of product differentiation in the presence of strategic buyers. More

closely related to our study is that of Barreda-Tarrazona et al. (2011). Their experimental design

recasts the spatial duopoly model of Hotelling (1929) in a discrete framework with linear disu-

3A similar result is found by Cheng (2014) when firms are vertically differentiated and uncertain about how

consumers perceive products’ quality.
4Note that the effect of demand uncertainty is reversed when uncertainty is introduced at the individual level

through idiosyncratic shocks to consumer tastes (see de Palma et al., 1985; Anderson et al., 1992).
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tility of transportation and few demand slots. They find that subjects differentiate significantly

less than predicted, thus providing support for the principle of minimum differentiation. One

advantage of their experiment is that it delivers closed-form solutions of the theoretical model.

We thus depart from their framework and extend it by introducing demand uncertainty through a

random shift of the support of the linear city as in Meagher and Zauner (2005). Subjects simul-

taneously choose their location before the location of the consumer distribution is revealed and

then compete in prices with perfect knowledge about demand location. We implement three ex-

perimental treatments. In the baseline treatment, subjects have perfect information on demand

location, whereas in the other two treatments, they face different levels of demand uncertainty.

Our empirical results confirm that, on average, demand uncertainty acts as a differentiation

force, a finding that supports the theoretical predictions of past studies. However, we observe

that most of subjects locate close to the center regardless of the treatment, thereby leading to

a level of differentiation far below that derived in the non-cooperative equilibrium. For such

levels of differentiation, it appears that subjects attempt to collude in prices. Conversely, for

higher levels of differentiation, we find that subjects set prices close to the non-cooperative

equilibrium. Altogether, the posted prices attest to the standard positive relationship between

differentiation and prices when demand location is perfectly known.

In addition, our experimental setting offers a suitable environment to study how non-risk neutral

subjects would react to the introduction of demand uncertainty. While the effects of risk aver-

sion on firms’ decisions seems central in a context of demand uncertainty, this issue has thus

far been neglected in the literature.5 We first derive new theoretical predictions on the effect

of demand uncertainty on firms’ decisions in the location-then-price game. In particular, we

show that demand uncertainty leads risk-averse firms to agglomerate to secure (a lower) part of

demand, unlike risk-neutral and risk-lover firms. Then, we control for subjects’ risk attitudes in

the lab by means of a second experiment that elicits individual levels of risk aversion (Drichoutis

and Lusk, 2012). Examining the results by risk profile, we find that risk-neutral and risk-lover

subjects differentiate more when demand uncertainty increases. This result is, however, at odds

with the game predictions for risk-averse subjects, and we provide some explanations for the

observed differences.

The remainder of the paper is organized as follows. Section 2. presents the discrete framework

of the location-then-price game and reports the game equilibria for the different treatments.

Section 3. describes the experimental design, and the results of the experiments are reported in

Section 4.. Finally, Section 5. concludes.

5One exception is Balvers and Szerb (1996), who analyze the location choices of risk-averse firms in a spatial

duopoly model featuring aggregate demand uncertainty. However, prices are assumed to be exogenous in their mo-

del, which entails the standard result of firms locating at the center in the absence of uncertainty. When uncertainty

arises, an increase in risk aversion drives firms closer to the edges of the city to secure a smaller share of demand

and avoid risky realizations of the random shock that decrease expected payoffs at the city center.
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2. A Discrete Version of the Hotelling Game

We present in Section 2.1. a discrete version of the standard Hotelling’s model. We first derive

the game equilibria under the assumption of perfect knowledge about demand location and risk-

neutral firms in Section 2.2.. We then introduce demand uncertainty in Section 2.3.. Finally, we

relax the hypothesis of risk-neutral firms in Section 2.4..

2.1. Basic Settings

As a natural benchmark, we consider the standard Hotelling model in which firms play a

location-then-price game under the canonical assumptions that firms are risk-neutral and de-

mand is perfectly known by firms (hereafter denoted as the demand certainty case) prior to their

location and price decisions.6 To conduct experiments in the lab, we recast the Hotelling (1929)

model in a discrete framework. To this end, we borrow from the game proposed by Barreda-

Tarrazona et al. (2011) and extend their baseline case to introduce demand uncertainty. While

using a discrete framework makes it difficult to derive closed-form solutions, it also allows us

to limit both the number of locations and price offers. This provides two advantages: it favors

the replication of the game in the lab, and facilitates the comparison with real-world situations

in which the sets of actions are reduced. In the next paragraphs, we present the key features

of the game proposed by Barreda-Tarrazona et al. (2011), and introduce specific notations that

will be useful when adding demand uncertainty.7

There are two firms i = {1, 2} playing a location-then-price game. In the first stage, firms

simultaneously choose their location with perfect information about demand. Once the lo-

cations are set, firms compete simultaneously in prices. The optimal solution of this game

can be derived through the resolution by firms of the profit maximization problem given by

Πi (xi, pi) = max {pi · qi}, where pi denotes the price charged by firm i and qi its residual

demand.

Assume there is a unit-length linear segment populated by 7 consumers j = {1, . . . , 7} uni-

formly distributed over [M − 3,M + 3], where M denotes the city center and M ∈ ℜ. As

shown in Fig.1, each consumer is located on one of the 7 equidistant slots denoted xj ∈ ℜ.8

A consumer can either buy a maximum of one unit of the good sold by one of the two firms

labeled i and located at xi ∈ ℜ or abstain from buying. Without loss of generality, we assume

that firm 1 is located to the left of firm 2, i.e. x1 ≤ x2. Firms sell a homogeneous good produced

6To be as close as possible of the pioneering work of Hotelling (1929), we also assume that consumers are

uniformly distributed over the linear city, firms’ location are restricted to the inner city, travel costs are proportional

to distance traveled, and demand is inelastic up to a reservation price.
7Readers interested in a more detailed presentation of the baseline model are referred to Barreda-Tarrazona

et al. (2011)
8Throughout the paper, we only consider the Simulated Consumers Treatment of Barreda-Tarrazona et al.

(2011), which implies an odd number of locations and exogenous consumers.
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with constant marginal costs normalized to 0. Since the product is not vertically differentiated,

the sole difference between the levels of appreciation is based on a consumer tastes for the ideal

product defined in terms of its geographical location (or product characteristic). Hence, for a

consumer located at xj who visits firm i, his indirect utility function is given by:

Vji = R− pi − txij (1)

where R is the basic reservation utility, which is assumed to be positive, pi is the price charged

by firm i, xij represents the distance between firm i and consumer j (i.e., xij = |xi − xj|), and

t is a transportation cost per unit distance. According to the highest utility rule, consumer j

purchases the product from firm i, if Vji > Vjk where k 6= i. In other words, consumer i

chooses the cheapest firm (i.e., the firm with the lowest mill price plus transportation cost), as

long as his payment does not exceed his reservation utility R. In the event of ties between Vji

and Vjk, the consumer is assumed to randomly choose one of the two firms with probability

1/2. Bearing in mind that the experiment should be kept as simple as possible, we adopt the

same parameter values as Barreda-Tarrazona et al. (2011), which entails clear-cut solutions for

experimental subjects. Therefore, we set R = 10, pi = {1, . . . , 10} and t = 6.

At this point, two central hypotheses of the model must be discussed. First, by specifying a

linear transportation cost, we elected to promote the simplicity of the experimental design at the

expense of obtaining pure-strategy equilibrium prices. Clearly, it appears less computational

demanding for subjects to determine their payoff when the disutility of buying a product that

is not the desired product is represented by a linear function rather than a quadratic function.

Therefore, we expect that a linear form reduces the risk that subjects will switch from a rational

behavior to a fuzzy behavior. However, a number of theoretical works have long demonstra-

ted that the original (continuous) Hotelling location-then-price game with linear transportation

costs leads to no equilibrium price solution in pure strategy (d’Aspremont et al., 1979; Econo-

mides, 1986). With a linear transportation cost, profit functions are no longer quasi-concave,

which entails discontinuity in the best response functions and, thus, the non-existence problem.

However, by discretizing the Hotelling game, we have already introduced discontinuity into the

firms’ profit function. Thus, adopting a particular specification of the transportation cost is less

critical for the existence of a unique price equilibrium in pure-strategy.

Second, and unlike previous experiments based on spatial competition models (see, e.g., Brown-

Kruse and Schenk, 2000; Collins and Sherstyuk, 2000; Huck et al., 2002; Orzen and Sefton,

2008), the resolution of the game yields possible outcomes in which the market is not fully

covered. This particularity originates from the parametrization of the model that enables firms

to set delivered prices that exceed the consumer’s reservation utility. At these prices, consu-

mers are thus better off not buying the good, thereby resulting in an uncovered market. As a

consequence, in the particular case in which non-buying consumers are located between the

8
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Table 1: Price Equilibrium Payoffs for each Pair of Locations (Demand Certainty)

1 2 3 4 5 6 7

1 (3.5,3.5)e (1,6) (4.71,15.88)⋆ (10,22.42)⋆ (18,28) (21,28) (24.5,24.5)e

2 (6,1) (3.5,3.5)e (2,5) (10,17)⋆ (20,23.65)⋆ (24.5,24.5)e (28,21)

3 (15.88,4.71)⋆ (5,2) (3.5,3.5)e (6,8) (18.2, 18.2)⋆ (23.65,20)⋆ (28.18)

4 (22.42,10)⋆ (17,10)⋆ (8,6) (3.5,3.5)e (8,6) (17,10)⋆ (22.42,10)⋆

5 (28,18) (23.65,20)⋆ (18.2,18.2)⋆ (6,8) (3.5,3.5)e (5,2) (15.88,4.71)⋆

6 (28,21) (24.5,24.5)e (20,23.65)⋆ (10,17)⋆ (2,5) (3.5,3.5)e (6,1)

7 (24.5,24.5)e (21,28) (18,28) (10,22.42)⋆ (4.71,15.88)⋆ (1,6) (3.5,3.5)e

Notes: (⋆) and (e) denote mixed strategy equilibrium and expected payoffs due to indifferent consumers, respectively.

two firms, the firms do not directly compete with one another but instead behave like local

monopolists.

2.2. Location-then-Price Game Equilibria

Throughout the paper, we study the non-cooperative equilibrium of the game and we consi-

der a subgame perfect Nash equilibrium (SPE) as the equilibrium concept.9 Note further that

the theoretical predictions and results are expressed in terms of consumer location for ease of

exposition.

Price equilibria are determined for each pair of locations (x1, x2). Whenever a consumer is

indifferent between firms 1 and 2, we adopt an arbitrary sharing rule, such that the marginal

consumer chooses one of the two firms with probability 1/2. In the case of a multiplicity of

price equilibria, we assume that firms choose the riskless option, meaning the price equilibrium

that ensures an equivalent level of profit with a safe number of consumers. In other words,

firms are assumed to be ε-risk averse. Finally, if multiplicity of equilibria persists, firms choose

the Pareto superior equilibrium, and otherwise the joint profit-maximizing solution. Assuming

that firms are risk-neutral and perfectly informed about demand location, we report in Table 1

the payoffs derived from the price equilibrium for each pair of locations.10 Given the matrix

of payoffs, it is now easy to determine the unique SPE of the location-then-price game under

demand certainty (labeled DC hereafter).

Proposition 1 The unique SPE locations for the location-then-price game under demand cer-

tainty and risk neutrality is (x⋆
1, x

⋆
2) = (2, 6) with equilibrium prices (p⋆1, p

⋆
2) = (7, 7).

This result, first established by Barreda-Tarrazona et al. (2011), entails a degree of differentia-

tion equal to ∆DC ≡ x⋆
2 − x⋆

1 = 4.

9We study in Appendix D the cooperative equilibrium of the game under the assumption of tacit collusion

between firms.
10We provide some explanations of the computation of the price equilibria and report the price equilibrium for

each pair of locations in Appendix A.
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Consumer 1 2 3 4 5 6 7
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1

Figure 1: Demand Certainty treatment (L = 0): Linear city with 7 consumers and 7 potential

locations.

Linear city ◦ ◦ ◦ ◦ ◦ ◦ ◦

Demand support

• • • • • • • • • • •

-1 0 1 2 3 4 5 6 7 8 9

Figure 2: Low Demand Uncertainty treatment (L = 4): Linear city with 7 consumers and 11

potential locations.

Linear city ◦ ◦ ◦ ◦ ◦ ◦ ◦

Demand support

• • • • • • • • • • • • • • •

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

Figure 3: High Demand Uncertainty treatment (L = 8): Linear city with 7 consumers and 15

potential locations.
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2.3. Demand Uncertainty

We now introduce demand uncertainty into the location-then-price game under the assumption

that firms are risk-neutral. This extension corresponds to the central issue of the paper that we

aim to experimentally investigate. The introduction of demand uncertainty echoes a recent and

growing stream of research that investigates to what extent uncertainty over (aggregate) demand

location mitigates firms’ positioning in geographical space. In brief, this literature considers a

modified version of the (continuous) Hotelling game in which uncertainty applies to consumer

locations through a random shift of the support of the linear city. For instance, Casado-Izaga

(2000) departs from the standard location-then-price game with quadratic transportation costs,

and models demand uncertainty as a common draw of the mean of the consumers’ distribution,

which is assumed to be uniformly distributed.11 For simplicity, the center of the linear city is

assumed to be drawn from a uniform distribution on the closed unit interval [0, 1] and revealed to

firms once the simultaneous location game has ended. Meagher and Zauner (2005) generalize

this setting by extending the support of the distribution of the city center to
[
−L

2
, L
2

]
, where

L represents the size of the uncertainty. They show that a unique pure-strategy SPE exists

that leads to higher expected prices, higher differentiation, and higher expected profits when L

increases.

The intuition for this result is simple. Under demand uncertainty, the equilibrium of the Ho-

telling game is shaped by the basic tradeoff that firms face between securing a larger fraction

of demand by locating close to the center (demand effect) or relaxing price competition by mo-

ving farther away from its competitor (strategic effect). In the presence of uncertainty about

consumer locations, this tradeoff is altered, such that firms are more interested in relaxing price

competition. Specifically, assuming a uniform distribution of uncertainty, extreme realizations

of demand have an equal chance of occurring as do central realizations. This implies that firms

are no longer certain to lose consumers when locating far away from the center. Consequently,

the demand effect is weakened, and this leads firms to differentiate themselves to reduce price

competition. This result is more pronounced the greater the level of uncertainty.

Although established for a given set of assumptions, the differentiation force entailed by de-

mand uncertainty remains valid under alternative assumptions: a non-uniform distribution of

the random shock (Meagher and Zauner, 2004, 2008, 2011),12 sequential location choices (Har-

ter, 1996; Casado-Izaga, 2000; Bonein and Turolla, 2009), and pricing decisions under demand

uncertainty (Meagher and Zauner, 2004, 2005).

To experimentally test the effect of demand uncertainty on firm differentiation, we extend the

11Readers interested by a more general setting in which uncertainty arises at the distributional level and does not

rely on the first moment of the distribution alone are referred to Meagher and Zauner (2004, 2008).
12In a previous work, Meagher and Zauner (2004) investigate the case of a random shock originating from a non-

uniform density function. In this former model, firms’ beliefs rely only on the first two moments of the distribution

of the city center, but the support of the uncertainty is restrained to
[
− 1

2 ,
1
2

]
to ensure market coverage.
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baseline model by now assuming that firms are uncertain about consumer locations. The timing

of the game is as follows. Firms simultaneously choose their location without having knowledge

about the location of demand. Then, the demand uncertainty is revealed, and location choices

are publicly announced. Finally, firms simultaneously set their prices. We follow Meagher and

Zauner (2005) by assuming that firms are uncertain about the realization of the first moment

of the consumer distribution, while being perfectly informed of the higher-order moments of

the distribution and the definition of its support. Implicitly, this implies that firms’ beliefs are

represented by a common prior.13 Formally, let us assume that M is distributed according

to a discrete uniform distribution on
{
−L

2
+ 4, . . . , 4, . . . , L

2
+ 4

}
, with L > 0. To facilitate

comparisons among treatments, we impose that the central location is always the integer 4

whatever the extent of the uncertainty. The expected profits of firm i for a given pair of locations

(xi, x−i) and prices (pi, p−i) are now given by:

E [Πi (xi, x−i, pi, p−i|M)] = pi ×

[
1

MC

×
∑

c

qic (xi, x−i, pi, p−i|M)

]
(2)

where c is a realization of the random variable M , MC is the number of possible realizations of

M , and qic (·) denotes the consumer who is indifferent between the two firms for the realization

c of the city center. Note that since the city center M is distributed uniformly, the formulation

of the expected profits gives equal weight to each realization of M in the computation of the

firm’s demand.

In the experiment, we consider two treatments that embody demand uncertainty and differ in the

extent of the uncertainty. In a first treatment, we investigate firm decisions under a high level of

uncertainty about consumer locations by setting L = 8. This treatment, labeled High Demand

Uncertainty (HDU), increases the support of the distribution of consumers, thus offering 9

possible realizations for the city center M .14 As shown in Fig.3, this treatment extends the set

of the potential locations for the firms to 15 slots, while maintaining the number of consumers

populating the linear city at 7. In other words, demand is unchanged (i.e., 7 consumers), but

prior to locating, firms are now uncertain about the locations of the consumers segment, which

one may locate between sites -3 and 11.

13In a recent paper, Król (2012) examines the case in which firms do not know the exact probability distribution

of the mean of the consumer distribution, yielding ambiguous consumer demand. Because firms are no more

able to compute the expected profits in the location subgame, the author analyzes product differentiation decisions

when firms adopt pessimistic decision criteria. The resolution of the game reveals that the optimal strategy consists

in adopting an extreme form of pessimism, which leads firms to locate closer together when demand uncertainty

increases, a result similar to our theoretical prediction when considering risk-averse firms.
14Although Meagher and Zauner (2005) examine higher levels of uncertainty, our choice of L = 8 is the result

of a delicate tradeoff between finding a sufficiently high level of uncertainty, such that we can observe a change

in the equilibrium outcome, and limiting the support of the consumer distribution (i.e., reducing L) to avoid an

excessive number of equilibria with a large share of non-buying consumers. A disadvantage when increasing the

extent of the uncertainty is that we significantly increase the choice set of locations, thereby complicating the task

of the subjects and encouraging them to behave as local monopolists.

12



Working paper SMART-LERECO No17-12

In a third treatment, we define a lower level of uncertainty, such that we obtain identical lo-

cation equilibria with respect to the DC treatment. This last treatment, labeled Low Demand

Uncertainty (LDU), is conducted by assuming that L = 4 which offers 11 locations for firms

(see Fig.2; the locations are labeled from -1 to 9). Intuitively, we expect that the level of dif-

ferentiation expressed by risk-neutral firms in this treatment will not differ from that in the DC

case.

Similar to the baseline case, a unique SPE in pure strategy can be characterized by solving these

two variants of the game by backward induction. As before, we first determine the price equili-

brium for each pair of locations. Then, given the matrix of payoffs for each pair of locations, we

derive the unique location equilibrium in pure strategy.15 As noted above, the location and price

equilibria obtained in the LDU treatment are similar to those derived under perfect knowledge

about the location of demand.

Proposition 2 The unique SPE for the location-then-price game under low demand uncertainty

and risk neutrality is (x⋆
L1, x

⋆
L2) = (2, 6) with equilibrium prices (p⋆L1, p

⋆
L2) = (7, 7).

By contrast, the resolution of the game in the HDU treatment leads to a different location equi-

librium.

Proposition 3 The unique SPE for the location-then-price game under high demand uncer-

tainty and risk neutrality is (x⋆
H1, x

⋆
H2) = (1, 7) with equilibrium prices (p⋆H1, p

⋆
H2) = (7, 7).

When firms face a high level of demand uncertainty, they choose to locate farther away from

one another relative to the DC and LDU treatments. We obtain the central result of Meagher and

Zauner (2005), which stipulates that demand uncertainty acts as a differentiation force. Above

a certain threshold of demand uncertainty, firms are no longer certain to capture a larger share

of demand when locating close to the center. Consequently, the firm’s best response consists

of reducing the intensity of price competition by locating far away from its rival and, thereby,

maximizing its profit. However, unlike Meagher and Zauner (2005), we do not observe that

firms raise their prices when demand uncertainty increases. This is due to the combination of

three factors that make a deviation from the initial price equilibrium unprofitable: (i) the adop-

tion of a linear transportation cost that strengthens price competition, (ii) a discrete framework

that introduces threshold effects in firms’ actions, and (iii) the choice of a moderately “high”

level of demand uncertainty to limit the number of potential locations.16

15The price equilibrium payoffs and the equilibrium prices for each pair of locations are given in the Online

Appendix.
16With a quadratic transportation cost, as in Meagher and Zauner (2005), the incentive for firms to raise their

prices when moving away from their rival is more pronounced than with a linear formulation. From a consumer

perspective, a quadratic transportation cost makes each supplementary unit of distance to travel increasingly ex-

pensive compared with a marginal increase in price. Hence, the more firms differentiate, the greater the decrease in

the intensity of price competition. This explains why price competition is more intense with a linear transportation

cost than with a quadratic one and, consequently, why firms differentiate less.

13
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Following the resolution of the games, the following theoretical prediction can be easily brought

to the data.

Testable prediction 1 A high demand uncertainty acts as a differentiation force.

2.4. Behavioral Hypotheses

Thus far, our theoretical predictions have been derived under the assumption of risk-neutral

firms. However, it is highly likely that a significant share of decision-makers, both in the lab and

within firms, are not risk-neutral. For instance, Asplund (2002) cites several reasons to assume

that firm managers are rather risk-averse such as non-diversified owners, liquidity constraints,

or non-linear tax systems. This leads us to study the theoretical predictions of the location-then-

price game when considering risk-averse and risk-lover firms.

In case of the DC treatment, uncertainty arises from the existence of indifferent consumers.

With a sharing rule of 1/2, a firm is not certain to be chosen by an indifferent consumer and thus

has to form expectations on the total number of consumers it will attract. In the LDU and HDU

treatments, a second source of uncertainty comes naturally from the demand location. Both

sources of uncertainty may affect location choices and price decisions.

DC treatment Assuming expected utility theory, the expected profit of a firm i is represented

by a power CRRA function of the following form:

Πi =
(piqi)

1−r

1− r
(3)

where r represents the coefficient of relative risk aversion (CRRA). If r = 0, we return to the

situation with risk-neutral firms, while r > 0 and r < 0 denote risk-averse and risk-loving

behavior, respectively.17 In the case of indifferent consumers, the expected profit function is:

E [Πi] =
1

2

[piqi]
1−r + [pi (qi + q̃i)]

1−r

1− r
(4)

with q being the safe demand and q̃ the number of indifferent consumers. Let us illustrate

the importance of risk aversion when some consumers are indifferent between the two firms.

Assume that firms are located in (x1, x2) = (3, 5) and choose to set identical prices equal to

8. These symmetric outcomes lead each firm to be visited by 3 consumers, while 1 consumer

is indifferent. Using the expected profit function of Eq.4, it is easy to show that firm 1 has a

higher expected profit by deviating unilaterally from the price equilibrium if and only if it is

risk averse. Indeed, with a price of 7, firm 1 captures a safe demand of 4 consumers and its

expected profit exceeds that obtained with an expected demand of 3.5 and a price equal to 8,

17When r = 1, Πi(·) = ln(·).
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i.e.,
(7×4)1−r

1−r
> 1

2
(8×4)1−r+(8×3)1−r

1−r
, ∀ r > 0. The inequality is only reversed for risk-lover firms

(i.e., r < 0), meaning that in this case the variation in the marginal revenue is significantly

higher with an additional consumer than with one fewer.18

In what follows, we determine the game equilibria assuming that firms are sufficiently risk-

averse (r = 0.9) or risk-lover (r = −0.2).19 Similar to the case with risk-neutral firms, we solve

the game by backward induction and determine the subgame perfect Nash equilibria under the

assumption that firms have the same degree of risk aversion. The SPEs, as well as the associated

demands and profits, are reported in Table 2.

Under perfect information about consumer locations (DC treatment), we find the same location

equilibrium, irrespective of firms’ risk preferences, i.e. (x⋆
1, x

⋆
2) = (2, 6). Attitudes toward risk

only affect price equilibrium. Price competition is softer for risk-lover firms, (p⋆1, p
⋆
2) = (8, 8),

whereas risk-averse firms reach the same price equilibrium as risk-neutral firms, (p⋆1, p
⋆
2) =

(7, 7). Firms that enjoy taking risk are less reluctant to set high prices and, hence, to increase the

risk of losing consumers. When both firms act in this way, they charge the highest possible price

that ensures the market coverage. These symmetric price strategies imply that the consumer

located at the city center is indifferent between the two firms. Similar to the example above,

both firms gain more from securing this consumer than from losing him and, thus, prefer not to

deviate from the symmetric price equilibrium.

LDU and HDU Treatments As shown previously, demand uncertainty encourages firms to

locate farther away from the demand center because it is no longer guaranteed that a firm will

be chosen by a maximum number of consumers when locating at the city center. The result is

that firms prefer to differentiate to relax price competition. However for risk-averse firms, the

centrifugal force of demand uncertainty is counterbalanced by the desire to secure safe demand

even if it leads to strengthened price competition. The propensity of risk-averse firms to locate

close to the center will thus depend on the magnitude of each force.

By solving the game by backward induction, we find that risk-averse firms are particularly

dragged toward the middle when the level of uncertainty is high (see Panel B of Table 2).

This finding is consistent with the prediction of Asplund (2002), who shows that risk aver-

sion makes competition in prices fiercer in the presence of demand uncertainty. Under a low

18For the sake of simplicity, in the case of multiple indifferent consumers, we compute the expected profit by

considering only the two polar cases, i.e., none or all indifferent consumers visit a firm. For example, for the

locations (x1, x2) = (3, 5) and prices (p1, p2) = (5, 3), firm 1 obtains 0 safe consumers and there are 3 indifferent

consumers. In this case, the expected profit of firm 1 is computed as follows: 1
2
(5×0)1−r+(5×3)1−r

1−r
.

19These numerical values correspond to strong risk aversion and risk-loving levels according to the estimation

of CRRA coefficients made by Harrison and Rutström (2008) in their methodological survey. If we refer to the

elicitation of risk attitudes used in our experiment, we are able to categorize subjects’ coefficient of relative risk

aversion. Based on the 10 decisions made by a subject, a coefficient equal to r = −0.2 corresponds to a switch

to the more risky lottery from the fourth decision and a coefficient equal to r = 0.9 corresponds to a switch to the

more risky lottery from the seventh decision (see Appendix B).
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level of uncertainty about consumer locations (LDU treatment), the location equilibrium be-

comes (x⋆
L1, x

⋆
L2) = (3, 6)20 and the level of differentiation decreases again under a high level

of demand uncertainty (HDU treatment, (x⋆
H1, x

⋆
H2) = (3, 5)). The decrease in differentiation

logically leads to fiercer price competition in both treatments relative to the DC treatment. Com-

pared to risk-neutral firms, considering risk aversion intuitively changes both location equilibria

and price equilibria. On the one hand, because the expected demand is lower at the boundaries

of the support of the city when uncertainty increases, clustering toward the middle allows firms

to maximize the expected number of consumers. Even if this location strategy entails lower

profits compared to more extreme locations, it is optimal for risk-averse firms to assign greater

weights to states of nature that ensure a certain level of demand. On the other hand, the increase

in price competition resulting from a lower level of differentiation also allows market coverage

in equilibrium.

Proposition 4 For risk-averse firms, the unique SPE for the location-then-price game is

(x⋆
L1, x

⋆
L2) = (2, 5) with equilibrium prices (p⋆L1, p

⋆
L2) = (6, 6) under low demand uncertainty

and (x⋆
H1, x

⋆
H2) = (3, 5) with equilibrium prices (p⋆H1, p

⋆
H2) = (2, 2) under high demand uncer-

tainty.

Considering risk-lover firms, both their risk profile and demand uncertainty should encourage

them to differentiate more than in the DC treatment. By comparing the game equilibria among

treatments, we find that demand uncertainty acts as a differentiation force for risk-lover firms

only in the case of a high level of uncertainty (HDU treatment, (x⋆
H1, x

⋆
H2) = (1, 6); see Panel C

of Table 2). The location equilibrium remains the same under a low level of uncertainty (LDU

treatment, (x⋆
L1, x

⋆
L2) = (2, 6)). Moving away from the city center is riskier under demand un-

certainty because this reduces expected demand. However, for people who like taking risk, this

may allow them to obtain a higher expected profit because the gain associated with a draw of

the city center close to them outweighs the loss in the case of a draw implying distant consu-

mers. Turning now to the price equilibria, we find lower equilibrium prices under low and high

demand uncertainty ((p⋆L1, p
⋆
L2) = (7, 7) and (p⋆H1, p

⋆
H2) = (7, 7), respectively) than in the DC

treatment. While we have seen that risk-lover firms are more inclined to relax price competition

under demand certainty, the introduction of demand uncertainty leads firms to strengthen price

competition. This counter-intuitive result is explained by the incomplete market coverage that

encourages firms to deviate from higher price equilibria to attract isolated consumers.21

Proposition 5 For risk-lover firms, the unique SPE for the location-then-price game is (x⋆
L1, x

⋆
L2) =

(2, 6) with equilibrium prices (p⋆L1, p
⋆
L2) = (7, 7) under low demand uncertainty and (x⋆

H1, x
⋆
H2) =

(1, 6) with equilibrium prices (p⋆H1, p
⋆
H2) = (7, 7) under high demand uncertainty.

20And its symmetric (x⋆

L1, x
⋆

L2) = (2, 5).
21For instance, under a low level of demand uncertainty and given the location equilibrium (x⋆

L1, x
⋆

L2) = (2, 6),
the price equilibrium (p⋆

L1, p
⋆

L2) = (7, 7) allows for market coverage, while with a price equilibrium (pL1, pL2) =
(8, 8), the aggregate demand will be equal to only 6.6.
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Table 2: Location and Price Equilibria by Treatment and Risk Attitude

Treatment Locations Prices Demands Profits

Panel A: Risk-neutral firms

DC (2,6) (7,7) (3.5,3.5) (24.5,24.5)

LDU (2,6) (7,7) (3.5,3.5) (24.5,24.5)

HDU (1,7) (7,7) (3.4,3.4) (23.7,23.7)

Panel B: Risk-averse firms

DC (2,6) (7,7) (3.5,3.5) (13.8,13.8)

LDU (3,6) (6,6) (4,3) (13.6,13.2)

HDU (3,5) (2,2) (3.5,3.5) (10.2,10.2)

Panel C: Risk-lover firms

DC (2,6) (8,8) (3.5,3.5) (24.5,24.5)

LDU (2,6) (7,7) (3.5,3.5) (39.6,39.6)

HDU (1,6) (7,7) (3,3.6) (34.8,41.4)

Note that if we assume more extreme risk preferences (i.e., r = 0.999 for risk-averse firms

and r = −1.6 for risk-lover firms), the effect of demand uncertainty is exacerbated: risk-

averse firms locate next to one another (x⋆
H1, x

⋆
H2) = (3, 4) and compete fiercely in prices

(p⋆H1, p
⋆
H2) = (1, 1), whereas risk-lover firms differentiate more (x⋆

H1, x
⋆
H2) = (1, 7) but set

similar prices (p⋆H1, p
⋆
H2) = (7, 7).

Therefore, the theoretical predictions derived when assuming non risk-neutral firms offer the

following testable predictions for the location decisions.

Testable prediction 2 A high level of demand uncertainty acts as an agglomeration force for

risk-averse firms.

Testable prediction 3 A high level of demand uncertainty acts as a differentiation force for

risk-lover firms.

3. Experimental Design

Our experimental design is intended to test the differentiation force of demand uncertainty while

controlling for subjects’ risk attitudes. Each experimental session consists of two experiments,

and subjects were required to participate in both. The main experiment refers to the discrete

location-then-price game presented above, while the second experiment measures subjects’ risk

aversion using the design proposed by Drichoutis and Lusk (2012). To avoid order effects, half

of the sessions featured the opposite experimental order.

Before the game began, subjects were informed that (i) there would be two independent experi-

ments, (ii) money earned in the experiments would depend on their decisions and the decisions

of others in their experimental group, and (iii) they would be paid the earnings they accrue in the
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two experiments. It was made very clear that information about earnings obtained in each ex-

periment would be given only at the very end of the experimental session. We set this condition

to reduce the potential spillover effects of earnings from one experiment to the next.

Regarding the location-then-price game, each subject interacts with rival subjects over 30 peri-

ods t = 1, 2, . . . , 30.22 Specifically, the experiment simulates 6 markets of 5 periods each, where

a subject is matched with the same rival during the 5 periods of a market but it is paired with

a new rival when a new market begins. In our design, we introduce a series of periods during

which subjects can only modify their prices, and we take location decisions as given to allow

subjects to adapt their equilibrium strategies in the price subgame. This means that in the first

period of each market, a subject chooses both his location and his price, while in the remaining

4 periods of the market, the subject competes only in prices. This setup has the advantage of

reflecting the long-term decision that a location choice is in real life. By contrast, price changes

are deemed less costly and thus can be made more frequently. Specifically, the timing of the

decisions in the first period of each market (i.e., t = 1, 6, 11, 16, 21, 26) is as follows: first, the

two subjects simultaneously choose their location, the rival’s location is then revealed and, next,

subjects compete simultaneously in prices; finally, each simulated consumer decides whether to

buy from the cheapest firm. At the end of the period, each subject learns (i) his demand level,

(ii) his profit and (iii) the price of his rival. Therefore, 4 periods of price competition follow.

Once the 5 periods have elapsed, a new market begins and subjects are randomly reshuffled,

under the constraint that each subject is matched exactly once with the same rival. This stranger

matching protocol is common information. To achieve it, we randomly form groups of 6 par-

ticipants, and the rematching is made inside each group. This stranger design limits end-game

effects on both location and price strategies, which enables us to end the experiment with the

last period of price competition in the market.23 Of course, note that consumer locations are left

unchanged during the 5 periods of a market, but may vary, in the LDU and HDU treatments,

from one market to another according to the random draw of the city center.24

Experimental sessions were conducted at the LABEX-EM (CREM-CNRS) institute of the Uni-

versity Rennes 1. The subjects were students with different backgrounds. The experiment was

programmed and conducted using the Z-tree software (Fischbacher, 2007). Participants were

invited using Orsee (Greiner, 2015). A total of 6 sessions were conducted for each treatment,

with 18 participants per session. No subject had previously participated in a similar experiment,

and no one participated in more than 1 session, resulting in 324 participants.

To ensure comparability across sessions and treatments, we randomly formed pairings within

22The repetition of the game over a finite number of periods does not change the central prediction of subjects

differentiating under demand uncertainty.
23Note that Barreda-Tarrazona et al. (2011)’s experiment ends with a location and price decision to isolate

possible end-game effects.
24The draws of the city center were made for the first session and replicated in all other experimental sessions.
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each matching group prior to the first session and used the same pairings in all sessions. Upon

arrival, the subjects were randomly seated at visually separated boxes numbered from 1 to 18 in

the lab such that neither during nor after the experiment were subjects informed of the identities

of the other subjects in the room with whom they were matched. Subjects were then provided

written instructions that were read aloud by the experimenter (see the Online Appendix).25 To

ensure that all subjects completely understood the instructions, they were required to calculate

firms’ profits in hypothetical exercises. Clearly, this may have introduced some bias, but to

limit this possibility, the exercises reflect representative contingencies. The responses to these

exercises were checked privately before beginning the experiment, ensuring that all subjects

completely understood the experiment. Further, a practice round representing 1 market (i.e., 1

period of location then price decisions followed by 4 periods of price decisions) was run before

the experiment began.

At the end of the two experiments (i.e., the location-then-price game and the risk experiment),

the subjects learned their earnings and then completed a brief post-experimental questionnaire

to collect personal characteristics (e.g., age, gender, field of study; see Appendix C). It was made

clear from the beginning of the experimental session that their payoff would be equal to their

earnings in the two experiments. For the location-then-price game, participants’ earnings were

proportional to the sum of their profits over the 30 periods. Participants were paid according

to the following conversion rate: 25 Experimental Currency Units = 1 euro. The conversion

rate was chosen such that, in equilibrium, a risk-neutral subject earned 29.40 euros for the 30

periods in the DC and LDU treatments and 28.47 euros in the HDU treatments, while he could

obtain only 4.20 euros for the 30 periods in the DC treatment in case of no differentiation and

non-cooperative prices.

In the risk experiment, subjects completed 10 decision tasks. At the end of the experimental

session, a decision task was randomly selected for payment, and subjects were paid according

to their choice (lottery A or lottery B). The selected decision task was the same for all par-

ticipants. Subjects knew that at the end of the experimental session, a random device would

determine whether they were actually paid. Each subject was given a 1/9 chance of actually

receiving the payment associated with his decision. This procedure provided the subjects an in-

centive to choose according to their true preferences in each decision task, and is thus incentive

compatible. Moreover, as Harrison et al. (2009) argue, stochastic fees allow one to generate

samples that are less risk averse than would otherwise have been observed. The exchange rate

used was 0.4 Experimental Currency Units = 1 euro such that the highest earnings equal 11.75

euros. The average length of an experimental session was 80 minutes, and average participant

earnings were 17 euros. Further details on the risk experiment are provided in Appendix B.

25Note that for simplicity and to facilitate participants’ understanding, the demand support is only expressed in

positive integers in the instructions.
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Figure 4: Location Choices by Treatment

Notes: The graph displays, in each panel, the distribution of location choices for a given treatment.

4. Experimental Results

First, in Section 4.1. we analyze whether subjects differentiate more when demand uncertainty

arises. Then in Section 4.2., we examine how demand uncertainty impacts location decisions

depending on subjects’ risk attitudes. We particularly focus on the results of risk-averse subjects

in Section 4.3.. Finally, we examine the relationship between the level of differentiation and

prices in Section 4.4..

4.1. Location Choices and Demand Uncertainty

We begin the analysis of the location decisions by pooling all the data. A total of 1944 location

decisions were recorded during the 18 sessions. We plot in Fig.4 the location choices for each

treatment. A striking result is that the center of the support of the linear city is the most fre-

quent location choice regardless of the level of uncertainty: subjects locate at the center of the

demand support in over 55% of all cases in the DC treatment, and the prevalence of the central

position is still confirmed in the LDU and HDU treatments, representing 36% and 24% of lo-

cation choices, respectively. Overall, few subjects decide to settle at the edges of the city. This

tendency to cluster in the center is in line with past experimental studies on spatial duopoly mar-

kets (e.g.,Brown-Kruse et al., 1993; Brown-Kruse and Schenk, 2000; Barreda-Tarrazona et al.,

2011).

In Table 3, we report the most frequent pairs of locations observed for each treatment and the

average level of differentiation. Clearly, we observe that subjects’ location decisions entail

less differentiation than those derived from the non-cooperative predictions. This is especially

pronounced in the DC treatment, in which subjects of a given market locate simultaneously at

the city center (4,4) in more than 32% of the location games, while the second-most preferred

location configuration yields only a low level of differentiation. The preferred pairs of locations

are thus far away from the non-cooperative location equilibrium (x⋆
1, x

⋆
2) = (2, 6). Nevertheless,

20



Working paper SMART-LERECO No17-12

Table 3: Summary Statistics on Location Choices by Treatment

Most frequent Second most % of locations

Modal pair of frequent pair outside Differentiation

Treatment location locations of locations [x⋆

1, x
⋆

2] Mean and S.D.

DC 4 (4,4) (3,4) 7.08 1.01 (1.02)

LDU 4 (4,4) (3,4) 16.92 1.54 (1.36)

HDU 4 (4,4) (3,4) 21.52 2.10 (1.64)

Notes: The percentages reported in the fifth column are defined according to the location equilibrium of the tre-

atment. The location equilibria are (2,6) for the DC and LDU treatments and (1,7) for the HDU treatment. The

differentiation is measured by the distance between the two subjects.

we find that the attractiveness of the center decreases when demand uncertainty arises (LDU and

HDU). While the pair of locations (4,4) is always the most frequent choice in the LDU and HDU

treatments, we observe from the fourth column that subjects are more prone to locate far away

from the center in these two treatments. To quantify this pattern, we calculate the percentage

of locations outside the range defined by the corresponding location equilibrium [x⋆
1, x

⋆
2]. For

instance, we find that 21.52% of locations are outside this range in the HDU treatment, whereas

this concerns only 7.08% of location decisions in the DC treatment. These outcomes arise

because subjects are now uncertain of obtaining the maximum demand by locating at the center

of the market and prefer moving away from the focal point to lessen competition.

Turning now to the main proposition of the paper, we compare in Fig.5 the distribution of

the levels of differentiation obtained in each treatment to verify whether demand uncertainty

yields a higher level of differentiation. For each treatment, we have a corresponding Box and

Whisker plot that summarizes the distribution of the levels of differentiation computed from all

the location games. The differentiation is measured by the distance between the two subjects

who compete in a given market. Applying Mann-Whitney U tests, we find that, on average,

the differentiation in the HDU treatment is statistically significantly higher than that in both

the DC treatment (one-tailed M-W test: p=0.0001) and the LDU treatment (one-tailed M-W

test: p=0.0001).26 In other words, the subjects who faced high demand uncertainty chose to

differentiate more. Calculating the average level of differentiation by treatment (see the last

column of Table 3), we show that it more than doubles between the DC and HDU treatments.

These findings corroborate Testable Prediction 1 and testify to the differentiation force exer-

ted by demand uncertainty.27 Regarding the literature on (aggregate) demand uncertainty, this

result offers a convincing empirical test of the attractiveness of outer locations under demand

uncertainty.

Result 1 Irrespective of risk attitudes, high demand uncertainty yields a higher differentiation

than in the case with perfect information about demand location.

26Note that all the results derived in the paper using a Mann-Whitney U test are robust with a Fisher-Pitman test.
27Note that, as shown in Appendix B, the shares of the risk profiles are similar among treatments, which rules

out any composition effects as an explanation for the observed differences among the treatments.
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Figure 5: Level of Differentiation by Treatment

Notes: The distribution of the levels of differentiation for each treatment is represented by means of

Box and Whisker plots. The closed boxes are constructed from the first and third quartiles, while the

middle bold line indicates the median. The length of the box thus represents the interquartile range

(IQR). The whisker lines delimit all observations within 1.5 IQRs of the nearest quartile. Finally,

outliers are marked with circles.

Returning to Fig.5, it is noteworthy to mention that we find a significantly higher level of dif-

ferentiation in the LDU treatment than in the DC treatment (one-tailed M-W test: p=0.0001).

Although theoretically a low level of demand uncertainty should not change the level of dif-

ferentiation, we observe empirically that subjects choose to deviate from the non-cooperative

equilibrium, and, thus to differentiate more than in the DC treatment.

4.2. The Effect of Risk Attitudes on Location Choices

Because uncertainty about demand location may have different effects on subjects’ location

choices depending on their risk attitude, we now analyze how demand uncertainty impacts lo-

cation decisions for a given risk profile. A preliminary step is to characterize subjects’ risk

attitudes. Using data from the risk experiment, we are able to provide an estimate of the CRRA

for each subject by estimating a structural model of decision-making following the modeling

strategy of Harrison and Rutström (2008) and Andersen et al. (2010). We then use the CRRA es-

timates to determine their risk profile. Subjects are either risk-lover, risk-neutral or risk-averse.

The classification is achieved by comparing the CRRA estimates with the open CRRA intervals

derived from the risk experiment (see Appendix B for further details on the estimation method

and the classification). Using this classification, we examine whether demand uncertainty acts

as a differentiation force for both risk-lover and risk-neutral subjects, as predicted by the model

and whether, by contrast, it drives risk-averse subjects to agglomerate. Because the theoretical

predictions have been derived for subjects with identical risk preferences, we concentrate on
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Figure 6: Levels of Differentiation by Treatment among Risk Attitude Profiles

Notes: Taking into account only the markets for which subjects and their rival have the same risk profile, we have for risk-lover subjects, 19,

31 and 14 observations; for risk-neutral subjects, we have 20, 18 and 16 observations; and for risk-averse subjects we have 90, 77 and 90

observations for the DC, LDU and HDU treatment, respectively.

markets in which subjects compete with a rival that has the same category of risk attitude.28 We

present in Fig.6 the distributions of the levels of differentiation by treatment and by risk profile.

Is Demand Uncertainty a Differentiation Force? Regarding the first two panels of Fig.6,

a first insight is that a high level of demand uncertainty significantly increases the level of

differentiation for risk-lover and risk-neutral subjects. On average, the level of differentiation is

always higher for the HDU treatment than for the DC treatment, whatever the risk preferences

(one-tailed M-W test: risk-lover subjects p=0.0028, risk-neutral subjects p=0.0032). Further,

we observe that, on average, the introduction of a low level of demand uncertainty does not

induce risk-lover and risk-neutral subjects to differentiate more than in the DC treatment (one-

tailed M-W test: risk-lover subjects p=0.3558, risk-neutral subjects p=0.1193). These results are

consistent with the Nash equilibria derived from the theoretical model (see Testable Predictions

1 and 3).

Result 2 In accordance with the model predictions, a high level of demand uncertainty acts as

a differentiation force for both risk-lover and risk-neutral subjects.

Is Demand Uncertainty an Agglomeration Force? In contrast to the model prediction (see

Testable Prediction 2), we observe from the right-hand panel of Fig.6 that risk-averse subjects

differentiate more when demand uncertainty arises. On average, the levels of differentiation

are significantly higher for both the HDU treatment and the LDU treatment than in the DC

treatment (one-tailed M-W test: HDU vs DC p=0.0001, LDU vs DC p=0.0001). We thus do not

observe that risk-averse subjects react to demand uncertainty by differentiating less to secure a

smaller share of the demand, as predicted by the model.

Result 3 In contrast to the model prediction, risk-averse subjects differentiate more when de-

mand uncertainty arises.
28By proceeding in this way, we substantially reduce the number of observations used, as shown in Table 8 in

Appendix B.
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Figure 7: Levels of Differentiation by Treatment and by Subgroup of Risk-Averse Subjects

Notes: The graph displays the distribution of the levels of differentiation by subgroup of risk-averse

subjects and by treatment. The subgroups are defined according to the estimated values of the CRRA.

In each subgroup, subjects compete with a rival belonging to the same CRRA interval. We count for

the first interval 11, 7, and 21 pairs of observations; for the second interval, 8, 12, and 13 pairs of

observations; and for the last interval 7, 3, and 6 pairs of observations for the DC, LDU and HDU

treatment, respectively.

4.3. Explaining Differences for Risk-Averse Subjects

We now investigate possible reasons for the differences between the model predictions and the

data for risk-averse subjects.

Heterogeneous Behaviors A first explanation may be that risk-averse subjects behave diffe-

rently depending on their degree of risk aversion. Our theoretical predictions are derived under

the assumption that subjects are highly risk-averse (r = 0.9), and it is possible that low and

high risk-averse subjects react differently when facing demand uncertainty. This issue is all

the more important because we observe sizable heterogeneity in the degree of risk aversion. In

particular, low risk-averse subjects account for a large share of the category, as shown in Fig.11

(see Appendix B). To examine the role of individual heterogeneity among risk-averse subjects,

we plot in Fig.7 the distribution of the levels of differentiation by treatment and by subgroup

of risk-averse subjects. The sample of risk-averse subjects who compete with a rival exhibi-

ting identical risk preferences is decomposed into 3 subgroups according to the estimated value

of the CRRA. The decomposition highlights heterogeneous behaviors among subgroups when

demand uncertainty increases. In particular, we observe that the more risk-averse subjects are

(i.e., high CRRA), the less they differentiate when facing a high level of demand uncertainty.29

Focusing on high risk-averse subjects (i.e., r > 0.90), we find that, on average, the level of

29This pattern is confirmed statistically by estimating a Tobit regression, where the level of differentiation be-

tween two subjects with the same risk profile is explained by the estimated value of the CRRA and additional

covariates. The estimates are reported in Appendix E.
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Figure 8: Average Absolute Distance from the Location Equilibrium

Notes: The graph presents the evolution over time of the absolute average distance from the location

equilibrium by treatment. The sample is composed of risk-averse subjects who compete with a rival

exhibiting identical risk preferences.

differentiation is identical between the DC treatment and the HDU treatment (two-tailed M-W

test: p=0.2520). This means that demand uncertainty acts as a differentiation force only for

low risk-averse subjects (one-tailed M-W test: HDU vs DC p=0.0001). When subjects exhibit

high risk aversion, the introduction of demand uncertainty does not modify the average level of

differentiation: subjects still locate close to the center. It thus appears that risk-averse subjects

have heterogeneous behaviors when facing demand uncertainty, and the heterogeneity in the

degree of risk aversion explains part of the differentiation force observed.

Learning Effects A second explanation for the differentiation force observed may reside in

the existence of learning effects. Despite having implemented a stranger design, subjects may

have adapted their location decisions based on their previous decisions. As a consequence,

subject’s location decisions may evolve over time and eventually converge toward the location

equilibrium. To test this hypothesis, we compute the absolute average distance from the location

equilibrium resulting from each location choice made by risk-averse subjects in a given market

as follows:

D = (|x1 − x⋆
1|+ |x2 − x⋆

2|) /2 (5)

where the location equilibria (x⋆
1, x

⋆
2) are those reported in Panel B of Table 2. As before, we

conduct our analysis on the sample of risk-averse subjects who compete with a rival exhibiting

an identical risk profile. This yields 6 distance measures per subject, i.e., one for each market

(round 1, 5, 10, 15, 20, 25). We present in Fig.8 the evolution over time of the absolute average

distance from the location equilibrium by treatment. We observe clearly that risk-averse sub-

jects who are confronted with demand uncertainty (LDU and HDU treatments) converge slowly
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Figure 9: Levels of Differentiation in the First and Last Market by Treatment

Notes: The graph presents the distribution of the levels of differentiation by treatment in the first and

last markets. The sample is composed of risk-averse subjects who compete with a rival exhibiting

identical risk preferences.

toward the location equilibrium. The more they play, the closer they come to the location equi-

librium. By contrast, no significant learning effect is observed for subjects in the DC treatment.

This result suggests that the introduction of demand uncertainty forces risk-averse subjects to

more carefully choose their location, and this learning process takes time. Further, the compu-

tational effort yielded by demand uncertainty is specific to risk-averse subjects, as we do not

observe any such learning process for risk-lover and risk-neutral subjects. Due to the existence

of learning effects, we then focus on the last market and examine whether risk-averse subjects

still differentiate when demand uncertainty arises. We plot in Fig.9 the distribution of the levels

of differentiation by treatment for the first and last markets. It appears now that, in the last

market, risk-averse subjects facing demand uncertainty (LDU or HDU treatments) do not diffe-

rentiate more than subjects in the DC treatment (one-tailed M-W test: HDU vs DC p=0.2780,

LDU vs DC p=0.1281). The existence of learning effects is then another explanation for the

observed differences between the model prediction and the data.

Result 4 The heterogeneity in the degree of risk aversion and the existence of learning effects

mainly explain the differentiation force of demand uncertainty for risk-averse subjects.

4.4. Price Competition

Because demand uncertainty is revealed before the price subgame begins, the only source of

uncertainty when fixing prices arises from the random allocation of the indifferent consumer(s).

It follows that addressing the issue of risk attitudes in the price competition stage is less crucial

than before. We thus examine how subjects set prices conditional on their location choices by
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Table 4: Differentiation and Price Competition

All periods of the price games

% Average S.D. P25 P50 P75 Equilibrium Distance to

Differentiation price prices demand center

Panel A: DC Treatment

0 36.73 2.62 1.47 1 2 3 1 0.11

1 38.27 3.44 1.50 2 3 5 (1,2) 0.60

2 16.05 3.90 1.70 3 4 5 (2,6) 1.10

3 5.86 4.39 1.70 3 4 5 (2,7) 1.50

4 3.09 4.67 1.84 3 5 6 (6,7) 2.00

Total – 3.31 1.66 2 3 4 – 0.59

Panel B: LDU Treatment

0 23.46 2.38 1.42 1 2 3 1 1.16

1 33.02 2.80 1.34 2 3 4 (1,2) 1.14

2 24.69 3.25 1.46 2 3 4 (1,6) 1.48

3 8.95 3.42 1.66 2 3 5 (2,6) 2.12

4 5.86 3.48 1.61 2 3 5 (3,7) 2.42

5 3.09 3.91 1.65 3 4 5 (4,7) 2.50

6 0.62 3.50 1.85 2 3 5 (5,7) 3.00

7 0.31 3.40 1.71 2 3 4 (5,7) 3.50

Total – 2.95 1.50 2 3 4 – 1.45

Panel C: HDU Treatment

0 14.81 2.09 1.31 1 2 3 1 2.48

1 26.85 2.59 1.46 2 2 3 (1,2) 2.56

2 24.38 2.49 1.40 1 2 3 (1,6) 2.78

3 15.12 2.91 1.52 2 3 4 (2,6) 2.50

4 11.73 3.32 1.74 2 3 5 (2,6) 3.24

5 2.78 3.83 2.06 2 4 5 (4,7) 4.06

6 2.47 3.88 1.96 2 4 5 (5,7) 4.13

7 1.23 4.13 1.57 3 4.5 5 (5,7) 4.50

8 0.31 3.50 2.68 1 3 6 (6,7) 5.00

9 0.31 2.40 0.84 2 3 3 (5,7) 4.50

Total – 2.71 1.58 2 2 4 – 2.79

Notes: The first columns of the table report some summary statistics on prices by level of differentiation and by treatment.

The column denoted Equilibrium prices reports the minimum and maximum values of equilibrium prices for risk-neutral

subjects by differentiation level for each treatment. Finally, the last column presents the average distance between a subject

and the demand center.

pooling all the price data, and we refer to the predictions derived for risk-neutral subjects.30

Further, recall that in the experiment, subjects compete in prices with the same rival during 5

periods. These repeated interactions may lead prices to evolve over time in a given market. The

results presented below account for all the periods of the price game, but they are insensitive to

examining only at the first or the last period. We refer the reader to Appendix F for a dedicated

analysis of the dynamics of price competition.

Differentiation and Price Level One of the appeals of our study is that it allows to investigate

the relationship between the level of differentiation and price competition; a subject widely

debated in the theoretical literature but too rarely brought to the data. To examine whether

high levels of differentiation allow subjects to charge higher prices, we report in Table 4 the

30Note, however, that the following results are robust if we conduct the analysis by risk profile.
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average prices by level of differentiation. Regarding the DC treatment (Panel A), we confirm

that, on average, subjects succeed at relaxing price competition when differentiation increases

(Spearman rank correlation coefficient, ρ = 0.3588; p = 0.0001). This result supports the

positive relationship between prices and differentiation, and corroborates the finding of Barreda-

Tarrazona et al. (2011). However, this result does not hold for the LDU and HDU treatments,

in which lower prices are observed for the highest levels of differentiation. In what follows, we

explain these findings by comparing the posted prices with the theoretical predictions.

Pricing Behaviors We report in the penultimate column of Table 4 the range of non-cooperative

equilibrium prices for each level of differentiation. For all treatments, we find that the average

and median prices are in accordance with the non-cooperative equilibria only in the case of

intermediate levels of differentiation (i.e., 2, 3 or 4). For other levels of differentiation, two

opposite behavioral strategies are observed. When subjects highly differentiate (i.e., above 4),

we note that they partially fail to relax price competition by setting prices slightly below the

non-cooperative equilibrium. This deviation is explained by the non-optimal coverage of the

market. Indeed, under high levels of differentiation, it is more likely that one of the two sub-

jects is farther away from the center of demand, as shown in the last column of Table 4. This,

in turn, forces the subject located farthest away to set a low price, which triggers greater price

competition. Conversely, for low levels of differentiation (i.e., 0 and 1), we find that the average

and median prices are above the range of equilibrium prices. This means that in the case of

null or minimal differentiation, subjects attempt to tacitly collude by fixing prices above the

non-cooperative equilibrium. Hence, the pro-collusive effect exceeds the pro-competitive effect

in the case of minimal differentiation. However, the observed prices are far below the equili-

brium prices under collusion, which means that subjects fail to achieve the collusive outcome

(see Appendix F).

Result 5 Only an intermediate level of differentiation leads subjects to set prices compatible

with the non-cooperative equilibrium.

5. Conclusion

Since the end of the past century, the question of how to position a product has become a more

crucial issue for firms entering new markets. Due to ever-evolving consumer demand, firms face

considerable uncertainty about consumer tastes. In response to this demand uncertainty, multi-

national firms spend billions of dollars on market research to gather information on consumer

preferences and gauge demand before launching a new product.

Recent research on product differentiation predicts that firms would differentiate more when

uncertainty increases. The reason is that it is more profitable for firms to differentiate when

demand uncertainty arises because price competition is relaxed and losing demand is not gua-

ranteed. In this paper, we empirically test the differentiation force of demand uncertainty by
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conducting a laboratory experiment in which subjects play the two-stage game of Hotelling

(1929)’s model. Demand uncertainty is introduced through a random shift of the city center,

and demand location information is only revealed before the price subgame begins. We first

derive the theoretical predictions of the discrete location-then-price game for different levels

of demand uncertainty and we show that demand uncertainty acts as a differentiation force as

in the continuous case. Then, we investigate whether subjects’ risk attitudes modify their lo-

cation and price decisions, and we provide new predictions regarding this issue. In particular,

we show that risk-averse subjects react to demand uncertainty by locating closer to the demand

center to secure part of the demand, unlike risk-lover and risk-neutral subjects. Our results

emphasize the importance of risk attitudes when analyzing the effect of demand uncertainty on

differentiation strategies. While this dimension has thus far been neglected, we demonstrate

that risk preferences may lead decision-makers to react in opposite ways when facing demand

uncertainty.

Our empirical findings demonstrate that demand uncertainty acts as a differentiation force for

risk-neutral and risk-lover subjects. These results support the growing literature on product

differentiation that includes demand uncertainty and can explain why differentiated products

slowly replaced standardized products in emerging markets. From a welfare perspective, this

questions the benefits of reducing demand uncertainty through public policies in markets where

firms are risk-neutral or risk-lover. Because it has been shown that welfare losses increase

with demand uncertainty (see, e.g., Meagher and Zauner, 2004), it could be socially optimal to

reduce excess of differentiation by facilitating the acquisition of information about consumer

preferences.

However, the experimental data do not validate the prediction that risk-averse subjects will ag-

glomerate more when facing demand uncertainty. We explain this puzzling result by the com-

bination of two different factors. First, we observe important heterogeneity among risk-averse

subjects and find that the more risk-averse subjects are, the less they differentiate. Second,

the dynamic analysis of the location choices reveals the existence of learning effects, in the

sense that risk-averse subjects converge slowly toward the location equilibrium. Accounting

for both factors and limiting the analysis to a subsample of the data, we actually find that de-

mand uncertainty leads risk-averse subjects to agglomerate. However, this result is based on

few observations and needs to be verified using larger samples in the future.

Regarding the price data, we find that subjects set prices in accordance with the non-cooperative

equilibrium only for intermediate levels of differentiation. For low levels of differentiation, they

attempt to collude to avoid a fierce price competition, whereas they set prices below the non-

cooperative equilibrium for high levels of differentiation due to the non-optimal coverage of the

market.
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Finally, it would be interesting for future research to relax the assumption of simultaneous loca-

tion choices and investigate the more realistic case of sequential location choices. In particular,

our experimental setting offers an ideal framework to empirically test the prediction that de-

mand uncertainty leads firms to cluster at the demand center when firms locate sequentially and

have different levels of information about demand location (see Ridley, 2008; Aiura, 2010, for

instance), which is typical of retail markets.

30



Working paper SMART-LERECO No17-12

References

Aiura, H. (2010). “Signal-jamming” leads to “minimum differentiation” under demand uncer-

tainty. The Annals of Regional Science, 45(2):245–271.

Andersen, S., Harrison, G. W., Lau, M. I., and Rutström, E. E. (2006). Elicitation using multiple

price list formats. Experimental Economics, 9(4):383–405.

Andersen, S., Harrison, G. W., Lau, M. I., and Rutström, E. E. (2010). Behavioral econometrics

for psychologists. Journal of Economic Psychology, 31(4):553–576.

Anderson, S. P., de Palma, A., and Thisse, J.-F. (1992). Discrete Choice Theory of Product

Differentiation. The MIT Press, Cambridge : MA.

Asplund, M. (2002). Risk-averse firms in oligopoly. International Journal of Industrial Orga-

nization, 20(7):995–1012.

Balvers, R. and Szerb, L. (1996). Location in the hotelling duopoly model with demand uncer-

tainty. European Economic Review, 40(7):1453–1461.

Barreda-Tarrazona, I., García-Gallego, A., Georgantzís, N., Andaluz-Funcia, J., and Gil-Sanz,

A. (2011). An experiment on spatial competition with endogenous pricing. International

Journal of Industrial Organization, 29(1):74–83.

Bonein, A. and Turolla, S. (2009). Sequential location under one-sided demand uncertainty.

Research in Economics, 63(3):145–159.

Brenner, S. (2001). Determinants of product differentiation: A survey. mimeo, Humboldt-

University of Berlin.

Brown-Kruse, J., Cronshaw, M. B., and Schenk, D. J. (1993). Theory and experiments on

spatial competition. Economic Inquiry, 31(1):139–65.

Brown-Kruse, J. and Schenk, D. J. (2000). Location, cooperation and communication: An

experimental examination. International Journal of Industrial Organization, 18(1):59–80.

Camacho-Cuena, E., Garcia-Gallego, A., Georgantzis, N., and Sabater-Grande, G. (2005).

Buyer-seller interaction in experimental spatial markets. Regional Science and Urban Eco-

nomics, 35(2):89–108.

Capgemini Consulting (2012). Supply chain barometer 2012. Insights on supply chain agility.

Fluctuating demand and market uncertainty: How to meet the challenge? TR.

Casado-Izaga, J. F. (2000). Location decisions: The role of uncertainty about consumer tastes.

Journal of Economics, 71(1):31–46.

31



Working paper SMART-LERECO No17-12

Cheng, Y.-L. (2014). Vertical product differentiation under demand uncertainty. Economic

Modelling, 36:51–57.

Collins, R. and Sherstyuk, K. (2000). Spatial competition with three firms: An experimental

study. Economic Inquiry, 38(1):73–94.

d’Aspremont, C., Gabszewicz, J. J., and Thisse, J.-F. (1979). On Hotelling’s "stability in com-

petition". Econometrica, 47(5):1145–1150.

de Palma, A., Ginsburgh, V., Papageorgiou, Y., and Thisse, J.-F. (1985). The principle of

minimum differentiation holds under sufficient heterogeneity. Econometrica, 53(4):767–781.

Drichoutis, A. and Lusk, J. (2012). Risk preference elicitation without the confounding effect

of probability weighting. MPRA Paper 37762, University Library of Munich, Germany.

Eckert, A., He, Z., and West, D. S. (2013). An empirical examination of clustering and dis-

persion within canadian shopping centers. Journal of Retailing and Consumer Services,

20(6):625–633.

Economides, N. (1986). Minimal and maximal product differentiation in Hotelling’s duopoly.

Economics Letters, 21(1):67–71.

Elizalde, J. (2013). Competition in multiple characteristics: An empirical test of location equi-

librium. Regional Science and Urban Economics, 43(6):938–950.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experiments. Experi-

mental Economics, 10(2):171–178.

Greiner, B. (2015). Subject pool recruitment procedures: organizing experiments with ORSEE.

Journal of the Economic Science Association, 1(1):114–125.

Harrison, G. W., Lau, M. I., and Rutström, E. E. (2009). Risk attitudes, randomization to tre-

atment, and self-selection into experiments. Journal of Economic Behavior & Organization,

70(3):498–507.

Harrison, G. W. and Rutström, E. E. (2008). Risk aversion in the laboratory, volume 12 of Risk

Aversion in Experiments (Research in Experimental Economics), : 41–196. Bingley, UK:

Emerald.

Harter, J. (1996). Hotelling’s competition with demand location uncertainty. International

Journal of Industrial Organization, 15(3):327–334.

Hey, J. and Orme, C. (1994). Investigating generalizations of expected utility theory using

experimental data. Econometrica, 62(6):1291–1326.

32



Working paper SMART-LERECO No17-12

Holt, C. A. and Laury, S. K. (2002). Risk aversion and incentive effects. American Economic

Review, 92(5):1644–1655.

Hotelling, H. (1929). Stability in competition. Economic Journal, 39:41–57.

Huck, S., Müller, W., and Vriend, N. (2002). The East End, the West End, and King’s Cross:

on clustering in the four-player Hotelling game. Economic Inquiry, 40(2):231–240.

Irmen, A. and Thisse, J.-F. (1998). Competition in multi-characteristics spaces: Hotelling was

almost right. Journal of Economic Theory, 78(1):76–102.

Król, M. (2012). Product differentiation decisions under ambiguous consumer demand and

pessimistic expectations. International Journal of Industrial Organization, 30(6):593–604.

Meagher, K. J. and Zauner, K. G. (2004). Product differentiation and location decisions under

demand uncertainty. Journal of Economic Theory, 117(2):201–216.

Meagher, K. J. and Zauner, K. G. (2005). Location-then-price competition with uncertain con-

sumer tastes. Economic Theory, 25(4):799–818.

Meagher, K. J. and Zauner, K. G. (2008). Uncertainty in spatial duopoly with possibly asym-

metric distributions: A state space approach. mimeo, Australian National University.

Meagher, K. J. and Zauner, K. G. (2011). Uncertain spatial demand and price flexibility: A

state space approach to duopoly. Economics Letters, 113(1):26–28.

Netz, J. S. and Taylor, B. A. (2002). Maximum or minimum differentiation? Location patterns

of retail outlets. The Review of Economics and Statistics, 84(1):162–175.

Orzen, H. and Sefton, M. (2008). An experiment on spatial price competition. International

Journal of Industrial Organization, 26(3):716–729.

Picone, G. A., Ridley, D. B., and Zandbergen, P. A. (2009). Distance decreases with differenti-

ation: Strategic agglomeration by retailers. International Journal of Industrial Organization,

27(3):463–473.

Ridley, D. B. (2008). Herding versus Hotelling: Market entry with costly information. Journal

of Economics & Management Strategy, 17(3):607–631.

Schuetz, J. (2015). Why are walmart and target next-door neighbors? Regional Science and

Urban Economics, 54:38–48.

Seim, K. (2006). An empirical model of firm entry with endogenous product-type choices. The

RAND Journal of Economics, 37(3):619–640.

33



Working paper SMART-LERECO No17-12

Appendices

A Price Equilibrium

To determine the subgame perfect Nash equilibria (SPEs) of the location-then-price game, we

first derive price equilibria for each pair of locations (x1, x2). For a given pair of locations, we

compute the firm’s demand and the resulting profit for every possible price combination. Then,

we determine the Nash equilibrium of each pair of locations. Table 5 reports the equilibrium

prices, the firm’s demand, and the firm’s profit for each pair of locations for the DC treatment

under the assumption that firms are risk-neutral. The firms’ profits correspond to those reported

in Table 1.

To illustrate how we determine a unique price equilibrium in the case of a multiplicity of equili-

bria, we provide a numerical example in what follows. When several price equilibria exist for a

given pair of locations, we select the Pareto price equilibrium. For instance, assume risk-neutral

firms and the pair of locations (3,4) in the DC treatment. There are two potential Nash price

equilibria. In the first equilibrium, each firm sets a price equal to 1, and the corresponding pro-

fits are (3,4). In the second one, each firm sets a price equal to 2, and the corresponding profits

are (6,8). The result is that the selected price equilibrium is (2,2), as it is Pareto optimal. When

no Pareto price equilibrium exists, we select the joint profit-maximizing equilibrium. Finally, it

is noteworthy that a price equilibrium in pure strategies does not exist for each pair of locations.

For these particular price-setting games, we thus calculate a mixed-strategies Nash equilibrium

by considering all the plausible price supports, that is, all prices that have a positive probability

of being played in an equilibrium strategy.

Note that while firms choose their location with perfect knowledge about the location of de-

mand in the DC treatment, it is unknown in the LDU and HDU treatments. The uncertainty

about demand location implies several potential demand locations that we assume uniformly

distributed in the computation of the expected demand and the resulting expected profit. Other-

wise, we proceed in exactly the same way as in the computation of the price Nash equilibria

in the three experimental treatments. We report in the Online Appendix the equilibrium prices

derived for risk-averse and risk-lover firms in the DC treatment and for risk-averse, risk-neutral

and risk-lover firms in the LDU and HDU treatment. We also provide a numerical example in

the case of a multiplicity of price equilibria.
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Table 5: Equilibrium Prices for Each Pair of Locations and Risk-Neutral Firms (DC

Treatment)

Pair of locations Prices Demands Profits

Level of differentiation equal to 0

(1,1) (1,1) (3.5,3.5) (3.5,3.5)

(2,2) (1,1) (3.5,3.5) (3.5,3.5)

(3,3) (1,1) (3.5,3.5) (3.5,3.5)

(4,4) (1,1) (3.5,3.5) (3.5,3.5)

(5,5) (1,1) (3.5,3.5) (3.5,3.5)

(6,6) (1,1) (3.5,3.5) (3.5,3.5)

(7,7) (1,1) (3.5,3.5) (3.5,3.5)

Level of differentiation equal to 1

(1,2) (1,1) (1,6) (1,6)

(2,3) (1,1) (2,5) (2,5)

(3,4) (2,2) (3,4) (6,8)

(4,5) (2,2) (4,3) (8,6)

(5,6) (1,1) (5,2) (5,2)

(6,7) (1,1) (6,1) (6,1)

Level of differentiation equal to 2

(1,3) ([2,3][0.41,0.59],[3,4][0.86,0.14]) (2.92,4.08) (4.71,15.88)

(2,4) ([2,4,5][0.23,0.12,0.65],[4,5,6][1,0,0]) (2.75,4.25) (10,17)

(3,5) ([4,5,6][0.11,0.48,0.41],[4,5,6][0.11,0.48,0.41]) (3.5,3.5) (18.2,18.2)

(4,6) ([4,5,6][1,0,0],[2,4,5][0.23,0.12,0.65]) (4.25,2.75) (17,10)

(5,7) ([3,4][0.86,0.14],[2,3][0.41,0.59]) (4.08,2.92) (15.88,4.71)

Level of differentiation equal to 3

(1,4) ([2,4,5][0.16,0.07,0.76],[5,6,7][1,0,0]) (1.77,5.23) (10,22.42)

(2,5) ([4,6][0.06,0/94],[6,7][0.33,0.67]) (3.44,3.56) (20.01,23.65)

(3,6) ([6,7][0.33,0.67],[4,6][0.06,0/94]) (3.56,3.44) (23.65,20.01)

(4,7) ([5,6,7]1,0,0],[2,4,5][0.16,0.07,0.76]) (5.23,1.77) (22.42,10)

Level of differentiation equal to 4

(1,5) (6,7) (3,4) (18,28)

(2,6) (7,7) (3.5,3.5) (24.5,24.5)

(3,7) (7,6) (4,3) (28,18)

Level of differentiation equal to 5

(1,6) (7,7) (3,4) (21,28)

(2,7) (7,7) (4,3) (28,21)

Level of differentiation equal to 6

(1,7) (7,7) (3.5,3.5) (24.5,24.5)

Notes: For price equilibria in mixed strategies we report into brackets both the prices and the associated probabilities.
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B Risk

2.1. Experimental Design

A wide variety of methods could be used to elicit individuals’ risk preferences. In our design,

we follow the experiment of Drichoutis and Lusk (2012). Each subject completes 10 decision

tasks where each task represents a choice between two binary lotteries, A and B. As shown in

Table 6, the probabilities remain constant and equal to 1/2 across the decision tasks and in the

lowest payoff for each lottery.

Table 6: Elicitation Task for Risk Preferences

Decision Lottery A Lottery B Expected payoff Open CRRA interval

task difference (A-B) if subject switches to lottery B

Prob 0.5 Prob 0.5 Prob 0.5 Prob 0.5

1 1.68 1.60 2.01 1.00 0.13 −∞ -1.71

2 1.76 1.60 2.17 1.00 0.10 -1.71 -0.95

3 1.84 1.60 2.32 1.00 0.06 -0.95 -0.49

4 1.92 1.60 2.48 1.00 0.02 -0.49 -0.15

5 2.00 1.60 2.65 1.00 -0.03 -0.15 0.14

6 2.08 1.60 2.86 1.00 -0.09 0.14 0.41

7 2.16 1.60 3.14 1.00 -0.19 0.41 0.68

8 2.24 1.60 3.54 1.00 -0.35 0.68 0.97

9 2.32 1.60 4.50 1.00 -0.79 0.97 1.37

10 2.40 1.60 4.70 1.00 -0.85 1.37 +∞

Note: Payoffs are in experimental currency units. The last three columns reporting expected payoff differences and intervals for

CRRA estimates were not shown to subjects.

Compared to the well-known Holt and Laury (2002) task, the probabilities remain constant

across the 10 decision tasks and the euro payoffs change, such that the switch point from lottery

A to lottery B can only be explained by the shape of the utility function and, in turn, risk

attitudes. This method has the clear advantage of removing non-linear probability weighting as

an explanation for the switch between lottery A and lottery B.

Previous experimental studies have underlined several switching back behaviors from lottery B

to lottery A after the first switch. As noted by Andersen et al. (2006), it is quite possible that

such switching behaviors are the result of the subject being indifferent between lotteries. To

limit this behavior and obtain a more precise estimation of risk attitudes, we allow an explicit

indifferent option for each pairwise lottery. Although it is possible for them to switch back, they

also have the option of explicitly selecting indifference. The decision task is thus presented as

follows:
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Figure 10: Computer Screen for a Decision Task in the Risk Experiment

Subjects’ choices are used to determine their risk preferences. For instance, a risk-neutral sub-

ject would choose lottery A for the first five decisions listed in Table 6 because the expected

value of lottery A exceeds the expected value of lottery B for the first five choices. As one

moves down each row of Table 6, the expected value of lottery B exceeds the expected value of

lottery A. Thus, responses to these pairwise lottery choices allow us to estimate the coefficient

of relative risk aversion for each subject.

2.2. Structural Estimation of Risk Aversion

We estimate a structural model while assuming expected utility theory. We follow the modeling

strategy of Harrison and Rutström (2008) and Andersen et al. (2010) to identify risk aversion

parameters for the subjects in our sample.

From Table 6, we observe that subjects face a series of lottery choices j, where a choice has to

be made between two lotteries A and B: {(pAj , y
A
h ; 1 − pAj , y

A
l ); (p

B
j , y

B
h ; 1 − pBj , y

B
l )}. Lottery

A (resp. B) offers a high outcome yAh (resp. yBh ) with probability pAj = 1/2 (resp. pBj = 1/2)

and a low outcome yAl (resp. yBl ) with probability 1 − pAj = 1/2 (resp. 1 − pBj = 1/2). Note

that lottery B has a larger variance than lottery A. We model individual utility as suggested by
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expected utility. The value function is written as follows:

u(y) =
y1−r

1− r
(6)

where y is the lottery prize and r 6= 1 a parameter to be estimated. For r = 1, we assume

that u(y) = ln(y) if needed. Thus, r is the coefficient of relative risk aversion (CRRA), with

r < 0, r = 0, and r > 0 yields a convex, linear or concave value function, respectively, and so

risk-lover, risk-neutral or risk-averse subjects.

We model the decision using of a discrete choice model in which we consider a latent variable

y∗ associated with the decision process. We do not observe y∗ but only the choices that subjects

make:

y =

{
1 if y∗ > 0

0 if y∗ ≤ 0
(7)

It follows that for subject i and for a given lottery k ∈ {A,B}, the expected utility is written as:

EUk
i = (pkj )ui(y

k
h) +

(
1− pkj

)
ui(y

k
l ) (8)

Finally, we allow subjects to make some errors; that is, the probability of choosing a lottery is

not one when the expected utility of that lottery exceeds the expected utility of the other lottery.

We consider the Fechner specification popularized by Hey and Orme (1994) that implies a

simple change in the difference in expected utility:

∇EU = (EUB − EUA)/‘noise′ (9)

We estimate the CRRA for each subject using a maximum likelihood estimator. The log-

likelihood function is written as in Eq.10, where Φ(·) is the standard normal distribution function,

yi = 1 when lottery B is chosen, yi = −1 when lottery A is chosen, and ∇EU is the difference

in expected utility between the two lotteries.

ln(L(r, noise :)) =
∑

i

[(lnΦ(∇EU)|yi = 1) + (lnΦ(1−∇EU)|yi = −1)

+ (ln(1/2Φ(∇EU) + 1/2Φ(1−∇EU))|yi = 0)] (10)

The distribution of CRRA estimates obtained in each treatment is plotted in Fig.11.
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Figure 11: Estimated CCRA with a Power Function and Fechner Noise

Notes: The dashed lines represent the interval of CRRA values for risk-neutral subjects. Density at the left (resp. right) represents values for

risk-lover (resp. risk-averse) subjects.

We observe that the density of CRRA estimates is similar for each experimental treatment

(Kruskal Wallis test, p = 0.3324). Further, for each treatment, the main part of the density

function lies to the right of the risk-neutral prediction, revealing a tendency toward risk-averse

behavior among our participants. Using the CRRA estimates and the CRRA intervals reported

in Table 6, we are able to determine the risk profile of each subject. The results are reported in

Table 7. We note that the frequency of risk-lover, risk-neutral and risk-averse subjects does not

differ significantly depending on the experimental treatment. Further, in each treatment, one-

half of subjects are risk-averse, and the remaining subjects are almost equally divided between

risk-lover and risk-neutral.

Table 7: Share of Risk Attitudes by Treatment

(in %)

Treatment Risk-Lover Risk-Neutral Risk-Averse

DC 22.22 25.00 52.78

LDU 26.85 23.15 50.00

HDU 24.07 23.15 52.78

When we analyze whether risk preferences may explain the observed location choices and the

resulting levels of differentiation, we restrict our sample to subjects who have the same risk

profile as their rival. In this way, we are able to compare the observed locations and the levels

of differentiation with our theoretical predictions. From the 324 pairs of locations per treatment,

this requires us to restrict our sample of observations as reported in Table 8.
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Table 8: Number of Observations when Subjects

are Paired with a Rival of Similar Risk Attitude

Treatment Risk-Lover Risk-Neutral Risk-Averse

DC 19 20 90

LDU 31 18 77

HDU 14 16 90

C Additional tables

Table 9 reports some descriptive statistics on subject characteristics.

Table 9: Descriptive Statistics on Subject Characteristics

Variable DC treatment LDU treatment HDU treatment

Age 19.79 20.30 19.96

Woman 0.48 0.53 0.45

Level of study

Licence 1 0.32 0.34 0.41

Licence 2 0.36 0.27 0.27

Licence 3 0.17 0.22 0.16

Master 1 0.14 0.10 0.07

Master 2 0.00 0.03 0.05

> Master 0.00 0.01 0.00

Other 0.01 0.03 0.04

Field of study

Economics 0.64 0.59 0.64

Administration, Economics and Social 0.01 0.00 0.02

Management 0.04 0.04 0.06

Law 0.10 0.12 0.11

Political Science 0.01 0.01 0.00

Medicine 0.01 0.03 0.00

Literature 0.01 0.02 0.01

Other 0.18 0.19 0.16

College

University 0.98 0.94 0.92

Engineering school 0.01 0.01 0.01

Other 0.01 0.05 0.07

Labor activity 0.19 0.23 0.17

Financial assets 0.48 0.43 0.44

# of subjects 108 108 108

Note: Mean of variables are reported.

40



Working paper SMART-LERECO No17-12

D Tacit Collusion

Throughout the paper, we have considered competing firms and non-cooperative equilibria.

However, a cooperative issue may also exist in the case of colluding firms that seek to maximize

their joint profit. Assuming tacit collusion and given that at the beginning of the game firms are

identical, no realistic explanations could be given for why their profits should differ at the end of

the game. Thus, we restrict our theoretical resolution to the collusive equilibrium that provides

equal profits for the two firms. Further, it should be noted that risk attitudes are assumed not to

affect the collusive equilibrium in what follows.

Under perfect information about consumer locations, the symmetric joint profit-maximizing

solution is obtained for the locations (xc
1, x

c
2) = (2, 6) and prices (pc1, p

c
2) = (8, 8). Expected

profit is equal to 3.5 × 8 = 28 for each firm, thus yielding a joint profit equal to 56. This

expected profit is much lower than that resulting from the subgame perfect Nash equilibrium

(49).

The same joint profit-maximizing solution is naturally obtained in the case of low level of

demand uncertainty, providing an expected profit for each firm equal to 26.4, instead of 24.5 for

the non-cooperative equilibrium of risk-neutral firms.

In these two cases, the location equilibrium for colluding firms corresponds to that of competing

firms. Only the price equilibrium change, resulting in an increase in price to maximize the joint

profit. The price set at the collusive equilibrium is the highest price that ensures full market

coverage.

In the case of high demand uncertainty about consumer locations, the symmetric joint profit-

maximizing solution corresponds to the subgame perfect Nash equilibrium (i.e., (xc
H1, x

c
H2) =

(1, 7) and prices (pcH1, p
c
H2) = (7, 7)), providing a joint profit equal to 47.44. Any upward

deviation from this price equilibrium leads to a strong decrease in aggregate demand and thus

in expected profit. For this collusive equilibrium, the aggregate demand is equal to 6.78. If both

firms deviate to a higher price, for instance 8, the aggregate demand falls to 5.55, and this entails

a lower expected profit. Moreover, a bilateral deviation to a lower price, for instance 6, allows

for full market coverage, but the increase in aggregate demand is insufficient to compensate

for the decrease in price to maximize the joint profit. The result is that the symmetric joint

profit-maximizing equilibrium is necessarily the non-cooperative one.
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E Heterogeneous Behaviors for Non-Risk Neutral Subjects

The behavioral heterogeneity of the CRRA estimates is particularly marked for non-risk neutral

subjects due to a wider range of variation than observed for risk-neutral subjects. Consequently,

the finding that demand uncertainty leads subjects to differentiate may result from composition

effects within these two categories. To test whether these results are robust along the distri-

bution of the CRRA estimates, we perform parametric analyses to assess to what extent the

differentiation force varies with the degree of subjects’ risk aversion.

We estimate a Tobit model with a lower bound set at 0 to account for the minimum level of

differentiation. Specifically, we relate the level of differentiation between two subjects with

the same risk profile to the degree of demand uncertainty (binary variables for the DC, LDU,

and HDU treatments), the estimated coefficient of relative risk aversion, and interaction terms

between these variables. We also control for the order of realization of the risk experiment (risk

order), subjects’ characteristics (age, gender, work, undergraduate, economics student), and the

mean effect of the group of 6 subjects whereby pairs of subjects are matched (matching group),

and we introduce period fixed effects.

The estimates of the Tobit models are reported in Table 10 with robust standard errors clustered

at the matching group level. As shown, both risk-lover (Column 1) and risk-averse (Column 2)

subjects differentiate significantly more on average in the HDU treatment than in the DC tre-

atment. Further, we observe that risk-averse subjects in the LDU treatment differentiate more

than in the DC treatment. The estimates of the interaction terms provide new insights. When

risk-lover subjects face a high level of uncertainty (Column 1), those who are less risk-lover

(high CRRA estimates, e.g., r = −0.1) differentiate more than their counterparts (low CRRA

estimates, e.g., r = −0.8). In other words, the closer they are to the risk-neutral category, the

more they behave as a risk-neutral subject who – according to the theoretical predictions – exhi-

bits the highest preference for differentiation when facing a high level of demand uncertainty.

By contrast, for risk-averse subjects, we find a negative (linear) effect of the CRRA estimates in

the HDU treatment on the level of differentiation (see Column 2). This means that subjects who

exhibit strong risk aversion (high values of CRRA, e.g., r = 0.9) differentiate less than their

counterparts (low values of CRRA, e.g., r = 0.3) under a high level of demand uncertainty.
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Table 10: Tobit Models

Dependent variable: Level of differentiation

Risk-Lover Risk-Averse

(1) (2)

LDU treatment -1.4935 2.5972***

(1.0404) (0.4369)

HDU treatment 1.6913* 4.5024***

(0.9818) (0.6073)

LDU treatment × Coef. risk aversion 0.2412 -0.8730

(0.6418) (0.5298)

HDU treatment × Coef. risk aversion 2.2623*** -1.5623**

(0.8595) (0.7616)

Coef. risk aversion -0.6177 0.8110*

(0.5854) (0.4860)

Risk order -0.5968 2.4330***

(0.4061) (0.4493)

Age 0.0857*** 0.0358**

(0.0177) (0.0143)

Gender -0.1632 0.3344**

(0.1809) (0.1661)

Work -1.0545*** -0.2648

(0.2619) (0.2253)

Undergraduate -0.4707* 0.2623

(0.2775) (0.1739)

Economics student -0.5136** 0.0751

(0.2100) (0.1740)

σ 1.3292*** 1.6042***

(0.2059) (0.1550)

Period FE Yes Yes

Matching group FE Yes Yes

Pseudo-R2 0.1967 0.1126

Observations 128 514

Left-censored obs. 28 152

Notes: Clustered standard errors (at the group matching level) reported in parentheses.*,

**, *** indicate significance at the 10%, 5%, 1% level, respectively.
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F Dynamics of Price Competition

Compared to the location subgame in which subjects choose a location once and for all for

a given market, subjects compete in prices with the same rival during 5 periods in the price

subgame. Therefore, we examine in this section whether repeated interactions allow subjects

to adjust up or down their price decisions over time and, if prices evolve, whether this price

dynamic may overturn our results.

A first step consists in assessing whether prices evolve over time. To do so, we present in the

first two columns of Table 11 the average price per level of differentiation computed both in the

first period and in the last period of the price game in a given market for each treatment. It is

striking that subjects set significantly higher prices in the first period than in the last period for

low and intermediate levels of differentiation (i.e., differentiation levels between 0 and 3), and

this result holds whatever the treatment. However, for higher differentiation levels, we find that

prices set in the last period are more frequently higher than those posted in the first period.

To study these price trends in greater detail, we present in Figs. 12–14 the evolution of the

average prices over time for each treatment. The previous findings are confirmed, and we

observe that prices significantly decline over time for low and intermediate levels of differen-

tiation. The question is then whether the result that subjects fail to reach the non-cooperative

equilibrium predictions and tend to collude at low levels of differentiation remains valid if we

only consider the last period of the price games. To answer this question, we first report in Table

11 the range of the non-cooperative and collusive equilibrium prices by level of differentiation

for each treatment. We show that considering only the last period of the price subgame does not

modify our result: subjects still set prices above the non-cooperative equilibrium predictions at

low levels of differentiation whatever the treatment. However, we cannot assert that subjects

attempt to collude in prices because the posted prices are far below the collusive equilibrium

prices. Nevertheless, if we consider all the price periods, the attempt to collude in prices is clear.

As shown in Figs. 12–14, when subjects are located at the same location or next to one another,

they attempt to tacitly collude in the first period by setting prices significantly higher than the

non-cooperative predictions. However, by failing to achieve the collusive outcome, the low le-

vel of differentiation forces them to gradually reduce their prices in the following periods, and

subjects face fiercer price competition in the last periods. Furthermore, the consequence of an

insufficient level of differentiation for prices is also evident at intermediate levels of differentia-

tion (i.e., differentiation levels 2 and 3). When subjects do not differentiate sufficiently, they fail

to sustain high prices throughout the periods, and they are trapped in a price war. This pattern

is particularly marked for the LDU and HDU treatments, in which the level of differentiation in

equilibrium is higher.
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Table 11: Price Decisions at the Beginning and at the End of the Price

Competition

Average price Equilibrium prices

Differentiation First period Last period Non-cooperative Collusive

Panel A: DC Treatment

0 3.92 1.98 1 (5,7)

1 4.31 2.92 (1,2) ([3,4],[8,9])

2 4.52 3.67 (2,6) ([8],[10])

3 4.84 4.34 (2,7) ([9],[10])

4 4.40 5.1 (6,7) ([8],[10])

Panel B: LDU Treatment

0 3.65 1.66 1 (4,7)

1 3.73 2.27 (1,2) 10

2 3.95 2.99 (1,6) 8

3 4.09 3.41 (2,6) ([2,5])

4 3.42 3.63 (3,7) ([6,9],8)

5 4.15 3.65 (4,7) ([1,6])

6 3.50 3.50 (5,7) 7

7 4.50 2.50 (5,7) ([6,8])

Panel C: HDU Treatment

0 3.24 1.51 1 (4,6)

1 3.47 2.04 (1,2) 10

2 3.32 2.06 (1,6) 7

3 3.41 2.69 (2,6) (6,8)

4 3.50 3.39 (2,6) ([6,9],8)

5 3.78 4.05 (4,7) ([3,7])

6 3.56 3.81 (5,7) 7

7 3.87 4.12 (5,7) ([2,5])

8 3.00 3.5 (6,7) 7

9 1.50 3 (5,7) ([2,5])

Notes: The columns denoted Equilibrium prices report the minimum and maximum values for risk-neutral

firms by differentiation level for each treatment.
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Figure 12: Evolution of Prices During the 5 Periods of the Price Subgame in the DC Treatment

Notes: The graph displays in each panel the mean price set by time period for a given level of differentiation in the DC treatment. A solid

horizontal line represents the unique equilibrium price for all the pairs of locations. A dashed horizontal line represents the average of multiple

equilibrium prices in the case of mixed strategy equilibria and multiple pure strategy equilibria.
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Figure 13: Evolution of Prices During the 5 Periods of the Price Subgame in the LDU

Treatment

Notes: The graph displays in each panel the mean price set by time period for a given level of differentiation in the LDU treatment. A solid

horizontal line represents the unique equilibrium price for all the pairs of locations. A dashed horizontal line represents the average of multiple

equilibrium prices in the case of mixed strategy equilibria and multiple pure strategy equilibria.
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Figure 14: Evolution of Prices During the 5 Periods of the Price Subgame in the HDU

Treatment

Notes: The graph displays in each panel the mean price set by time period for a given level of differentiation in the HDU treatment. A solid

horizontal line represents the unique equilibrium price for all the pairs of locations. A dashed horizontal line represents the average of multiple

equilibrium prices in the case of mixed strategy equilibria and multiple pure strategy equilibria.
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